

Abstract—The design of distributed systems involves dividing

the system into partitions (or components) and then allocating these
partitions to physical nodes. There have been several techniques
proposed for both the partitioning and allocation processes. These
existing techniques suffer from a number of limitations including
lack of support for replication. Replication is difficult to use
effectively but has the potential to greatly improve the performance
of a distributed system.

This paper presents a new technique technique for allocating
objects in order to improve performance in a distributed system that
supports replication. The performance of the proposed technique is
demonstrated and tested on an example system. The performance of
the new technique is compared with the performance of an existing
technique in order to demonstrate both the validity and superiority of
the new technique when developing a distributed system that can
utilise object replication.

Keywords—Allocation, Distributed Systems, Replication.

I. INTRODUCTION
HILE there are a number of object oriented techniques
for allocating the components of a distributed system

[1-3], each has its limitations. The focus of this paper is the
development of an allocation technique that supports object
replication. Allocation techniques from object oriented
distributed systems and distributed databases are examined
before a modified technique is proposed. A worked example
demonstrates the new technique. One of the alternative
techniques examined is also applied to the same worked
example. The results of the two partitioning processes are then
compared.

II. LITERATURE REVIEW
A system that is to be distributed around a network must be

broken down into components that are allocated to physical
nodes. The process of breaking the system down into
components is called "partitioning". The process of allocating
the components (partitions) around the network is called
"allocation". The allocation process usually has the goal of
minimizing inter-process communication cost, minimizing
execution cost, load balancing, increasing system reliability

Manuscript received February 14, 2007.
H. T. Barney is a doctoral student at the School of Information Systems,

Technology and Management at The University of New South Wales, Sydney,
Australia. (e-mail: hamish@hbarney.com)

G. C. Low is a Professor of Information Systems at the School of
Information Systems, Technology and Management at The University of New
South Wales, Sydney, Australia. (e-mail: g.low@unsw.edu.au).

and providing scalability [4].

A. Object oriented distributed system allocation techniques
1) Low and Rasmussen’s allocation technique[1]

Low and Rasmussen consider both the communication costs
between partitions and the processing load on each of the
nodes in the distributed system. They then use a heuristic
algorithm [5] to merge partitions until an adequate allocation
arrangement is reached.

 This technique does not horizontally fragment instances of
classes. Consequently all objects that reside in the same
partition are allocated to the same node. Applying replication
at the granularity of a whole class of objects may mean that
there will be little benefit derived from applying the
technique. If there are a large number of objects in a particular
class then the cost of replicating and keeping replicas current
for the whole class will almost always outweigh any benefit
derived from locality of invocation.

This allocation technique also lacks support when deciding
which objects should be replicated or how they should be
replicated.

2) Chang and Tseng’s allocation technique[2]
Chang and Tseng’s allocation technique makes allocation

decisions at an object not a class level so their technique does
not have the problems associated with allocating whole
classes to individual nodes encountered in [1]. Although
allocation in this technique can take place at the granularity of
individual instances of classes, their technique offers no
guidance on how to model the interactions between individual
instances. It is therefore not clear how employing this method
will support the developer in allocating different objects. In a
large system with hundreds or even thousands of instances of
each class, modeling the interactions between these instances
is an insurmountable task.

3) Purao et. al's allocation technique[3]
Purao et al describe a method for allocation that uses a

series of formulae to model different aspects of the
performance of a distributed system. The four formulae
estimate: the match of the fragments to their respective
processors, the communication volume, concurrency potential
and the cost of maintaining a given set of replicas. The user of
this methodology must provide information about the network
upon which the system is to be allocated and details about the
design of the system. Additionally, horizontal fragmentation
criteria for all classes must be provided beforehand.

Multiple possible allocation arrangements are produced that
are locally, but not globally, optimal. The user can then

Object Allocation with Replication in
Distributed Systems

H. T. Barney and G. C. Low

W

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4130International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
1.

pd
f

choose which of the suggested solutions has the performance
characteristics that most closely match the desired
performance characteristics of the final system. The chosen
solution is then used to seed the next iteration of the technique
to produce a further set of locally optimal solutions clustered
around the chosen solution. This process continues until the
user is satisfied that the allocation arrangement produced
satisfactorily meets the desired performance characteristics.

The suggested approach has two main drawbacks: it does
not consider processor loads and fragmentation decisions are
made before the allocation process starts. The cost in terms of
CPU time is not a factor considered in Purao et al.’s model of
the distributed system and as such their technique may
produce an allocation arrangement where the CPU of one or
more of the nodes is overloaded making it a bottle-neck for
the entire system.

The fact that horizontal fragmentation criteria must be
decided before the allocation process can commence may
involve unnecessary work if all the instances of the given
class end up being allocated to a single node. It may also be
difficult to determine meaningful horizontal fragmentation
criteria a priori without some information about the context of
the decision, and what the fragmentation of the instances of
that class aims to achieve.

