Search results for: smart training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1397

Search results for: smart training

857 Using Probe Person Data for Travel Mode Detection

Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma

Abstract:

Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.

Keywords: Accelerometer, AdaBoost, GPS, Mode Prediction, Support vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
856 Smart Trust Management for Vehicular Networks

Authors: Amel Ltifi, Ahmed Zouinkhi, Med Salim Bouhlel

Abstract:

Spontaneous networks such as VANET are in general deployed in an open and thus easily accessible environment. Therefore, they are vulnerable to attacks. Trust management is one of a set of security solutions dedicated to this type of networks. Moreover, the strong mobility of the nodes (in the case of VANET) makes the establishment of a trust management system complex. In this paper, we present a concept of ‘Active Vehicle’ which means an autonomous vehicle that is able to make decision about trustworthiness of alert messages transmitted about road accidents. The behavior of an “Active Vehicle” is modeled using Petri Nets.

Keywords: Component, active vehicle, cooperation, petri nets, trust management, VANET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1125
855 Numerical Simulation of the Aerodynamic Loads acting on top of the SMART Centre for PV Applications

Authors: M. Raciti Castelli, S. Toniato, E. Benini

Abstract:

The flow filed around a flatted-roof compound has been investigated by means of 2D and 3D numerical simulations. A constant wind velocity profile, based both on the maximum reference wind speed in the building site (peak gust speed worked out for a 50- year return period) and on the local roughness coefficient, has been simulated in order to determine the wind-induced loads on top of the roof. After determining the influence of the incoming wind directions on the induced roof loads, a 2D analysis of the most severe load condition has been performed, achieving a numerical quantification of the expected wind-induced forces on the PV panels on top of the roof.

Keywords: CFD, wind-induced loads, flow around buildings, photovoltaic system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
854 A BERT-Based Model for Financial Social Media Sentiment Analysis

Authors: Josiel Delgadillo, Johnson Kinyua, Charles Mutigwe

Abstract:

The purpose of sentiment analysis is to determine the sentiment strength (e.g., positive, negative, neutral) from a textual source for good decision-making. Natural Language Processing (NLP) in domains such as financial markets requires knowledge of domain ontology, and pre-trained language models, such as BERT, have made significant breakthroughs in various NLP tasks by training on large-scale un-labeled generic corpora such as Wikipedia. However, sentiment analysis is a strong domain-dependent task. The rapid growth of social media has given users a platform to share their experiences and views about products, services, and processes, including financial markets. StockTwits and Twitter are social networks that allow the public to express their sentiments in real time. Hence, leveraging the success of unsupervised pre-training and a large amount of financial text available on social media platforms could potentially benefit a wide range of financial applications. This work is focused on sentiment analysis using social media text on platforms such as StockTwits and Twitter. To meet this need, SkyBERT, a domain-specific language model pre-trained and fine-tuned on financial corpora, has been developed. The results show that SkyBERT outperforms current state-of-the-art models in financial sentiment analysis. Extensive experimental results demonstrate the effectiveness and robustness of SkyBERT.

Keywords: BERT, financial markets, Twitter, sentiment analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718
853 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction

Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota

Abstract:

Understanding the causes of a road accident and predicting their occurrence is key to prevent deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network. 

Keywords: Accident risks estimation, artificial neural network, deep learning, K-mean, road safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
852 Effect of Sedimentation on Torque Transmission in the Larger Radius Magnetorheological Clutch

Authors: Manish Kumar Thakur, Chiranjit Sarkar

Abstract:

Sedimentation of magnetorheological (MR) fluid affects its working. MR fluid is a smart fluid that has unique qualities such as quick responsiveness and easy controllability. It is used in the MR damper, MR brake, and MR clutch. In this work effect of sedimentation on torque transmission in the shear mode operated MR clutch is investigated. A test rig is developed to test the impact of sedimentation on torque transmission in the MR clutch. Torque transmission capability of MR clutch has been measured under two conditions to confirm the result of sedimentation. The first experiment is done just after filling and the other after one week. It has been observed that transmission torque is decreased after sedimentation. Hence sedimentation affects the working of the MR clutch.

