Search results for: Polymer Solar Cells.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1330

Search results for: Polymer Solar Cells.

790 Utilization of Kitchen Waste inside Green House Chamber: A Community Level Biogas Programme

Authors: Ravi P. Agrahari

Abstract:

The present study was undertaken with the objective of evaluating kitchen waste as an alternative organic material for biogas production in community level biogas plant. The field study was carried out for one month (January 19, 2012– February 17, 2012) at Centre for Energy Studies, IIT Delhi, New Delhi, India.

This study involves the uses of greenhouse canopy to increase the temperature for the production of biogas in winter period. In continuation, a semi-continuous study was conducted for one month with the retention time of 30 days under batch system. The gas generated from the biogas plant was utilized for cooking (burner) and lighting (lamp) purposes. Gas productions in the winter season registered lower than other months. It can be concluded that the solar greenhouse assisted biogas plant can be efficiently adopted in colder region or in winter season because temperature plays a major role in biogas production. 

Keywords: Biogas, Green house chamber, organic material, solar intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
789 Modeling and Simulation of Utility Interfaced PV/Hydro Hybrid Electric Power System

Authors: P. V. V. Rama Rao, B. Kali Prasanna, Y. T. R. Palleswari

Abstract:

Renewable energy is derived from natural processes that are replenished constantly. Included in the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and bio-fuels and hydrogen derived from renewable resources. Each of these sources has unique characteristics which influence how and where they are used. This paper presents the modeling the simulation of solar and hydro hybrid energy sources in MATLAB/SIMULINK environment. It simulates all quantities of Hybrid Electrical Power system (HEPS) such as AC output current of the inverter that injected to the load/grid, load current, grid current. It also simulates power output from PV and Hydraulic Turbine Generator (HTG), power delivered to or from grid and finally power factor of the inverter for PV, HTG and grid. The proposed circuit uses instantaneous p-q (real-imaginary) power theory.

Keywords: Photovoltaic Array, Hydraulic Turbine Generator, Electrical Utility (EU), Hybrid Electrical Power Supply.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3465
788 Design and Analysis of 1.4 MW Hybrid Saps System for Rural Electrification in Off-Grid Applications

Authors: Arpan Dwivedi, Yogesh Pahariya

Abstract:

In this paper, optimal design of hybrid standalone power supply system (SAPS) is done for off grid applications in remote areas where transmission of power is difficult. The hybrid SAPS system uses two primary energy sources, wind and solar, and in addition to these diesel generator is also connected to meet the load demand in case of failure of wind and solar system. This paper presents mathematical modeling of 1.4 MW hybrid SAPS system for rural electrification. This paper firstly focuses on mathematical modeling of PV module connected in a string, secondly focuses on modeling of permanent magnet wind turbine generator (PMWTG). The hybrid controller is also designed for selection of power from the source available as per the load demand. The power output of hybrid SAPS system is analyzed for meeting load demands at urban as well as for rural areas.

Keywords: SAPS, DG, PMWTG, rural area, off grid, PV module.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
787 Features of the Immune Response in Mice were Immunized with Polio Vaccine in Combination with Chitosan Preparations as Adjuvants

Authors: Nelly К. Akhmatova, Оlga V. Lebedinskaya, Stanislav G. Markushin, Elvin А. Akhmatov, Lidiya A. Geiderova, Еlena А. Lebedinskaya, Vera M. Axenova, Аnatoliy P. Godovalov

Abstract:

The study of cytokine expression in mice under the influence of inactivated poliovirus and Imovaks polio vaccine in combination with derivatives of chitosan shows various kinds of processes. There is a significant increase in IL-12 in the serum of immunized animals, which should stimulate the production of IFN-γ NK-cells and T-cells and polarize the immune response to Th1 type. Thus, the derivatives of chitosan can promote cell component of the immune response, providing a full antiviral immunity.

Keywords: Poliovirus, chitosan, cytokine expression, antiviral immunity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
786 Effect of Transglutaminase Cross Linking on the Functional Properties as a Function of NaCl Concentration of Legumes Protein Isolate

Authors: Nahid A. Ali, Salma H. Ahmed, ElShazali A. Mohamed, Isam A. Mohamed Ahmed, Elfadil E.Babiker

Abstract:

The effect of cross linking of the protein isolates of three legumes with the microbial enzyme transglutaminase (EC 2.3.2.13) on the functional properties at different NaCl concentration was studied. The reduction in the total free amino groups (OD340) of the polymerized protein showed that TGase treatment cross-linking the protein subunit of each legume. The solubility of the protein polymer of each legume was greatly improved at high concentration of NaCl. At 1.2 M NaCl the solubility of the native legumes protein was significantly decreased but after polymerization slightly improved. Cross linked proteins were less turbid on heating to higher temperature as compared to native proteins and the temperature at which the protein turns turbid also increased in the polymerized proteins. The emulsifying and foaming properties of the protein polymer were greatly improved at all concentrations of NaCl for all legumes.