B. Database Approaches
Most distributed database approaches to the allocation

problem split the allocation process into two stages,
fragmentation and allocation of these fragments.
Fragmentation is the process of dividing a relation into
meaningful segments. These fragments are then allocated to
nodes in the distributed system. The allocation processes
advocated by [6] and [7] will be examined to judge their
suitability for application to object orientated distributed
systems.

It is noted that there are some object oriented database
techniques for partitioning such as [8] but these techniques
generally focus on “address partitioning for efficient access of
pages from secondary memory and require information that
may not be easily available during the design stage” [3] and as
such are not of direct interest for the purposes of this paper.

1) Ceri and Pelgatti’s allocation technique [6]
Ceri and Pelgatti offer a process whereby fragmentation and

allocation are performed as independent exercises. Their
process requires the creation of predicates that are used to
divide the relations.

Their allocation process determines the optimal allocation
of the predetermined database fragments based on where and
how they are accessed using a 0,1 integer programming
approach. This approach attempts to minimize the estimated
communication costs between network nodes This process is,
however, by their own estimation, “very simplistic”, and does
not incorporate “the relationship between fragments…. the
cost of integrity enforcement… concurrency enforcement”.
Despite the simplifications made to produce this equation this
formulation of the problem has also been proven to be

NP-complete, making it impractical to use in a case where
there are a large number of nodes and fragments.

2) Chaturvedi et al.’s allocation technique[9]
Chaturvedi et al. approach the problem of allocating

distributed database fragments by adapting a machine learning
approach. After a database has been in use for some time its
query and update history is examined to find portions of the
database that remain unchanged. They call these unchanged
portions, time-invariant fragments. These time-invariant
fragments are then replicated to all nodes in the system. This
approach is intended for use after an initial allocation
arrangement has been formulated and the database has been in
use for some time. As such, it is unsuitable for use in the
formulation of an initial allocation arrangement. The
replication strategy they suggest also appears rather simplistic
and could lead to unnecessary overhead. As the replication
strategy dictates that unchanged fragments of the database be
replicated to all nodes, many nodes will host replicas of
fragments they never access. In addition if one of these time-
invariant fragments is changed at some later stage in the
application’s life, the cost of updating that fragment will be
very high, as updates will have to be propagated to every node
in the system. As such this technique is not appropriate for use
as an initial allocation arrangement for object orientated
distributed systems.

3) Tamhankar and Ram’s allocation technique[7]
Tamhankar and Ram present an integrated fragmentation

and allocation technique for distributed databases. They
identified seven criteria that a system designer can use to
determine the fragmentation, replication and allocation
strategy for each relation. The characteristics suggested for
analysis are: the site of the updates, cost of updates, sites of
queries, volume of data, data currency requirements and other
overriding considerations.

A developer analyses all the relations in the system using
the above criteria. An initial guess at the fragmentation and
replication strategy is decided based on these characteristics.
They produced a table of recommended fragmentation and
replication strategies based on these seven criteria. The
strategy can be modified in a process called secondary
distribution to meet individual design goals. There are three
secondary distribution stages: response time, availability and
storage space.

III. PROPOSED TECHNIQUE
None of the reviewed allocation techniques adequately

solves the allocation problem for object-oriented systems
where replication is available. Given the evaluation of the
various allocation techniques and the analysis of their
applicability to the field of object-oriented systems a new
technique, incorporating the advantages of the reviewed
allocation techniques, is proposed.
Tamhankar and Ram’s approach has many advantages. It
incorporates consideration of processor loads and replication.
Additionally, fragmentation predicates are only created where
necessary and it provides guidance on which type of predicate

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4131International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
1.

pd
f

is suitable given the characteristics of a given partition. In
these two respects it offers an advantage over the other
approaches examined.
However, their approach cannot be directly applied to an
object oriented system because the metrics and many of the
specifics of their allocation heuristics are specific to databases.
The metrics suggested by Low and Rasmussen [1], which are
valid in the context of an object oriented system, can be used
in conjunction with Tamhankar and Ram’s approach to
produce a new heuristic approach to the allocation problem
that better meets the goals for the allocation process [4].

In line with Tamhankar and Ram, the proposed technique is
composed of three stages: primary distribution, secondary
distribution for response time and secondary distribution for
storage space.

A. Primary distributions

 Primary distribution is an initial attempt at fragmentation and
allocation. The decision about fragmentation and allocation is
based on seven criteria: sites of updates, cost of updates, sites
of queries, cost of queries, volume of data, currency of data
and any overriding considerations that may affect the
allocation of that partition. The following variables will be of
interest when estimating various aspects of the distributed
system’s performance.

The following interpretation of seven criteria for primary
distribution within the context of object-oriented systems is
suggested.

1) Sites of update (SU)
Whether the updates to a partition’s constituent objects

originate from a single site (1) or multiple sites (M). Only the
original source of an event is to be considered as the site of an
update, even when those updates originate from other objects

2) Cost of update (CU)
Whether the cost of the updates that occur to a partition’s

constituent objects is high (HI) or low (LO). Partitions are
designated as having a HI or LO cost depending on the total
cost of updates to that partition.