Keywords: Clutch, magnetorheological fluid, sedimentation, torque.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 442
851 Assessment of Knowledge, Attitudes and Practices of Street Vendors in Mangaung Metro South Africa

Authors: Gaofetoge Lenetha, Malerato Moloi, Ntsoaki Malebo

Abstract:

Microbial contamination of ready-to-eat foods and beverages sold by street vendors has become an important public health issue. In developing countries including South Africa, health risks related to such kinds of foods are thought to be common. Thus, this study assessed knowledge, attitude and practices of street food vendors. Street vendors in the city of Mangaung Metro were investigated in order to assess their knowledge, attitudes and handling practices. A semi-structured questionnaire and checklist were used in interviews to determine the status of the vending sites and associa. ted food-handling practices. Data was collected by means of a face-to-face interview. The majority of respondents were black females. Hundred percent (100%) of the participants did not have any food safety training. However, street vendors showed a positive attitude towards food safety. Despite the positive attitude, vendors showed some non-compliance when it comes to handling food. During the survey, it was also observed that the vending stalls lack basic infrastructures like toilets and potable water that is currently a major problem. This study indicates a need for improvements in the environmental conditions at these sites to prevent foodborne diseases. Moreover, based on the results observed food safety and food hygiene training or workshops for street vendors are highly recommended.

Keywords: Food hygiene, foodborne illnesses, food safety, street foods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
850 Piezoelectric Bimorph Harvester Based on Different Lead Zirconate Titanate Materials to Enhance Energy Collection

Authors: Irene Perez-Alfaro, Nieves Murillo, Carlos Bernal, Daniel Gil-Hernandez

Abstract:

Nowadays, the increasing applicability of internet of things (IoT) systems has changed the way that the world around is perceived. The massive interconnection of systems by means of sensing, processing and communication, allows multitude of data to be at our fingertips. In this way, countless advances have been made in different fields such as personal care, predictive maintenance in industry, quality control in production processes, security, and in everything imaginable. However, all these electronic systems have in common the need to be electrically powered. In this context, batteries and wires are the most commonly used solutions, but they are not a definitive solution in some applications, because of the attainability, the serviceability, or the performance requirements. Therefore, the need arises to look for other types of solutions based on energy harvesting and long-life electronics. Energy Harvesting can be defined as the action of capturing energy from the environment and store it for an instantaneous use or later use. Among the materials capable of harvesting energy from the environment, such as thermoelectrics, electromagnetics, photovoltaics or triboelectrics, the most suitable is the piezoelectric material. The phenomenon of piezoelectricity is one of the most powerful sources for energy harvesting, ranging from a few micro wats to hundreds of wats, depending on certain factors such as material type, geometry, excitation frequency, mechanical and electrical configurations, among others. In this research work, an exhaustive study is carried out on how different types of piezoelectric materials and electrical configurations influence the maximum power that a bimorph harvester is able to extract from mechanical vibrations. A series of experiments has been carried out in which the manufactured bimorph specimens are excited under fixed inertial vibrational conditions. In addition, in order to evaluate the dependence of the maximum transferred power, different load resistors are tested. In this way, the pure active power that achieves the maximum power transfer can be approximated. In this paper, we present the design of low-cost energy harvesting solutions based on piezoelectric smart materials with tunable frequency. The results obtained show the differences in energy extraction between the PZT materials studied and their electrical configurations. The aim of this work is to gain a better understanding of the behavior of piezoelectric materials, and the design process of bimorph PZT harvesters to optimize environmental energy extraction.