Keywords: Functional properties, Legumes, Protein isolate, NaCl, Transglutaminase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
785 First Cracking Moments of Hybrid Fiber Reinforced Polymer-Steel Reinforced Concrete Beams

Authors: Saruhan Kartal, Ilker Kalkan

Abstract:

The present paper reports the cracking moment estimates of a set of steel-reinforced, Fiber Reinforced Polymer (FRP)-reinforced and hybrid steel-FRP reinforced concrete beams, calculated from different analytical formulations in the codes, together with the experimental cracking load values. A total of three steel-reinforced, four FRP-reinforced, 12 hybrid FRP-steel over-reinforced and five hybrid FRP-steel under-reinforced concrete beam tests were analyzed within the scope of the study. Glass FRP (GFRP) and Basalt FRP (BFRP) bars were used in the beams as FRP bars. In under-reinforced hybrid beams, rupture of the FRP bars preceded crushing of concrete, while concrete crushing preceded FRP rupture in over-reinforced beams. In both types, steel yielding took place long before the FRP rupture and concrete crushing. The cracking moment mainly depends on two quantities, namely the moment of inertia of the section at the initiation of cracking and the flexural tensile strength of concrete, i.e. the modulus of rupture. In the present study, two different definitions of uncracked moment of inertia, i.e. the gross and the uncracked transformed moments of inertia, were adopted. Two analytical equations for the modulus of rupture (ACI 318M and Eurocode 2) were utilized in the calculations as well as the experimental tensile strength of concrete from prismatic specimen tests. The ACI 318M modulus of rupture expression produced cracking moment estimates closer to the experimental cracking moments of FRP-reinforced and hybrid FRP-steel reinforced concrete beams when used in combination with the uncracked transformed moment of inertia, yet the Eurocode 2 modulus of rupture expression gave more accurate cracking moment estimates in steel-reinforced concrete beams. All of the analytical definitions produced analytical values considerably different from the experimental cracking load values of the solely FRP-reinforced concrete beam specimens.

Keywords: Cracking moment, four-point bending, hybrid use of reinforcement, polymer reinforcement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
784 Operational Challenges of Marine Fiber Reinforced Polymer Composite Structures Coupled with Piezoelectric Transducers

Authors: H. Ucar, U. Aridogan

Abstract:

Composite structures become intriguing for the design of aerospace, automotive and marine applications due to weight reduction, corrosion resistance and radar signature reduction demands and requirements. Studies on piezoelectric ceramic transducers (PZT) for diagnostics and health monitoring have gained attention for their sensing capabilities, however PZT structures are prone to fail in case of heavy operational loads. In this paper, we develop a piezo-based Glass Fiber Reinforced Polymer (GFRP) composite finite element (FE) model, validate with experimental setup, and identify the applicability and limitations of PZTs for a marine application. A case study is conducted to assess the piezo-based sensing capabilities in a representative marine composite structure. A FE model of the composite structure combined with PZT patches is developed, afterwards the response and functionality are investigated according to the sea conditions. Results of this study clearly indicate the blockers and critical aspects towards industrialization and wide-range use of PZTs for marine composite applications.

Keywords: FRP, marine composite, piezoelectric transducer, sea state, wave-induced loads.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 447
783 Modeling and Simulation of a Hybrid System Solar Panel and Wind Turbine in the Quingeo Heritage Center in Ecuador

Authors: Juan Portoviejo Brito, Daniel Icaza Alvarez, Christian Castro Samaniego

Abstract:

In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador.