An existing component communications cost model for
distributed object oriented systems [1] is adapted to
differentiate between updates, uj and queries, 1-uj. Thus the
following equation gives the cost model for updates.

()[]∑ ∑
∈∀ ∈↔∀

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×=

Eii xklkj
jjjjix clocumnCost

: ,:

 (1)

Equation (1) should be used to estimate the cost of updates
for each partition. Partitions should be ordered by the cost of
updates. The group of partitions that form the bottom 10% of
the total should be designated as LO. Those partitions
comprising the remaining 90% should be designated as having
HI update costs.

3) Sites of queries (SQ)
As for sites of update, this indicates whether updates to the

partition emanate from a single site (1) or multiple sites (M).
4) Cost of queries (CQ):

 As for cost of updates except that the following cost
equation should be used where only the cost of queries is
considered.

() ()[]∑ ∑
∈∀ ∈↔∀

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−×=

Eii xklkj
jjjjix clocumnCost

: ,:

1 (2)

5) Volume of data (HI/MD/LO)
The formula for determining storage space requirements is

given below:
()∑

∈∀

+×=
xii

iiix sidStorage
:

 (3)

The proportion of the total storage space requirements each
partition requires, estimated using Equation (3), can be used to
guide the allocation of high, medium or low designations.
Partitions should be ordered by their estimated storage
requirements. The partitions that form the bottom 10% of the
total are designated as LO, the next 20% are designated MD and
the remaining partitions are designated as HI.

6) Currency of data (CD)
This criterion is used to indicate the kind of currency

requirements the objects in that partition require. (O) if one
day old, or older data is acceptable or (C) if any object in a
partition requires current data.

7) Overriding considerations for a site (OC)
If there are any overriding considerations that have not been

covered by the other criteria, like security, that will dictate the
allocation of the partition then this criteria has a value of Y.

Tamhankar and Ram suggest a range of partitioning
arrangements for primary distribution based on the above
criteria. These have been modified so that they are applicable
for use with object oriented systems and are presented below
(Tables I and II). Based on the additional information gathered
in this process the developer may re-consider the partitioning
arrangement originally decided upon.

LIST OF TERMS
X The node to be examined.
Costx Component communications cost for node to be examined.

It includes the communications cost and associated
processor overhead associated with the communication.

∀i;i∈E All events, i, from the set of events E.
nj The number of times the event j is repeated in a period of

interest.
∀j;k↔l,k∈
x

All messages, j, where object l requests a service from k
and k is an object residing on node x

mj The number of times the message, j, is sent between k and
l in one occurrence of event i.

locj The number of lines of code needed to implement the
service requested by message j.

Cj Cost of requesting a service provided by k requested by l
by message j in the event i. For example [1] recommend
incorporating an additional cost of 3 units (equivalent lines
of code) for each method invocation. This allows details,
like a reference to the calling object, which method is
being invoked etc, to be incorporated.

uj This variable is 1 if message j will trigger an update and 0
if the message does not trigger an update.

Storagex The storage space required to store the partition, x.
di The average amount of data for each instance of the object

i.
ii The expected number of instances of object i.
si The amount of space required for the executable portion of

h bj i

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4132International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
1.

pd
f

TABLE I
SUGGESTED PRIMARY DISTRIBUTION STRATEGIES (AFTER [7])

Application, Data and Network Specific Information
SU CU SQ CQ VD CD OC

Recommended Primary Distribution Further Analysis?

1 XX 1 LO XX XX N Site of update No
1 LO 1 HI XX XX N Site of query No
1 HI 1 HI XX O N Site of update and UCO at the site of query No
1 HI 1 HI XX C N Site of update/query Yes; A

1 LO M LO XX XX N Site of update No
1 LO M HI LO O N (HF + UCF) / UCO Yes; C1
1 LO M HI LO C N (HF + SCF) / SCO Yes ; C2
1 LO M HI MD O N (HF + UCF) / UCO Yes; C3
1 LO M HI MD C N (HF + SCF) / SCO Yes; C4
1 LO M HI HI O N (HF + UCF) / UCO Yes; C5
1 LO M HI HI C N (HF + SCF) / SCO Yes; C6
1 HI M LO XX XX N Site of update
1 HI M HI XX C N Site of update + HF / SCO Yes; B2
1 HI M HI LO O N Site of update + HF / UCO Yes; B1
1 HI M HI MD O N Site of update + HF / UCO Yes; B3
1 HI M HI HI O N Site of update + HF / UCO Yes; B4

M LO 1 XX XX XX N Site of query No
M HI 1 LO XX XX N HF Yes; D
M HI 1 HI XX O N HF + UCO at site of query Yes; E1
M HI 1 Hi XX C N (HF + SCF) / SCO at the site of query Yes; E2