Keywords: Bimorph harvesters, electrical impedance, energy harvesting, piezoelectric, smart material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472
849 Component Based Framework for Authoring and Multimedia Training in Mathematics

Authors: Ion Smeureanu, Marian Dardala, Adriana Reveiu

Abstract:

The new programming technologies allow for the creation of components which can be automatically or manually assembled to reach a new experience in knowledge understanding and mastering or in getting skills for a specific knowledge area. The project proposes an interactive framework that permits the creation, combination and utilization of components that are specific to mathematical training in high schools. The main framework-s objectives are: • authoring lessons by the teacher or the students; all they need are simple operating skills for Equation Editor (or something similar, or Latex); the rest are just drag & drop operations, inserting data into a grid, or navigating through menus • allowing sonorous presentations of mathematical texts and solving hints (easier understood by the students) • offering graphical representations of a mathematical function edited in Equation • storing of learning objects in a database • storing of predefined lessons (efficient for expressions and commands, the rest being calculations; allows a high compression) • viewing and/or modifying predefined lessons, according to the curricula The whole thing is focused on a mathematical expressions minicompiler, storing the code that will be later used for different purposes (tables, graphics, and optimisations). Programming technologies used. A Visual C# .NET implementation is proposed. New and innovative digital learning objects for mathematics will be developed; they are capable to interpret, contextualize and react depending on the architecture where they are assembled.

Keywords: Adaptor, automatic assembly learning component and user control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
848 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.

Keywords: Clustering, load profiling, load modeling, machine learning, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
847 Awareness and Attitudes of Primary Grade Teachers (1-4thGrade) towards Inclusive Education

Authors: P. Maheshwari, M. Shapurkar

Abstract:

The present research aimed at studying the awareness and attitudes of teachers towards inclusive education. The sample consisted of 60 teachers, teaching in the primary section (1st – 4th) of regular schools affiliated to the SSC board in Mumbai. Sample was selected by Multi-stage cluster sampling technique. A semi-structured self-constructed interview schedule and a self-constructed attitude scale was used to study the awareness of teachers about disability and Inclusive education, and their attitudes towards inclusive education respectively. Themes were extracted from the interview data and quantitative data was analyzed using SPSS package. Results revealed that teachers had some amount of awareness but an inadequate amount of information on disabilities and inclusive education. Disability to most (37) teachers meant “an inability to do something”. The difference between disability and handicap was stated by most as former being cognitive while handicap being physical in nature. With regard to Inclusive education, a large number (46) stated that they were unaware of the term and did not know what it meant. Majority (52) of them perceived maximum challenges for themselves in an inclusive set up, and emphasized on the role of teacher training courses in the area of providing knowledge (49) and training in teaching methodology (53). Although, 83.3% of teachers held a moderately positive attitude towards inclusive education, a large percentage (61.6%) of participants felt that being in inclusive set up would be very challenging for both children with special needs and without special needs. Though, most (49) of the teachers stated that children with special needs should be educated in regular classroom but they further clarified that only those should be in a regular classroom who have physical impairments of mild or moderate degree.

Keywords: Attitudes, awareness, inclusive education, teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3396
846 Analyses for Primary Coolant Pump Coastdown Phenomena for Jordan Research and Training Reactor

Authors: Yazan M. Alatrash, Han-ok Kang, Hyun-gi Yoon, Shen Zhang, Juhyeon Yoon

Abstract:

Flow coastdown phenomena are very important to secure nuclear fuel integrity during loss of off-site power accidents. In this study, primary coolant flow coastdown phenomena are investigated for the Jordan Research and Training Reactor (JRTR) using a simulation software package, Modular Modeling System (MMS). Two MMS models are built. The first one is a simple model to investigate the characteristics of the primary coolant pump only. The second one is a model for a simulation of the Primary Coolant System (PCS) loop, in which all the detailed design data of the JRTR PCS system are modeled, including the geometrical arrangement data. The same design data for a PCS pump are used for both models. Coastdown curves obtained from the two models are compared to study the PCS loop coolant inertia effect on a flow coastdown. Results showed that the loop coolant inertia effect is found to be small in the JRTR PCS loop, i.e., about one second increases in a coastdown half time required to halve the coolant flow rate. The effects of different flywheel inertia on the flow coastdown are also investigated. It is demonstrated that the coastdown half time increases with the flywheel inertia linearly. The designed coastdown half time is proved to be well above the design requirement for the fuel integrity.

