Search results for: web-based group decision support system.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11517

Search results for: web-based group decision support system.

10977 A Route Guidance System for Car Finding in Indoor Parking Garages

Authors: Pei-Chun Lee, Sheng-Shih Wang

Abstract:

This paper presents a route guidance system for car owners to find their cars in parking garages. The presents system comprises a positioning-assisting subsystem and a car-finding mobile app. The positioning-assisting subsystem mainly uses the iBeacon technology for indoor positioning. The car-finding mobile app guides car owners to their cars based on a non-map navigation strategy. This study also designs a virtual coordinate system to support identifying the locations of parking spaces and iBeacon devices. We use Arduino and Android as the platforms to implement the proposed positioning-assisting subsystem and car-finding mobile app, respectively. We have also deployed the system in a parking garage in our campus for testing. Experimental results verify that our system can efficiently and correctly guide car owners to the parking spaces of their cars.

Keywords: Guidance, iBeacon, mobile app, navigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
10976 Using Emotional Learning in Rescue Simulation Environment

Authors: Maziar Ahmad Sharbafi, Caro Lucas, Abolfazel Toroghi Haghighat, Omid AmirGhiasvand, Omid Aghazade

Abstract:

RoboCup Rescue simulation as a large-scale Multi agent system (MAS) is one of the challenging environments for keeping coordination between agents to achieve the objectives despite sensing and communication limitations. The dynamicity of the environment and intensive dependency between actions of different kinds of agents make the problem more complex. This point encouraged us to use learning-based methods to adapt our decision making to different situations. Our approach is utilizing reinforcement leaning. Using learning in rescue simulation is one of the current ways which has been the subject of several researches in recent years. In this paper we present an innovative learning method implemented for Police Force (PF) Agent. This method can cope with the main difficulties that exist in other learning approaches. Different methods used in the literature have been examined. Their drawbacks and possible improvements have led us to the method proposed in this paper which is fast and accurate. The Brain Emotional Learning Based Intelligent Controller (BELBIC) is our solution for learning in this environment. BELBIC is a physiologically motivated approach based on a computational model of amygdale and limbic system. The paper presents the results obtained by the proposed approach, showing the power of BELBIC as a decision making tool in complex and dynamic situation.

Keywords: Emotional learning, rescue, simulation environment, RoboCup, multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
10975 Object Allocation with Replication in Distributed Systems

Authors: H. T. Barney, G. C. Low

Abstract:

The design of distributed systems involves dividing the system into partitions (or components) and then allocating these partitions to physical nodes. There have been several techniques proposed for both the partitioning and allocation processes. These existing techniques suffer from a number of limitations including lack of support for replication. Replication is difficult to use effectively but has the potential to greatly improve the performance of a distributed system. This paper presents a new technique technique for allocating objects in order to improve performance in a distributed system that supports replication. The performance of the proposed technique is demonstrated and tested on an example system. The performance of the new technique is compared with the performance of an existing technique in order to demonstrate both the validity and superiority of the new technique when developing a distributed system that can utilise object replication.

Keywords: Allocation, Distributed Systems, Replication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
10974 Factors Affecting Low Back Pain during Breastfeeding of Thai Women

Authors: N. Klinpikul, P. Srichandr, N. Poolthong, N. Thavarungkul

Abstract:

Breastfeeding has been receiving much attention of late. Prolonged sitting for breastfeeding often results in back pain of the mothers. This paper reports the findings of a study on the effect of some factors, especially lumbar support, on back pain of breastfeeding mothers. The results showed that the use of lumbar support can reduce back pain of breastfeeding mothers significantly. Back pain was found to increase with breastfeeding time and the rate of increase was lower when lumbar supports were used. When lumbar support thickness was increased gradually from zero (no support) to 11 cm., the degree of low back pain decreased; rapidly at first, then slowly, and leveled off when the thickness reached 9 cm. Younger mothers were less prone to back pain than older mothers. The implications of the findings are discussed.