M LO M LO XX XX N One of the sites of update No
M LO M HI LO O N (HF + UCF) / UCO Yes; C1
M LO M HI LO C N (HF + SCF) / SCO Yes; C2
M LO M HI MD O N (HF + UCF) / UCO Yes; C3
M LO M HI MD C N (HF + SCF) / SCO Yes; C4
M LO M HI HI O N (HF + UCF) / UCO Yes; C5
M LO M HI HI C N (HF + SCF) / SCO Yes; C6
M HI M LO XX XX N HF Yes; D
M HI M HI XX C N (HF + SCF) / SCO Yes; F2
M HI M HI LO O N (HF + UCF) / UCO Yes; F1
M HI M HI MD O N (HF + UCF) / UCO Yes; F3
M HI M HI HI O N (HF + UCF) / UCO Yes; F4

XX XX XX XX XX XX Y As special requirements dictate

Abbreviations Used:
SU: Site of update
CU: Cost of update
SQ: Site of query
CQ: Cost of query
VD: Volume of data
CD: Currency of data
OC: Overriding considerations

XX: Don’t care
HF: Horizontal fragmentation
SCF: Synchronised copy of a fragment
UCF: Unsynchronised copy of a fragment
SCO: Synchronised copy of a object/classes
UCO: Unsynchronised copy of a object/classes

D1 + D2: Both the distributions (D1 and D2)
D1 / D2: One of the distributions (D1 or D2)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4133International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
1.

pd
f

TABLE II
DETAILED ANALYSIS FOR PRIMARY DISTRIBUTION STRATEGIES (AFTER [7])

Analysis Refinement Description
A In this case, the allocation of a object/classes can be to the site of query or the site of update, if the sites are not the same. If queries.

If updates outnumber queries, the object/classes should be allocated to the site of updates. Otherwise, either site could be chosen for
allocation.

 A copy of the object/classes should be allocated to the site of update.
If locality of reference can be identified with a location based attribute, primary or derived, for queries, horizontal fragmentation
should be attempted first. If no horizontal fragmentation is possible, one or more copies may be allocated to some sites as follows:

1 Copies without update synchronization of the object/classes should be allocated to sites with the highest volumes of queries.
2 One copy with update synchronization of the object/classes may be allocated to the site with the highest volume of queries.
3 Copies without update synchronization of the object/classes should be allocated to some of the sites with high volume of queries.

B

4 One copy without update synchronization of the object/classes should be allocated to the site with the highest volume of queries
 (a) If locality of reference can be identified with a location based attribute, primary or derived, for queries, horizontal fragmentation

should be attempted first. If a sizable portion of queries from a site is still not restricted to the local fragment, copies of other
fragments can be further allocated.
(b) If no horizontal fragmentation is possible, one or more copies of the object/classes may be allocated to some sites.
The decision on number of copies and the sites of allocation for a fragment as in (a), or a object/classes as in (b) can be taken as
follows:

1 Copies without update synchronization should be allocated to sites with high volume of queries.
2 Copies with update synchronization should be allocated to sites with the highest volume of queries.
3 Copies without update synchronization should be allocated to some of the sites with high volume of queries.
4 Copies with update synchronization should be allocated to some of the sites with the highest volume of queries.
5 One copy of the fragment/object/classes without update synchronization should be allocated to the site with the highest volume of

queries.

C

6 One copy of the fragment/object/classes with update synchronization should be allocated to the site with the highest volume of
queries.

D If locality of reference can be identified with a location based attribute, primary or derived, for updates, horizontal fragmentation
should be attempted. If no horizontal fragmentation is possible, the object/classes should be allocated to the site with the highest
number of updates.

 If locality of reference can be identified with a location based attribute, primary or derived, for updates, horizontal fragmentation
should be attempted. If no horizontal fragmentation is possible, the object/classes should be allocated to the site with the highest
number of updates

1 One copy of the object/classes can be allocated to the site of the query.

E

2 If the object/class is horizontally fragmented for updates and the queries are localized to a fragment, a copy of the fragment may be
kept at the site of query.
If no horizontal fragmentation or queries are not localized, a copy of the object/classes may be allocated to the site of query

F (a) If locality of reference can be identified with a location based attribute, primary or derived, for queries, horizontal fragmentation
should be attempted first. If a sizable portion of queries from a site is still not restricted to the local fragment, copies of other
fragments can be further allocated.
(b) If no horizontal fragmentation is possible, one or more copies of the object/classes may be allocated to some sites.

 1 Copies without update synchronization should be allocated to sites with high volume of queries
 2 One copy of the fragment/object/classes with update synchronization should be allocated to the site with the highest volume of

queries.
 3 Copies without update synchronization should be allocated to some of the sites with high volume of queries.
 4 Copies without update synchronization should be allocated to the site with the highest volume of queries.

B. Secondary distribution for response time
Secondary distribution for response time improvement

allows the designer to improve distribution of the application
to reduce the cost of transactions. Improvements are then
sought to the distribution arrangement by: relocating a
fragment, maintaining a copy of the fragment and/or
clustering fragments for a transaction.