Keywords: Flow Coastdown, Loop Coolant Inertia, Modeling, Research Reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3796
845 Interactive Garments: Flexible Technologies for Textile Integration

Authors: Anupam Bhatia

Abstract:

Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic properties of textiles and daily maintenance of garments that hinder the wide adoption of interactive fabric technology within Fashion and leisure wear. To understand the practical hindrances an experimental and laboratory approach is taken. “Techno Meets Fashion” has been an interactive fashion project where sensor technologies have been embedded with textiles that result in set of ensembles that are light emitting garments, sound sensing garments, proximity garments, shape memory garments etc. Smart textiles, especially in the form of textile interfaces, are drastically underused in fashion and other lifestyle product design. Clothing and some other textile products must be washable, which subjects to the interactive elements to water and chemical immersion, physical stress, and extreme temperature. The current state of the art tends to be too fragile for this treatment. The process for mass producing traditional textiles becomes difficult in interactive textiles. As cutting patterns from larger rolls of cloth and sewing them together to make garments breaks and reforms electronic connections in an uncontrolled manner. Because of this, interactive fabric elements are integrated by hand into textiles produced by standard methods. The Arduino has surely made embedding electronics into textiles much easier than before; even then electronics are not integral to the daily wear garments. Soft and flexible interfaces of MEMS (micro sensors and Micro actuators) can be an option to make this possible by blending electronics within E-textiles in a way that’s seamless and still retains functions of the circuits as well as the garment. Smart clothes, which offer simultaneously a challenging design and utility value, can be only mass produced if the demands of the body are taken care of i.e. protection, anthropometry, ergonomics of human movement, thermo- physiological regulation.

Keywords: Ambient Intelligence, Proximity Sensors, Shape Memory Materials, Sound sensing garments, Wearable Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3278
844 An Investigation on Hot-Spot Temperature Calculation Methods of Power Transformers

Authors: Ahmet Y. Arabul, Ibrahim Senol, Fatma Keskin Arabul, Mustafa G. Aydeniz, Yasemin Oner, Gokhan Kalkan

Abstract:

In the standards of IEC 60076-2 and IEC 60076-7, three different hot-spot temperature estimation methods are suggested. In this study, the algorithms which used in hot-spot temperature calculations are analyzed by comparing the algorithms with the results of an experimental set-up made by a Transformer Monitoring System (TMS) in use. In tested system, TMS uses only top oil temperature and load ratio for hot-spot temperature calculation. And also, it uses some constants from standards which are on agreed statements tables. During the tests, it came out that hot-spot temperature calculation method is just making a simple calculation and not uses significant all other variables that could affect the hot-spot temperature.

Keywords: Hot-spot temperature, monitoring system, power transformer, smart grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3172
843 Stability of Homogeneous Smart Beams based on the First Order Shear Deformation Theory Located on a Continuous Elastic Foundation

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper studies stability of homogeneous beams with piezoelectric layers subjected to axial load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical parameter and foundation coefficient on the stability of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Stability, Homogeneous beam- Piezoelectric layer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
842 Optimal External Merge Sorting Algorithm with Smart Block Merging

Authors: Mir Hadi Seyedafsari, Iraj Hasanzadeh

Abstract:

Like other external sorting algorithms, the presented algorithm is a two step algorithm including internal and external steps. The first part of the algorithm is like the other similar algorithms but second part of that is including a new easy implementing method which has reduced the vast number of inputoutput operations saliently. As decreasing processor operating time does not have any effect on main algorithm speed, any improvement in it should be done through decreasing the number of input-output operations. This paper propose an easy algorithm for choose the correct record location of the final list. This decreases the time complexity and makes the algorithm faster.

Keywords: External sorting algorithm, internal sortingalgorithm, fast sorting, robust algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
841 Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm

Authors: M. Analoui, M. Fadavi Amiri

Abstract:

The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced.