Keywords: back pain, breastfeeding, lumbar support

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983
10973 Requirements Engineering for Enterprise Applications Development: Seven Challenges in Higher Education Environment

Authors: Jamaludin Sallim

Abstract:

This paper describes the challenges on the requirements engineering for developing an enterprise applications in higher education environment. The development activities include software implementation, maintenance, and enhancement and support for online transaction processing and overnight batch processing. Generally, an enterprise application for higher education environment may include Student Information System (SIS), HR/Payroll system, Financial Systems etc. By the way, there are so many challenges in requirement engineering phases in order to provide two distinctive services that are production processing support and systems development.

Keywords: enterprise applications development, enterprise information systems, business process, requirement engineering, requirement standards, software development activities, software requirement reviews.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
10972 Power System Security Assessment using Binary SVM Based Pattern Recognition

Authors: S Kalyani, K Shanti Swarup

Abstract:

Power System Security is a major concern in real time operation. Conventional method of security evaluation consists of performing continuous load flow and transient stability studies by simulation program. This is highly time consuming and infeasible for on-line application. Pattern Recognition (PR) is a promising tool for on-line security evaluation. This paper proposes a Support Vector Machine (SVM) based binary classification for static and transient security evaluation. The proposed SVM based PR approach is implemented on New England 39 Bus and IEEE 57 Bus systems. The simulation results of SVM classifier is compared with the other classifier algorithms like Method of Least Squares (MLS), Multi- Layer Perceptron (MLP) and Linear Discriminant Analysis (LDA) classifiers.

Keywords: Static Security, Transient Security, Pattern Recognition, Classifier, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
10971 Support Vector Machine Approach for Classification of Cancerous Prostate Regions

Authors: Metehan Makinacı

Abstract:

The objective of this paper, is to apply support vector machine (SVM) approach for the classification of cancerous and normal regions of prostate images. Three kinds of textural features are extracted and used for the analysis: parameters of the Gauss- Markov random field (GMRF), correlation function and relative entropy. Prostate images are acquired by the system consisting of a microscope, video camera and a digitizing board. Cross-validated classification over a database of 46 images is implemented to evaluate the performance. In SVM classification, sensitivity and specificity of 96.2% and 97.0% are achieved for the 32x32 pixel block sized data, respectively, with an overall accuracy of 96.6%. Classification performance is compared with artificial neural network and k-nearest neighbor classifiers. Experimental results demonstrate that the SVM approach gives the best performance.

Keywords: Computer-aided diagnosis, support vector machines, Gauss-Markov random fields, texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
10970 Leveraging Hyperledger Iroha for the Issuance and Verification of Higher-Education Certificates

Authors: Vasiliki Vlachou, Christos Kontzinos, Ourania Markaki, Panagiotis Kokkinakos, Vagelis Karakolis, John Psarras

Abstract:

Higher Education is resisting the pull of technology, especially as this concerns the issuance and verification of degrees and certificates. It is widely known that education certificates are largely produced in paper form making them vulnerable to damage while holders of such certificates are dependent on the universities and other issuing organisations. QualiChain is an EU Horizon 2020 (H2020) research project aiming to transform and revolutionise the domain of public education and its ties with the job market by leveraging blockchain, analytics and decision support to develop a platform for the verification and sharing of education certificates. Blockchain plays an integral part in the QualiChain solution in providing a trustworthy environment to store, share and manage such accreditations. Under the context of this paper, three prominent blockchain platforms (Ethereum, Hyperledger Fabric, Hyperledger Iroha) were considered as a means of experimentation for creating a system with the basic functionalities that will be needed for trustworthy degree verification. The methodology and respective system developed and presented in this paper used Hyperledger Iroha and proved that this specific platform can be used to easily develop decentralize applications. Future papers will attempt to further experiment with other blockchain platforms and assess which has the best potential.