This process requires the user of the technique to estimate
the processor and network loads produced when an allocation
arrangement resulting from the primary distribution phase is
used. For the purposes of this paper the cost functions
proposed in [1] are extended to incorporate support for
replication.

Processor load is calculated by multiplying the estimated

number of times a particular method is invoked by the number
of lines of code required to implement that method. In
addition to the cost of invocation it is assumed that inter-
process communication also requires additional processing
overhead (finding an instance of the object, marshalling and
un-marshalling of parameters etc). For the purposes of this
example this additional overhead is estimated to be an
additional 30 lines of code for each remote method invocation
and each return.

Communications cost includes the cost of
querying/updating fragments on different nodes and keeping
the replicas of individual objects/classes consistent. It is
calculated by estimating the number of times that a method is

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4134International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
1.

pd
f

invoked on a remote node times the size of the
communications message(s) between the two nodes for that
invocation. In addition to the explicit input and output
parameters, [1] recommend incorporating an additional cost of
3 units to the size of the communications message for each
method invocation. This additional cost allows details, like a
reference to the calling object, which method is being invoked
etc, to be incorporated.

Additionally, the cost of locking, for read and write
operations, should be incorporated into the estimates for
processor and communications loads.

C. Secondary distribution for storage space
The final stage in the proposed allocation process is

secondary distribution for storage space. This stage allows the
incorporation of storage space constraints in the allocation
arrangement. It is recommended that Equation (3) be used to
estimate storage space requirements for each node. It is
suggested that partitions with medium/high data volumes and
low query update/query cost are the partitions most suitable
for relocation if storage space constraints on a particular node
are exceeded [7].

IV. WORKED EXAMPLE
The new allocation technique will be demonstrated using an

illustrative example.

A. Description of example system
A group of fifty travel agents, have convinced the transport

operators that they need a centralised booking system. The
airlines and cruise companies, convinced of the cost savings
centralised booking system would entail, agree to participate.

Travel Agents help customers find flights or cruises that
suit their travel plans. They search for flights or cruises that
will take a customer where he/she wants to go on the dates
requested. When a customer has chosen a flight, the Travel
Agent tries to book tickets for the customer. If a customer
decides that he/she no longer wishes to take the flight or
cruise the travel agent can cancel it.

The airlines have decided that they will offer a frequent
flyer bonus points program. Customers that have flown with
an airline will gain bonus points that the customer can later
reclaim on flights with that airline. The cruise companies have
decided that a similar frequent cruiser program would not
benefit them and prefer to offer their customers slightly
cheaper prices on their cruises instead.

There are five main use cases in this system: new customer,
search for suitable flights, book ticket, cancel ticket and
update frequent flyer/cruiser points.

In order to produce allocation arrangements using the
allocation technique described above detailed descriptions of
each of the use case scenarios, and the network upon which
the system is to be to allocated are required.

Estimates for the implementation details for each class and
the methods that they implement are also required. The
number of instances of each object is estimated along with the

average size of each instance and the methods required to
implement that object.

Traces of each use case are required for each event. These
traces include estimates of the following for each message
exchanged between objects in the execution of the event: size
of the message sent (method arguments or return arguments),
the estimated cost of executing that message (number of lines
of code is one suggested metric) and the number of times that
message is repeated. Table III is an example event trace for
the the cancel event.

TABLE III
EVENT TRACE FOR CANCEL EVENT

Cancel 100 per day
From To Service Req’d Arg Arg

Costs
Invocation
Cost

Repeated

Travel
Agent

Ticket Cancel ticket - - 10 1

Ticket Travel
Agent

RETURN - - - 1

In order to allocate the aforementioned objects to actual

nodes in the system, the layout of the nodes in the system
must be understood. Fifty travel agencies take part in this
system along with two cruise operators and three airlines. The
Travel Agencies are based in capital cities situated on
Australia’s eastern seaboard, 20 in Sydney, 12 in Brisbane and
the remaining 18 in Melbourne. The following table shows
how the events are divided between the three cities.

The conglomerate decides to establish three nodes for this
system. One based in Sydney to service the Sydney offices, a
second in Brisbane and a third in Melbourne. Two of the
airlines are based in Sydney while the third is based in
Brisbane. The requests for updating frequent flyer points are
assumed to originate from the location of the airline. One of
the cruise operators is based in Sydney, the other in
Melbourne.

B. Applying the new allocation technique

The classes must be partitioned before the allocation
algorithm can be used. The final partitioning arrangement was
produced according to the process described by Barney [10]:
A —Flight, Cruise, Route
B — Customer, Bonus Account
C — Airport, Port

D — Ticket
E — Airline
F — Travel Agent,

This partitioning arrangement reflects an analysis for
communication costs, concurrency, replication concerns and
class similarity.