Keywords: Hybrid system, wind turbine, modeling, simulation, Smart Grid, Quingeo Azuay Ecuador.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
782 A Recommendation to Oncologists for Cancer Treatment by Immunotherapy: Quantitative and Qualitative Analysis

Authors: Mandana Kariminejad, Ali Ghaffari

Abstract:

Today, the treatment of cancer, in a relatively short period, with minimum adverse effects is a great concern for oncologists. In this paper, based on a recently used mathematical model for cancer, a guideline has been proposed for the amount and duration of drug doses for cancer treatment by immunotherapy. Dynamically speaking, the mathematical ordinary differential equation (ODE) model of cancer has different equilibrium points; one of them is unstable, which is called the no tumor equilibrium point. In this paper, based on the number of tumor cells an intelligent soft computing controller (a combination of fuzzy logic controller and genetic algorithm), decides regarding the amount and duration of drug doses, to eliminate the tumor cells and stabilize the unstable point in a relatively short time. Two different immunotherapy approaches; active and adoptive, have been studied and presented. It is shown that the rate of decay of tumor cells is faster and the doses of drug are lower in comparison with the result of some other literatures. It is also shown that the period of treatment and the doses of drug in adoptive immunotherapy are significantly less than the active method. A recommendation to oncologists has also been presented.

Keywords: Tumor, immunotherapy, fuzzy controller, Genetic algorithm, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1046
781 Effect of Alkali Treatment on Impact Behavior of Areca Fibers Reinforced Polymer Composites

Authors: Srinivasa C. V., Bharath K. N.

Abstract:

Natural fibers are considered to have potential use as reinforcing agents in polymer composite materials because of their principal benefits: moderate strength and stiffness, low cost, and being an environmental friendly, degradable, and renewable material. A study has been carried out to evaluate impact properties of composites made by areca fibers reinforced urea formaldehyde, melamine urea formaldehyde and epoxy resins. The extracted areca fibers from the areca husk were alkali treated with potassium hydroxide (KOH) to obtain better interfacial bonding between fiber and matrix. Then composites were produced by means of compression molding technique with varying process parameters, such as fiber condition (untreated and alkali treated), and fiber loading percentages (50% and 60% by weight). The developed areca fiber reinforced composites were then characterized by impact test. The results show that, impact strength increase with increase in the loading percentage. It is observed that, treated areca fiber reinforcement increases impact strength when compared to untreated areca fiber reinforcement.

Keywords: Lignocellulosic Fibers Composites, Areca Fibers, Alkali Treatment, Impact Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3762
780 Calcification Classification in Mammograms Using Decision Trees

Authors: S. Usha, S. Arumugam

Abstract:

Cancer affects people globally with breast cancer being a leading killer. Breast cancer is due to the uncontrollable multiplication of cells resulting in a tumour or neoplasm. Tumours are called ‘benign’ when cancerous cells do not ravage other body tissues and ‘malignant’ if they do so. As mammography is an effective breast cancer detection tool at an early stage which is the most treatable stage it is the primary imaging modality for screening and diagnosis of this cancer type. This paper presents an automatic mammogram classification technique using wavelet and Gabor filter. Correlation feature selection is used to reduce the feature set and selected features are classified using different decision trees.

Keywords: Breast Cancer, Mammogram, Symlet Wavelets, Gabor Filters, Decision Trees

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
779 Comparative Study of Calcium Content on in vitro Biological and Antibacterial Properties of Silicon-Based Bioglass

Authors: Morteza Elsa, Amirhossein Moghanian

Abstract:

The major aim of this study was to evaluate the effect of CaO content on in vitro hydroxyapatite formation, MC3T3 cells cytotoxicity and proliferation as well as antibacterial efficiency of sol-gel derived SiO2–CaO–P2O5 ternary system. For this purpose, first two grades of bioactive glass (BG); BG-58s (mol%: 60%SiO2–36%CaO–4%P2O5) and BG-68s (mol%: 70%SiO2–26%CaO–4%P2O5)) were synthesized by sol-gel method. Second, the effect of CaO content in their composition on in vitro bioactivity was investigated by soaking the BG-58s and BG-68s powders in simulated body fluid (SBF) for time periods up to 14 days and followed by characterization inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Additionally, live/dead staining, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and alkaline phosphatase (ALP) activity assays were conducted respectively, as qualitatively and quantitatively assess for cell viability, proliferation and differentiations of MC3T3 cells in presence of 58s and 68s BGs. Results showed that BG-58s with higher CaO content showed higher in vitro bioactivity with respect to BG-68s. Moreover, the dissolution rate was inversely proportional to oxygen density of the BG. Live/dead assay revealed that both 58s and 68s increased the mean number live cells which were in good accordance with MTT assay. Furthermore, BG-58s showed more potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Taken together, BG-58s with enhanced MC3T3 cells proliferation and ALP activity, acceptable bioactivity and significant high antibacterial effect against MRSA bacteria is suggested as a suitable candidate in order to further functionalizing for delivery of therapeutic ions and growth factors in bone tissue engineering.