Keywords: Blockchain, degree verification, higher education certificates, Hyperledger Iroha.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
10969 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features

Authors: Birmohan Singh, V. K. Jain

Abstract:

Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support vector machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and an accuracy of 96% for mammogram images collected from digital database for screening mammography database.

Keywords: Architecture Distortion, GLCM Texture features, GLRLM Texture Features, Mammograms, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
10968 Supervisory Fuzzy Learning Control for Underwater Target Tracking

Authors: C.Kia, M.R.Arshad, A.H.Adom, P.A.Wilson

Abstract:

This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.

Keywords: Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
10967 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: Color moments, visual thing recognition system, SIFT, color SIFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
10966 Multidimensional Compromise Optimization for Development Ranking of the Gulf Cooperation Council Countries and Turkey

Authors: C. Ardil

Abstract:

In this research, a multidimensional  compromise optimization method is proposed for multidimensional decision making analysis in the development ranking of the Gulf Cooperation Council Countries and Turkey. The proposed approach presents ranking solutions resulting from different multicriteria decision analyses, which yield different ranking orders for the same ranking problem, consisting of a set of alternatives in terms of numerous competing criteria when they are applied with the same numerical data. The multiobjective optimization decision making problem is considered in three sequential steps. In the first step, five different criteria related to the development ranking are gathered from the research field. In the second step, identified evaluation criteria are, objectively, weighted using standard deviation procedure. In the third step, a country selection problem is illustrated with a numerical example as an application of the proposed multidimensional  compromise optimization model. Finally, multidimensional  compromise optimization approach is applied to rank the Gulf Cooperation Council Countries and Turkey. 

Keywords: Standard deviation, performance evaluation, multicriteria decision making, multidimensional compromise optimization, vector normalization, multicriteria decision making, multicriteria analysis, multidimensional decision analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
10965 Consumer Product Demand Forecasting based on Artificial Neural Network and Support Vector Machine

Authors: Karin Kandananond

Abstract:

The nature of consumer products causes the difficulty in forecasting the future demands and the accuracy of the forecasts significantly affects the overall performance of the supply chain system. In this study, two data mining methods, artificial neural network (ANN) and support vector machine (SVM), were utilized to predict the demand of consumer products. The training data used was the actual demand of six different products from a consumer product company in Thailand. The results indicated that SVM had a better forecast quality (in term of MAPE) than ANN in every category of products. Moreover, another important finding was the margin difference of MAPE from these two methods was significantly high when the data was highly correlated.

Keywords: Artificial neural network (ANN), Bullwhip effect, Consumer products, Demand forecasting, Supply chain, Support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
10964 Satisfaction on English Language Learning with Online System

Authors: Suwaree Yordchim, Toby J. Gibbs

Abstract:

The objective is to study the satisfaction on English with an online learning. Online learning system mainly consists of English lessons, exercises, tests, web boards, and supplementary lessons for language practice. The sample groups are 80 Thai students studying English for Business Communication, majoring in Hotel and Lodging Management. The data are analyzed by mean, standard deviation (S.D.) value from the questionnaires. The results were found that the most average of satisfaction on academic aspects are technological searching tool through E-learning system that support the students’ learning (4.51), knowledge evaluation on pre-post learning and teaching (4.45), and change for project selections according to their interest, subject contents including practice in the real situations (4.45), respectively.

Keywords: English Learning, Online System, Satisfaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613
10963 Minimizing of Target Localization Error using Multi-robot System and Particle Filters

Authors: Jana Puchyova

Abstract:

In recent years a number of applications with multirobot systems (MRS) is growing in various areas. But their design is in practice often difficult and algorithms are proposed for the theoretical background and do not consider errors and noise in real conditions, so they are not usable in real environment. These errors are visible also in task of target localization enough, when robots try to find and estimate the position of the target by the sensors. Localization of target is possible also with one robot but as it was examined target finding and localization with group of mobile robots can estimate the target position more accurately and faster. The accuracy of target position estimation is made by cooperation of MRS and particle filtering. Advantage of usage the MRS with particle filtering was tested on task of fixed target localization by group of mobile robots.