The process for fragmentation and allocation of a system
begins with primary distribution. These fragmentation and
allocation decisions are gradually refined to optimise all

TABLE IV
NUMBER OF EVENTS ORIGINATING FROM EACH NODE

 Bris Syd Melb Total
New Customer 24 40 36 100
Search 2,160 3,600 3,240 9,000
Book 720 1,200 1,080 3,000
Cancel Ticket 24 40 36 100
Update Bonus
Points

1 2 0 3

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4135International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
1.

pd
f

aspects of system performance. Primary distribution
incorporates: the overhead for update events, query events, the
volume of data and the currency of data. The corresponding
total instances of each class and the number of replicas (in
brackets) are shown in Table V

Table VI shows the estimated properties of each fragment in
the dimensions discussed previously: site of the updates, cost
of updates, sites of queries, volume of data, data currency
requirements and other overriding considerations.

1) Partition A - Flight, Cruise and Route

The suggested primary allocation strategy, using Table VI
in combination with Tables I and II, is horizontal
fragmentation of the partition, combined with creating
synchronised copies of some of those fragments

In order to perform horizontal fragmentation it is
recommend that a location based-attribute(s) that can be used
to perform horizontal fragmentation be identified.

The destination list of the Route class is a suitable location-
based attribute for horizontal fragmentation of this partition.
People would be far more likely to book flights including the
city they are currently in as part of that route. If a Route object
exists on a node then all corresponding Flight or Cruise
instances that service that route should also be located on the
node.

2) Partition B - Customer and Bonus Account
The proposed technique recommends horizontal

fragmentation for this partition if a location-based attribute
can be identified. If no locality of reference can be identified
then the relation should be allocated to the partition where the
most updates take place.

Updates to the partition originate from the three airlines or
from the Travel Agent when a new instance of the customer

class is created. Two of the airlines are based in Sydney and
the third in Brisbane. Customers, however, have a mix of
bonus point accounts from the three different airlines. The
following horizontal fragmentation arrangement is therefore
suggested.

Instances of the Customer class that don’t have any bonus
point accounts can remain at the node upon which they were
created.

Customers with only one bonus point account should be
allocated to the node where the airline corresponding to the
Bonus Point Account is located.

If the customer has more than one bonus point account at
least one of those bonus accounts will be for an airline from
Sydney as two airlines are located in Sydney and one in
Brisbane. Therefore, partition fragments that match this
criterion should be allocated to the Sydney node.

This arrangement is reflected in the following table.

3) Partition C - Airport and Port

The proposed technique recommends that the instances of
these two classes be allocated to one of the sites of update.
Most of the airlines and travel agents operate out of Sydney so
the most updates to this class will come from users of the
system located in Sydney. This partition will therefore be
allocated exclusively to the Sydney node.

4) Partition D – Ticket
Horizontal partitioning using a location-based attribute is

recommended for this partition. Furthermore, it is
recommended that one copy of the fragment/partition with
update synchronization should be allocated to the site with the
highest volume of queries.

In the case of the Ticket object, its reference to the
Transport object (parent class of both Cruise and Flight
classes) acts as a valid attribute for deciding to which node the
fragments of this partition should be allocated. The instances
of the Ticket class should therefore be assigned to the node
where the Ticket’s corresponding Flight or Cruise instance has
been allocated. In the case of the Flight or Cruise instances
that have been replicated, the corresponding Ticket objects
can also be replicated to all nodes where that flight object
exists.

5) Partition E – Airline
The proposed technique recommends that the instances of

this partition be allocated to one of the sites of updates. Two
of the three airlines are located in Sydney and one in Brisbane.
The majority of updates to instances of the Airline object will

TABLE VII
SUMMARY OF ALLOCATION ARRANGEMENT FOR PARTITION B

 Brisbane Sydney Melbourne
 Cust Bonus

A/C
Cust A/C Cust. Bonus

A/C
Customer
(0 A/Cs)

1200 0 2000 0 1800 0

Customer
(1 A/C)

1667 1667 3333 3333 0 0

Customer
(2+ A/Cs)

0 0 20000 55,000 0 0

Total 2867 1667 25333 58333 1800 0

TABLE VI
ESTIMATED FRAGMENT PROPERTIES

 SU CU SQ CQ VD CD OC
A 1 LO M HI LO C N
B M HI M LO HI O N
C M LO M LO LO C N
D M HI M HI MD C N
E M LO M LO LO O N
F M LO M LO LO O N

TABLE V
PRIMARY DISTRIBUTION EXAMPLE

 Class Instances assigned to each node
 Bris. Syd. Melb.
A Route 25 (10) 30 (10) 25 (10)
 Flight 5,000

(2,000)
6000 (2000) 5000 (2000)

 Cruise 100 (40) 120 (40) 100 (40)
B Customer 2,867 (0) 25,333 (0) 1,800 (0)
 Bonus A/C 1,667 (0) 58,333 (0) 0 (0)
C Airport 0 (0) 230 (0) 0 (0)
 Port 0 (0) 70 (0) 0 (0)
D Ticket 310000

(62000)
372,000
(62,000)

310,000 (62,000)

E Airline 0 (0) 3 (0) 0 (0)
F Travel Agent 0 (0) 50 (0) (0)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4136International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
1.

pd
f

therefore originate in Sydney. It is therefore suggested that
Sydney is the best location for this partition.