Keywords: Feature reduction, genetic algorithm, pattern classification, nearest neighbor rule classifiers (k-NNR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
840 Industry Symbiosis and Waste Glass Upgrading: A Feasibility Study in Liverpool towards Circular Economy

Authors: Han-Mei Chen, Rongxin Zhou, Taige Wang

Abstract:

Glass is widely used in everyday life, from glass bottles for beverages, to architectural glass for various forms of glazing. Although the mainstream of used glass is recycled in the UK, the single-use and then recycling procedure results in a lot of waste as it incorporates intact glass with smashing, re-melting and remanufacturing. These processes bring massive energy consumption with a huge loss of high embodied energy and economic value, compared to re-use which’s towards a ‘zero carbon’ target. As a tourism city, Liverpool has more glass bottle consumption than most less leisure focused cities. It is therefore vital for Liverpool to find an upgrading approach for the single-use glass bottles with a low carbon output. This project aims to assess the feasibility of an industrial symbiosis and upgrading framework of glass and to investigate the ways of achieving them. It is significant to Liverpool’s future industry strategy since it provides an opportunity to target on economy recovery for post-COVID by industry symbiosis and an up-grading waste management in Liverpool to respond to the climate emergency. In addition, it will influence the local government policy for glass bottle reuse and recycling in North West England, and as a good practice to be further recommended to other areas of the UK. First, critical literature review of glass waste strategies has been conducted in the UK, and world-wide industrial symbiosis practices. Second, mapping, data collection and analysis have shown the current life cycle chain and the strong links of glass reuse and upgrading potentials via site visits to 16 local waste recycling centres. The results of this research have demonstrated the understanding the influence of key factors on the development of a circular industrial symbiosis business model for beverage glass bottles. The current waste management procedures of glass bottle industry, its business model, supply chain and the material flow have been reviewed. The various potential opportunities for glass bottle up-valuing have been investigated towards an industrial symbiosis in Liverpool. Finally, an up-valuing business model has been developed for an industrial symbiosis framework of glass in Liverpool. For glass bottles, there are two possibilities: 1) focus on upgrading processes towards re-use rather than single-use and recycling, 2) focus on ‘smart’ re-use and recycling leading to optimised values in other sectors to create a wider industry symbiosis for a multi-level and circular economy.

Keywords: Glass bottles, industry symbiosis, smart reuse, waste upgrading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 241
839 Rebuilding the Dental Hygiene Habits of the Hospitalized Patients with Schizophrenia

Authors: Chia-Jou Hsieh, Feng-Chuan Pan

Abstract:

Oral health is particular important to the hospitalized patients with chronic schizophrenia for an extreme high potential of the respiratory infections. Due to the degeneration of physical capability, patients of this kind typically fall dependent in the activity of daily living (ADL). A very high percentage of patients had dental problems of which mostly could be easily avoid by easy regular tooth brushing. Purpose of the project is to develop a mechanism in helping the schizophrenia patients in rebuilding a tooth-cleaning habit. The project observed and evaluated the tooth-cleaning behavior of 100 male patients in a psychiatric hospital, and found the majority of them ignored such an activity in a three-month period of time. In the meantime, the primary care-givers were not aware or not convinced the importance of such a need of dental hygiene, and thus few if any tooth cleaning training or knowledge on dental hygiene were given to the patients. The project then developed a program based on the numerous observations and discussions. The improvement program included patients- group education, care-givers- training, and a tool-kit for tooth-brush holding was erected. The project launched with some incentive package. The outcomes were encouraging with 87% of the patients had rebuilt their tooth-brushing habits against previous 22%, and the tooth cleaning kits were 100% kept against 22% in the past. This project had significantly improved the oral health of the patients. The project, included the procedure and the tool-kit holder specific for this purpose, was a good examples for psychiatric hospitals.