Keywords: Multi-robot system, particle filter, position estimation, target localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
10962 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD: Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by SVM, achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: Autism Spectrum Disorder, ASD, Machine Learning, ML, Feature Selection, Support Vector Machine, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
10961 An Application of Generalized Fuzzy Soft Sets in a Social Decision Making Problem

Authors: Nisha Singhal, Usha Chouhan

Abstract:

At present, application of the extension of soft set theory in decision making problems in day to day life is progressing rapidly. The concepts of fuzzy soft set and its properties have been evolved as an area of interest for the researchers. The generalization of the concepts recently got importance and a rapid growth in the research in this area witnessed its vital-ness. In this paper, an application of the concept of generalized fuzzy soft set to make decision in a social problem is presented. Further, this paper also highlights some of the key issues of the related areas.

Keywords: Soft set, Fuzzy Soft set, Generalized Fuzzy Soft set, Membership and Non-Membership Score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947
10960 Design of Stable IIR Digital Filters with Specified Group Delay Errors

Authors: Yasunori Sugita, Toshinori Yoshikawa

Abstract:

The design problem of Infinite Impulse Response (IIR) digital filters is usually expressed as the minimization problem of the complex magnitude error that includes both the magnitude and phase information. However, the group delay of the filter obtained by solving such design problem may be far from the desired group delay. In this paper, we propose a design method of stable IIR digital filters with prespecified maximum group delay errors. In the proposed method, the approximation problems of the magnitude-phase and group delay are separately defined, and these two approximation problems are alternately solved using successive projections. As a result, the proposed method can design the IIR filters that satisfy the prespecified allowable errors for not only the complex magnitude but also the group delay by alternately executing the coefficient update for the magnitude-phase and the group delay approximation. The usefulness of the proposed method is verified through some examples.

Keywords: Filter design, Group delay approximation, Stable IIRfilters, Successive projection method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
10959 Properties of a Stochastic Predator-Prey System with Holling II Functional Response

Authors: Xianqing Liu, Shouming Zhong, Fuli Zhong, Zijian Liu

Abstract:

In this paper, a stochastic predator-prey system with Holling II functional response is studied. First, we show that there is a unique positive solution to the system for any given positive initial value. Then, stochastically bounded of the positive solution to the stochastic system is derived. Moreover, sufficient conditions for global asymptotic stability are also established. In the end, some simulation figures are carried out to support the analytical findings.

Keywords: stochastically bounded, global stability, Holling II functional response, white noise, Markovian switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
10958 Fuzzy Control of a Quarter-Car Suspension System

Authors: M. M. M. Salem, Ayman A. Aly

Abstract:

An active suspension system has been proposed to improve the ride comfort. A quarter-car 2 degree-of-freedom (DOF) system is designed and constructed on the basis of the concept of a four-wheel independent suspension to simulate the actions of an active vehicle suspension system. The purpose of a suspension system is to support the vehicle body and increase ride comfort. The aim of the work described in the paper was to illustrate the application of fuzzy logic technique to the control of a continuously damping automotive suspension system. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbances from smooth road and real road roughness. The paper describes also the model and controller used in the study and discusses the vehicle response results obtained from a range of road input simulations. In the conclusion, a comparison of active suspension fuzzy control and Proportional Integration derivative (PID) control is shown using MATLAB simulations.

Keywords: Fuzzy logic control, ride comfort, vehicle dynamics, active suspension system, quarter-car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4205
10957 Payment for Pain: Differences between Hypothetical and Real Preferences

Authors: J. Trarbach, S. Schosser, B. Vogt

Abstract:

Decision-makers tend to prefer the first alternative over subsequent alternatives which is called the primacy effect. To reliably measure this effect, we conducted an experiment with real consequences for preference statements. Therefore, we elicit preferences of subjects using a rating scale, i.e. hypothetical preferences, and willingness to pay, i.e. real preferences, for two sequences of pain. Within these sequences, both overall intensity and duration of pain are identical. Hence, a rational decision-maker should be indifferent, whereas the primacy effect predicts a stronger preference for the first sequence. What we see is a primacy effect only for hypothetical preferences. This effect vanishes for real preferences.