6) Partition F – Travel Agent
The proposed technique recommends allocating all

instances of this partition one of the sites of updates. As most
of the travel agents are located in Sydney this partition should
be allocated to the Sydney node.

C. Secondary Distribution for Response Time
The results of performing performance analysis are

summarized in Table VIII. It demonstrates quite clearly that
the search event is the biggest contributor to both processor
load and inter-process communication. This method should
therefore be the focus of any changes to improve response
time.

The communication between the Travel Agent class and the

Flight class represent the single biggest contribution to the
inter-process communication volume in the Search event. Two
potential changes that could be made to improve response
time are fully replicating partitions A and F or to allocate a
single copy of the A and F partitions to the Sydney node.

By having complete replicas of partitions A and F on every
node, the inter-process communication between these classes
would be converted into local communication, thus reducing
both processor load and inter-process communication
volumes. Creating replicas of these partitions will probably
increase the communication and processor cost due to
replication associated with the Cancel Ticket event and any
other updates to partitions A and F. These updates would
however be of low frequency compared to the frequency of
the Search event. The Search event represents such an
overwhelming proportion of the inter-process communication
and processor load costs that the increase in load for this event
would probably be more than offset by the reductions gained
in the Search event.

 Similarly, the alternative strategy of allocating partitions A
and F to the Sydney node eliminates all inter-process
communication between these two partitions in the Search
event. This must be weighed against the concurrency lost and
the higher load placed on the Sydney node if this allocation
arrangement were chosen.

The implications of these, and other, alternatives must be
evaluated in the light of the desired performance
characteristics of the system being developed.

D. Storage space optimization
The technique suggested here also has scope for optimising

the storage space requirements of the system. The following
table shows the results of conducting this analysis on the
Sydney node after secondary distribution for response-time
has taken place.

TABLE IX

SECONDARY ANALYSIS FOR STORAGE SPACE ON SYDNEY NODE

C lass Instances Code Attributes Data Total

% of
Grand
Total

Travel Agent 20 1030 820 16400 17430 0%
Route 30 140 218 6540 6680 0%
Transport 1 830 0 0 830 0%
Flight 6000 150 308 1848000 1848150 3%
Cruise 120 70 514 61680 61750 0%
Customer 25333 400 1210 30652930 30653330 50%
Bonus
Account

58333 350 29 1691657 1692007 3%

Location 1 60 0 0 60 0%
Airport 230 30 92 21160 21190 0%
Port 70 30 144 10080 10110 0%
Ticket 372000 380 18 6696000 6696380 11%
Airline 3 350 3040 9120 9470 0%
Total for Sydney 41017387 67%

Over 50% of the storage space required for the system is

allocated to the Sydney node. If the amount of data stored in
Sydney were to exceed the hardware limits there are a number
of strategies that could be used to reduce the storage space
required on that node.

Instances of the customer object represent approximately
50% of the storage space requirements of the system. Most of
the instances of this class are located on the Sydney node. One
strategy to reduce the storage space requirements on that node
would be to relocate some of those instances of the customer
object to Brisbane or Melbourne. This could impact
negatively on the performance of the Create Customer and
Update Bonus Points events but since both of these events
represent very small proportions of the total processor and
inter-process communication loads this would probably have
very little impact on overall system performance.

V. COMPARISON WITH OTHER TECHNIQUES
A comparison between the performance of the proposed

technique and Low and Rasmussen’s technique has been
performed on the example system. This analysis confirms the
superiority of the proposed technique, at least as applied to the
example system.

As a summary of this comparison, the estimated inter-node
communication and CPU-load have been presented in the
following tables.

TABLE X
INTER-NODE COMMUNICATION FOR ALLOCATION DERIVED FROM LOW AND

RASMUSSEN’S TECHNIQUE [1]
 Brisbane Sydney Melbourne
Brisbane - 16427098 0
Sydney - - 308268
Melbourne - - -

TABLE VIII
SECONDARY ANALYSIS FOR RESPONSE TIME

Event Communication Costs Processor Load
 Total As % Total As %
New Customer 79164 6% 36880 0%
Search 1286100 91% 713961000 96%
Book 24060 2% 26467140 4%
Cancel Ticket 150 0% 2700 0%
Update Bonus
Points

20196 1% 2435070 0%

Total 1409670 100% 742902790 100%

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4137International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
1.

pd
f

The Table X presents the estimated levels of inter-node
communication when Low and Rasmussen’s technique is used
to allocate the objects/classes in the example system. Similarly
Table XI shows the inter-node communication produced when
the example system’s objects/classes are allocated according
to the proposed technique.