Keywords: Schizophrenia, dental hygiene, tool-kit holder, health education

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
838 Identifying Teachers’ Perception of Integrity in School-Based Assessment Practice: A Case Study

Authors: Abd Aziz Bin Abd Shukor, Eftah Binti Moh Hj Abdullah

Abstract:

This case study aims to identify teachers’ perception as regards integrity in School-Ba sed Assessment (PBS) practice. This descriptive study involved 9 teachers from 4 secondary schools in 3 districts in the state of Perak. The respondents had undergone an integrity in PBS Practice interview using a focused group discussion method. The overall findings showed that the teachers believed that integrity in PBS practice could be achieved by adjusting the teaching methods align with learning objectives and the students’ characteristics. Many teachers, parents and student did not understand the best practice of PBS. This would affect the integrity in PBS practice. Teachers did not emphasis the principles and ethics. Their integrity as an innovative public servant may also be affected with the frequently changing assessment system, lack of training and no prior action research. The analysis of findings showed that the teachers viewed that organizational integrity involving the integrity of PBS was difficult to be implemented based on the expectations determined by Malaysia Ministry of Education (KPM). A few elements which assisted in the achievement of PBS integrity were the training, students’ understanding, the parents’ understanding of PBS, environment (involving human resources such as support and appreciation and non-human resources such as technology infrastructure readiness and media). The implications of this study show that teachers, as the PBS implementers, have a strong influence on the integrity of PBS. However, the transformation of behavior involving PBS integrity among teachers requires the stabilisation of support and infrastructure in order to enable the teachers to implement PBS in an ethical manner.

Keywords: Assessment integrity, integrity, perception, school-based assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
837 3G WCDMA Mobile Network DoS Attack and Detection Technology

Authors: JooHyung Oh, Dongwan Kang, Sekwon Kim, ChaeTae Im

Abstract:

Currently, there has been a 3G mobile networks data traffic explosion due to the large increase in the number of smartphone users. Unlike a traditional wired infrastructure, 3G mobile networks have limited wireless resources and signaling procedures for complex wireless resource management. And mobile network security for various abnormal and malicious traffic technologies was not ready. So Malicious or potentially malicious traffic originating from mobile malware infected smart devices can cause serious problems to the 3G mobile networks, such as DoS and scanning attack in wired networks. This paper describes the DoS security threat in the 3G mobile network and proposes a detection technology.

Keywords: 3G, WCDMA, DoS, Security Threat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3267
836 The Effect of Motor Learning Based Computer-Assisted Practice for Children with Handwriting Deficit – Comparing with the Effect of Traditional Sensorimotor Approach

Authors: Shao-Hsia Chang, Nan-Ying Yu

Abstract:

The objective of this study was to test how advanced digital technology enables a more effective training on the handwriting of children with handwriting deficit. This study implemented the graphomotor apparatuses to a computer-assisted instruction system. In a randomized controlled trial, the experiments for verifying the intervention effect were conducted. Forty two children with handwriting deficit were assigned to computer-assisted instruction, sensorimotor training or control (no intervention) group. Handwriting performance was measured using the Elementary reading/writing test and computerized handwriting evaluation before and after 6 weeks of intervention. Analysis of variance of change scores were conducted to show whether statistically significant difference across the three groups. Significant difference was found among three groups. Computer group shows significant difference from the other two groups. Significance was denoted in near-point, far-point copy, dictation test, and writing from phonetic symbols. Writing speed and mean stroke velocity in near-, far-point and short paragraph copy were found significantly difference among three groups. Computer group shows significant improvement from the other groups. For clinicians and school teachers, the results of this study provide a motor control based insight for the improvement of handwriting difficulties.

Keywords: Dysgraphia, computerized handwriting evaluation, sensorimotor program, computer assisted program.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
835 A Growing Natural Gas Approach for Evaluating Quality of Software Modules

Authors: Parvinder S. Sandhu, Sandeep Khimta, Kiranpreet Kaur

Abstract:

The prediction of Software quality during development life cycle of software project helps the development organization to make efficient use of available resource to produce the product of highest quality. “Whether a module is faulty or not" approach can be used to predict quality of a software module. There are numbers of software quality prediction models described in the literature based upon genetic algorithms, artificial neural network and other data mining algorithms. One of the promising aspects for quality prediction is based on clustering techniques. Most quality prediction models that are based on clustering techniques make use of K-means, Mixture-of-Guassians, Self-Organizing Map, Neural Gas and fuzzy K-means algorithm for prediction. In all these techniques a predefined structure is required that is number of neurons or clusters should be known before we start clustering process. But in case of Growing Neural Gas there is no need of predetermining the quantity of neurons and the topology of the structure to be used and it starts with a minimal neurons structure that is incremented during training until it reaches a maximum number user defined limits for clusters. Hence, in this work we have used Growing Neural Gas as underlying cluster algorithm that produces the initial set of labeled cluster from training data set and thereafter this set of clusters is used to predict the quality of test data set of software modules. The best testing results shows 80% accuracy in evaluating the quality of software modules. Hence, the proposed technique can be used by programmers in evaluating the quality of modules during software development.

Keywords: Growing Neural Gas, data clustering, fault prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
834 Security of Internet of Things: Challenges, Requirements and Future Directions

Authors: Amjad F. Alharbi, Bashayer A. Alotaibi, Fahd S. Alotaibi

Abstract:

The emergence of Internet of Things (IoT) technology provides capabilities for a huge number of smart devices, services and people to be communicate with each other for exchanging data and information over existing network. While as IoT is progressing, it provides many opportunities for new ways of communications as well it introduces many security and privacy threats and challenges which need to be considered for the future of IoT development. In this survey paper, an IoT security issues as threats and current challenges are summarized. The security architecture for IoT are presented from four main layers. Based on these layers, the IoT security requirements are presented to insure security in the whole system. Furthermore, some researches initiatives related to IoT security are discussed as well as the future direction for IoT security are highlighted.

Keywords: Internet of Things, IoT, IoT security challenges, IoT security requirements, IoT security architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
833 Evolution of Autonomous Vehicles and Advanced Automated Car Parking Development

Authors: Kwok Tak Kit

Abstract:

The trend of autonomous vehicles is the future solution to road networks congestion in terms of their advanced ability to drive closer together and at higher speeds than humans can do safely. Infrastructure sector can drive the economic prosperity and provide a balance and inclusive growth of sustainable economy development. In this paper, the road infrastructure and the future development of electric car, self-driving of autonomous vehicles and the increasing demand of automated car parking system are critically revised and this paper aims to provide the insight and achieve better sustainable infrastructure and community in smart city.

Keywords: Autonomous vehicles, sustainable infrastructure, real time parking, automated car parking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 479
832 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: Visual search, deep learning, convolutional neural network, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
831 Beginning Physics Experiments Class Using Multi Media in National University of Laos

Authors: T. Nagata, S. Xaphakdy, P. Souvannavong, P. Chanthamaly, K. Sithavong, C. H. Lee, S. Phommathat, V. Srithilat, P. Sengdala, B. Phetarnousone, B. Siharath, X. Chemcheng, T. Yamaguchi, A. Suenaga, S. Kashima

Abstract:

National University of Laos (NUOL) requested Japan International Cooperation Agency (JICA) volunteers to begin a physics experiments class using multi media. However, there are issues. NUOL had no physics experiment class, no space for physics experiments, experiment materials were not used for many years and were scattered in various places, and there is no projector and laptop computer in the unit. This raised the question: How do authors begin the physics experiments class using multimedia? To solve this problem, the JICA took some steps, took stock of what was available and reviewed the syllabus. The JICA then revised the experiment materials to assess what was available and then developed textbooks for experiments using them; however, the question remained, what about the multimedia component of the course? Next, the JICA reviewed Physics teacher Pavy Souvannavong’s YouTube channel, where he and his students upload video reports of their physics classes at NUOL using their smartphones. While they use multi-media, almost all the videos recorded were of class presentations. To improve the multimedia style, authors edited the videos in the style of another YouTube channel, “Science for Lao,” which is a science education group made up of Japan Overseas Cooperation Volunteers (JOCV) in Laos. They created the channel to enhance science education in Laos, and hold regular monthly meetings in the capital, Vientiane, and at teacher training colleges in the country. They edit the video clips in three parts, which are the materials and procedures part including pictures, practice footage of the experiment part, and then the result and conclusion part. Then students perform experiments and prepare for presentation by following the videos. The revised experiment presentation reports use PowerPoint presentations, material pictures and experiment video clips. As for providing textbooks and submitting reports, the students use the e-Learning system of “Moodle” of the Information Technology Center in Dongdok campus of NUOL. The Korean International Cooperation Agency (KOICA) donated those facilities. The authors have passed the process of the revised materials, developed textbooks, the PowerPoint slides presented by students, downloaded textbooks and uploaded reports, to begin the physics experiments class using multimedia. This is the practice research report for beginning a physics experiments class using multimedia in the physics unit at the Department of Natural Science, Faculty of Education, at the NUOL.