Keywords: Decision making, primacy effect, real incentives, willingness to pay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
10956 Relationship between Codependency, Perceived Social Support, and Depression in Mothers of Children with Intellectual Disability

Authors: Sajed Yaghoubnezhad, Mina Karimi, Seyede Marjan Modirkhazeni

Abstract:

The goal of this research was to study the relationship between codependency, perceived social support and depression in mothers of children with intellectual disability (ID). The correlational method was used in this study. The research population is comprised of mothers of educable children with ID in the age range of 25 to 61 years. From among this, a sample of 251 individuals, in the multistage cluster sampling method, was selected from educational districts in Tehran, who responded to the Spann-Fischer Codependency Scale (SFCDS), the Social Support Questionnaire and the Beck Depression Inventory (BDI). The findings of this study indicate that among mothers of children with ID depression has a positive and significant correlation with codependency (P<0.01, r=0.4) and a negative and significant correlation with the total score of social support (P<0.01, r=-0.34). Moreover, the results of stepwise multiple regression analysis showed that codependency is allocated a higher variance than social support in explaining depression (R2=0.023).

Keywords: Codependency, social support, depression, mothers of children with ID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
10955 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree

Authors: S. Ghorbani, N. I. Polushin

Abstract:

In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.

Keywords: Cutting condition, surface roughness, decision tree, CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
10954 New Hybrid Method to Correct for Wind Tunnel Wall- and Support Interference On-line

Authors: B. J. C. Horsten, L. L. M. Veldhuis

Abstract:

Because support interference corrections are not properly understood, engineers mostly rely on expensive dummy measurements or CFD calculations. This paper presents a method based on uncorrected wind tunnel measurements and fast calculation techniques (it is a hybrid method) to calculate wall interference, support interference and residual interference (when e.g. a support member closely approaches the wind tunnel walls) for any type of wind tunnel and support configuration. The method provides with a simple formula for the calculation of the interference gradient. This gradient is based on the uncorrected measurements and a successive calculation of the slopes of the interference-free aerodynamic coefficients. For the latter purpose a new vortex-lattice routine is developed that corrects the slopes for viscous effects. A test case of a measurement on a wing proves the value of this hybrid method as trends and orders of magnitudes of the interference are correctly determined.

Keywords: Hybrid method, support interference, wall interference, wind tunnel corrections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
10953 Protection of Cultural Heritage against the Effects of Climate Change Using Autonomous Aerial Systems Combined with Automated Decision Support

Authors: Artur Krukowski, Emmanouela Vogiatzaki

Abstract:

The article presents an ongoing work in research projects such as SCAN4RECO or ARCH, both funded by the European Commission under Horizon 2020 program. The former one concerns multimodal and multispectral scanning of Cultural Heritage assets for their digitization and conservation via spatiotemporal reconstruction and 3D printing, while the latter one aims to better preserve areas of cultural heritage from hazards and risks. It co-creates tools that would help pilot cities to save cultural heritage from the effects of climate change. It develops a disaster risk management framework for assessing and improving the resilience of historic areas to climate change and natural hazards. Tools and methodologies are designed for local authorities and practitioners, urban population, as well as national and international expert communities, aiding authorities in knowledge-aware decision making. In this article we focus on 3D modelling of object geometry using primarily photogrammetric methods to achieve very high model accuracy using consumer types of devices, attractive both to professions and hobbyists alike.

Keywords: 3D modeling, UAS, cultural heritage, preservation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
10952 Efficient Realization of an ADFE with a New Adaptive Algorithm

Authors: N. Praveen Kumar, Abhijit Mitra, C. Ardil

Abstract:

Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.