TABLE XI

INTER-NODE COMMUNICATION FOR ALLOCATION DERIVED FROM PROPOSED
TECHNIQUE

 Brisbane Sydney Melbourne
Brisbane - 480360 335467

Sydney - - 593844

Melbourne - - -

Inter-node communication is considerably lower and better

balanced using the proposed technique compared with [1]. For
instance, applying the latter technique, there is no direct
communication between the Melbourne and Brisbane nodes
while the connection between the Brisbane and Sydney nodes
is very high. Contrast this with the communication between
the nodes in the allocation arrangement produced by the
proposed technique where the communications load is shared
comparatively evenly.

TABLE XII

COMPARISON OF CPU LOAD
Node Low and Rasmussen Proposed Technique

Brisbane 757,314,160 183,514,953

Sydney 38,437,880 293,957,015

Melbourne 2,172,000 26,5430,822

Total 797,924,040 742,902,790

Table XII shows a comparison between the estimated CPU

load on each of the nodes in the example when the
objects/classes are allocated according to [1] and the proposed
method. Again, the proposed technique produces an allocation
arrangement where the total estimated CPU-Load is lower,
that load is also better balanced.

Comparing the proposed method to a single alternative
technique is, however, just a start. In order to show that the
proposed technique is superior to alternative techniques in
most cases a more thorough comparison of the performance of
the proposed technique and existing object allocation
techniques needs to be undertaken. This is an important part
of the future work necessary to validate the proposed
allocation technique.

VI. CONCLUSION
Several allocation techniques were surveyed from not only

the object orientated world but also databases and non-object
orientated distributed systems. The database allocation
technique produced by the technique described in [7] was
found to best support the goals for the allocation process [4]
by: supporting replication, minimizing inter-process
communication and execution costs, providing support for

scalability and fault tolerance and integrating allocation and
fragmentation into a single process. The alternative techniques
examined implemented, at best, a sub-set of these advantages.
The Tamhankar and Ram technique was adapted for use with
object oriented systems.

This was achieved by: establishing a mapping between the
database and object orientated terminologies and modifying
their technique to account for differences between databases
and object orientated systems.

The proposed technique was applied to an illustrative
example. The new technique produced an allocation
arrangement that meets the goals set for the allocation process
by Shatz and Wang [4]. By incorporating, processor load
estimates, object replication and partition fragmentation this
technique is more comprehensive than the alternatives
considered in the domain of object oriented distributed
systems when object replication is available.

In order to fully validate the proposed technique’s
effectiveness, further empirical evaluation of its performance
is necessary. We have undertaken a preliminary step in this
direction by comparing the proposed technique to one of the
examined alternative allocation techniques [1]. This
comparison did indeed show that, in this case, the proposed
technique is superior. A wider and more thorough comparison
of the performance of the proposed technique and of the other
allocation techniques is an important part of the future work
that needs to be undertaken.

REFERENCES
1 G. C. Low and G. Rasmussen, "Partitioning and Allocation of Objects in
Distributed Application Development," Journal of Research and Practice on
Information Technology,, vol. 32, pp. 75-106, 2000.
2 W. T. Chang and C. C. Tseng, "Clustering Approach to Grouping
Objects in Message-Passing Systems," Journal of Object Orientated
Programming, vol. 7, pp. 42-43, 46-50, 1995.
3 S. Purao, H. K. Jain, and D. L. Nazareth, "Exploiting Design Information
to Derive Object Distribution Models," IEEE Transactions on Systems, Man,
and Cybernetics, vol. 32, pp. 320-334, 2002.
4 S. M. Shatz and J. Wang, Tutorial: Distributed Software Engineering,:
IEEE Computer Society, 1989.
5 K. Efe, "Heuristic Models of Task Assignment Scheduling in Distributed
Systems," IEEE Computer, vol. 15, pp. 50 - 6, 1982.
6 S. Ceri and P. G., Distributed Databases: Principles and Systems: Mc
Graw-Hill, 1984.
7 A. M. Tamhankar and S. Ram, "Database Fragmentation and Allocation:
An Integrated Technique and Case Study," IEEE Transactions on Systems,
Man, and Cybernetics, vol. 28, pp. 288-305, 1998.
8 K. Karlapalem and Q. Li, "A Framework for Class Partitioning in
Object-Oriented Databases," Distributed and Parallel Databases, vol. 8, pp.
333-366, 2000.
9 A. R. Chaturvedi, C. A.K., and J. Roan, "Scheduling the Allocation of
Data Fragments in a Distributed Database Environment: A Machine Learning
Approach," IEEE Transactions on Engineering Management, vol. 41, pp. 194-
207, 1994.
10 H. Barney, "Object Replication: a methodology for improving the
performance of object oriented systems," in School of Information Systems,
Technology and Management, vol. BSc. (Hons). Sydney: UNSW, 2003, pp.
205.
11

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:12, 2008

4138International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

12
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
1.

pd
f