Keywords: NUOL, JICA, KOICA, Physics experiment materials, smart phone, Moodle, IT center, Science for Lao.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
830 IntelligentLogger: A Heavy-Duty Vehicles Fleet Management System Based on IoT and Smart Prediction Techniques

Authors: D. Goustouridis, A. Sideris, I. Sdrolias, G. Loizos, N.-Alexander Tatlas, S. M. Potirakis

Abstract:

Both daily and long-term management of a heavy-duty vehicles and construction machinery fleet is an extremely complicated and hard to solve issue. This is mainly due to the diversity of the fleet vehicles – machinery, which concerns not only the vehicle types, but also their age/efficiency, as well as the fleet volume, which is often of the order of hundreds or even thousands of vehicles/machineries. In the present paper we present “InteligentLogger”, a holistic heavy-duty fleet management system covering a wide range of diverse fleet vehicles. This is based on specifically designed hardware and software for the automated vehicle health status and operational cost monitoring, for smart maintenance. InteligentLogger is characterized by high adaptability that permits to be tailored to practically any heavy-duty vehicle/machinery (of different technologies -modern or legacy- and of dissimilar uses). Contrary to conventional logistic systems, which are characterized by raised operational costs and often errors, InteligentLogger provides a cost-effective and reliable integrated solution for the e-management and e-maintenance of the fleet members. The InteligentLogger system offers the following unique features that guarantee successful heavy-duty vehicles/machineries fleet management: (a) Recording and storage of operating data of motorized construction machinery, in a reliable way and in real time, using specifically designed Internet of Things (IoT) sensor nodes that communicate through the available network infrastructures, e.g., 3G/LTE; (b) Use on any machine, regardless of its age, in a universal way; (c) Flexibility and complete customization both in terms of data collection, integration with 3rd party systems, as well as in terms of processing and drawing conclusions; (d) Validation, error reporting & correction, as well as update of the system’s database; (e) Artificial intelligence (AI) software, for processing information in real time, identifying out-of-normal behavior and generating alerts; (f) A MicroStrategy based enterprise BI, for modeling information and producing reports, dashboards, and alerts focusing on vehicles– machinery optimal usage, as well as maintenance and scraping policies; (g) Modular structure that allows low implementation costs in the basic fully functional version, but offers scalability without requiring a complete system upgrade.

Keywords: E-maintenance, predictive maintenance, IoT sensor nodes, cost optimization, artificial intelligence, heavy-duty vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
829 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations

Authors: Yehjune Heo

Abstract:

Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.

Keywords: Anti-spoofing, CNN, fingerprint recognition, GAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
828 Effective Security Method for Wireless LAN using Life-Cycle of Wireless Access Point

Authors: Soon-Tai Park, Haeryong Park, Myoung-sun Noh, Yoo-Jae Won

Abstract:

There are many expand of Wi-Fi zones provided mobile careers and usage of wireless access point at home as increase of usage of wireless internet caused by the use of smart phone. This paper shows wireless local area network status, security threats of WLAN and functionality of major wireless access point in Korea. We propose security countermeasures concerned with life cycle of access point from manufacturing to installation, using and finally disposal. There needed to releasing with configured secure at access point. Because, it is most cost effective resolution than stage of installation or other life cycle of access point.

Keywords: Wireless LAN Security, Wi-Fi Security, Wireless Access Point, Product Life-Cycle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922