Keywords: Decision feedback equalizer, Adaptive algorithm, Block based computation, Set membership filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
10951 Effects of Gratitude Practice on Relationship Satisfaction and the Role of Perceived Superiority

Authors: Anomi Bearden, Brooke Goodyear, Alicia Khan

Abstract:

This repeated-measures experiment explored the effects of six weeks of gratitude practice on college students (N = 67) on relationship satisfaction and perceived superiority. Replicating previous research on gratitude practice, it was hypothesized that after consistent gratitude practice, participants in the experimental group (n = 32) would feel increased levels of relationship satisfaction compared to the control group (n = 35). Of particular interest was whether the level of perceived superiority would moderate the effect of gratitude practice on relationship satisfaction. The gratitude group evidenced significantly higher appreciation and marginally higher relationship satisfaction at post-test than the control group (both groups being equal at pre-test). Significant enhancements in gratitude, satisfaction, and feeling both appreciative and appreciated were found in the gratitude group, as well as significant enhancements in gratitude, satisfaction, and feeling appreciated in the control group. Appreciation for one’s partner was the only measure that improved in the gratitude group and not the control group from pre-test to post-test. Perceived superiority did not change significantly from pre-test to post-test in either group, supporting the prevalence and stability of this bias within people’s overall perceptions of their relationships.

Keywords: Gratitude, relationship satisfaction, perceived superiority, partner appreciation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 400
10950 Engine Power Effects on Support Interference

Authors: B.J.C. Horsten, L.L.M. Veldhuis

Abstract:

Renewed interest in propeller propulsion on aircraft configurations combined with higher propeller loads lead to the question how the effects of the propulsion on model support disturbances should be accounted for. In this paper, the determination of engine power effects on support interference of sting-mounted models is demonstrated by a measurement on a four-engine turboprop aircraft. CFD results on a more generic model are presented in order to clarify the possible mechanism behind engine power effects on support interference. The engine slipstream induces a local change in angle of sideslip at the model sting thereby influencing the sting near-field and far-field effects. Whether or not the net result of these changes in the disturbance pattern leads to a significant engine power effect depends on the configuration of the wind tunnel model and the test setup.

Keywords: CFD, engine power effects, measurements, support interference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
10949 What Factors Contributed to the Adaptation Gap during School Transition in Japan?

Authors: What Factors Contributed to the Adaptation Gap during School Transition in Japan?

Abstract:

The present study was aimed to examine the structure of children’s adaptation during school transition and to identify a commonality and dissimilarity at the elementary and junior high school. 1,983 students in the 6th grade and 2,051 students in the 7th grade were extracted by stratified two-stage random sampling and completed the ASSESS that evaluated the school adaptation from the view point of ‘general satisfaction’, ‘teachers’ support’, ‘friends’ support’, ‘anti-bullying relationship’, ‘prosocial skills’, and ‘academic adaptation’. The 7th graders tend to be worse adaptation than the 6th graders. A structural equation modeling showed the goodness of fit for each grades. Both models were very similar but the 7th graders’ model showed a lower coefficient at the pass from ‘teachers’ support’ to ‘friends’ support’. The role of ‘teachers’ support’ was decreased to keep a good relation in junior high school. We also discussed how we provide a continuous assistance for prevention of the 7th graders’ gap.

Keywords: School transition, social support, psychological adaptation, K-12.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
10948 Harnessing Replication in Object Allocation

Authors: H. T. Barney, G. C. Low

Abstract:

The design of distributed systems involves the partitioning of the system into components or partitions and the allocation of these components to physical nodes. Techniques have been proposed for both the partitioning and allocation process. However these techniques suffer from a number of limitations. For instance object replication has the potential to greatly improve the performance of an object orientated distributed system but can be difficult to use effectively and there are few techniques that support the developer in harnessing object replication. This paper presents a methodological technique that helps developers decide how objects should be allocated in order to improve performance in a distributed system that supports replication. The performance of the proposed technique is demonstrated and tested on an example system.

Keywords: Allocation, Distributed Systems, Replication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440