Keywords: Antibacterial, bioactive glass, hydroxyapatite, proliferation, sol-gel processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
778 Mechanical Characterization and Impact Study on the Environment of Raw Sediments and Sediments Dehydrated by Addition of Polymer

Authors: A. Kasmi, N. E. Abriak, M. Benzerzour, I. Shahrour

Abstract:

Large volumes of river sediments are dredged each year in Europe in order to maintain harbour activities and prevent floods. The management of this sediment has become increasingly complex. Several European projects were implemented to find environmentally sound solutions for these materials. The main objective of this study is to show the ability of river sediment to be used in road. Since sediments contain a high amount of water, then a dehydrating treatment by addition of the flocculation aid has been used. Firstly, a lot of physical characteristics are measured and discussed for a better identification of the raw sediment and this dehydrated sediment by addition the flocculation aid. The identified parameters are, for example, the initial water content, the density, the organic matter content, the grain size distribution, the liquid limit and plastic limit and geotechnical parameters. The environmental impacts of the used material were evaluated. The results obtained show that there is a slight change on the physical-chemical and geotechnical characteristics of sediment after dehydration by the addition of polymer. However, these sediments cannot be used in road construction.

Keywords: River sediment, dehydration, flocculation aid, characteristics, environmental impacts, road construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
777 Dynamic Meshing for Material Point Method Computations

Authors: Wookuen Shin, Gregory R. Miller, Pedro Arduino, Peter Mackenzie-Helnwein

Abstract:

This paper presents strategies for dynamically creating, managing and removing mesh cells during computations in the context of the Material Point Method (MPM). The dynamic meshing approach has been developed to help address problems involving motion of a finite size body in unbounded domains in which the extent of material travel and deformation is unknown a priori, such as in the case of landslides and debris flows. The key idea is to efficiently instantiate and search only cells that contain material points, thereby avoiding unneeded storage and computation. Mechanisms for doing this efficiently are presented, and example problems are used to demonstrate the effectiveness of dynamic mesh management relative to alternative approaches.

Keywords: Numerical Analysis, Material Point Method, Large Deformations, Moving Boundaries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
776 Modeling and Analysis of the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer

Authors: A. H. Abdol Rahim, Alhassan Salami Tijani

Abstract:

Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME, water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick’s Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage.

Keywords: Diffusion, gases cross-over, steady state.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
775 Formulation and in vitro Evaluation of Sustained Release Matrix Tablets of Levetiracetam for Better Epileptic Treatment

Authors: Nagasamy Venkatesh Dhandapani

Abstract:

The objective of the present study was to develop sustained release oral matrix tablets of anti epileptic drug levetiracetam. The sustained release matrix tablets of levetiracetam were prepared using hydrophilic matrix hydroxypropyl methylcellulose (HPMC) as a release retarding polymer by wet granulation method. Prior to compression, FTIR studies were performed to understand the compatibility between the drug and excipients. The study revealed that there was no chemical interaction between drug and excipients used in the study. The tablets were characterized by physical and chemical parameters and results were found in acceptable limits. In vitro release study was carried out for the tablets using 0.1 N HCl for 2 hours and in phosphate buffer pH 7.4 for remaining time up to 12 hours. The effect of polymer concentration was studied. Different dissolution models were applied to drug release data in order to evaluate release mechanisms and kinetics. The drug release data fit well to zero order kinetics. Drug release mechanism was found as a complex mixture of diffusion, swelling and erosion.

Keywords: Levetiracetam, sustained-release, hydrophilic matrix tablet, HPMC grade K 100 MCR, wet granulation, zero order release kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
774 Identification of Promiscuous Epitopes for Cellular Immune Responses in the Major Antigenic Protein Rv3873 Encoded by Region of Difference 1 of Mycobacterium tuberculosis

Authors: Abu Salim Mustafa

Abstract:

Rv3873 is a relatively large size protein (371 amino acids in length) and its gene is located in the immunodominant genomic region of difference (RD)1 that is present in the genome of Mycobacterium tuberculosis but deleted from the genomes of all the vaccine strains of Bacillus Calmette Guerin (BCG) and most other mycobacteria. However, when tested for cellular immune responses using peripheral blood mononuclear cells from tuberculosis patients and BCG-vaccinated healthy subjects, this protein was found to be a major stimulator of cell mediated immune responses in both groups of subjects. In order to further identify the sequence of immunodominant epitopes and explore their Human Leukocyte Antigen (HLA)-restriction for epitope recognition, 24 peptides (25-mers overlapping with the neighboring peptides by 10 residues) covering the sequence of Rv3873 were synthesized chemically using fluorenylmethyloxycarbonyl chemistry and tested in cell mediated immune responses. The results of these experiments helped in the identification of an immunodominant peptide P9 that was recognized by people expressing varying HLA-DR types. Furthermore, it was also predicted to be a promiscuous binder with multiple epitopes for binding to HLA-DR, HLA-DP and HLA-DQ alleles of HLA-class II molecules that present antigens to T helper cells, and to HLA-class I molecules that present antigens to T cytotoxic cells. In addition, the evaluation of peptide P9 using an immunogenicity predictor server yielded a high score (0.94), which indicated a greater probability of this peptide to elicit a protective cellular immune response. In conclusion, P9, a peptide with multiple epitopes and ability to bind several HLA class I and class II molecules for presentation to cells of the cellular immune response, may be useful as a peptide-based vaccine against tuberculosis.

Keywords: Mycobacterium tuberculosis, Rv3873, peptides, vaccine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818
773 Efficiency Enhancement of PWM Controlled Water Electrolysis Cells

Authors: S.K. Mazloomi, Nasri b. Sulaiman

Abstract:

By analyzing the sources of energy and power loss in PWM (Pulse Width Modulation) controlled drivers of water electrolysis cells, it is possible to reduce the power dissipation and enhance the efficiency of such hydrogen production units. A PWM controlled power driver is based on a semiconductor switching element where its power dissipation might be a remarkable fraction of the total power demand of an electrolysis system. Power dissipation in a semiconductor switching element is related to many different parameters which could be fitted into two main categories: switching losses and conduction losses. Conduction losses are directly related to the built, structure and capabilities of a switching device itself and indeed the conditions in which the element is handling the switching application such as voltage, current, temperature and of course the fabrication technology. On the other hand, switching losses have some other influencing variables other than the mentioned such as control system, switching method and power electronics circuitry of the PWM power driver. By analyzings the characteristics of recently developed power switching transistors from different families of Bipolar Junction Transistors (BJT), Metal Oxide Semiconductor Field Effect Transistors (MOSFET) and Insulated Gate Bipolar Transistors (IGBT), some recommendations are made in this paper which are able to lead to achieve higher hydrogen production efficiency by utilizing PWM controlled water electrolysis cells.

Keywords: Power switch, PWM, Semiconductor switch, Waterelectrolysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3441
772 Effect of Polyvinyl Pyrrolidone and Ethyl Cellulose Concentration on Release Profile and Kinetics of Glibenclamide Extended Release Dosage Form System

Authors: Amit Kumar, Peeyush Sharma, Anil Bhandari

Abstract:

The aim of present work was to optimize the effect of Ethyl Cellulose (EC) and Polyvinyl Pyrrolidone (PVP) concentration in extended release solid dispersion of Glibenclamide using combination of hydrophilic and hydrophobic polymers such as Polyvinyl Pyrrolidone and Ethyl cellulose. The advantage of solid dispersion technique provides a unique approach to particle size reduction and increased rates of dissolution. The compatibility studies of the drug and polymers were studied by TLC and results suggested no interaction between drug and polymers. Solid dispersions of Glibenclamide were prepared by common solvent evaporation method using Polyvinyl Pyrrolidone and Ethyl cellulose. The results indicated that homogeneous or heterogeneous conditions during the preparation methods employed governed the internal structures of the polymer matrices while retaining the drug in an amorphous form. F2 formulation prepared by solid dispersion method, displayed extended drug release followed by Higuchi matrix model indicating diffusion release of GLB from polymer matrices.

Keywords: Ethyl Cellulose, Glibenclamide, Polyvinyl Pyrrolidone, Solid Dispersion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2494
771 Statistical Analysis and Predictive Learning of Mechanical Parameters for TiO2 Filled GFRP Composite

Authors: S. Srinivasa Moorthy, K. Manonmani

Abstract:

The new, polymer composites consisting of e-glass fiber reinforcement with titanium oxide filler in the double bonded unsaturated polyester resin matrix were made. The glass fiber and titanium oxide reinforcement composites were made in three different fiber lengths (3cm, 5cm, and 7cm), filler content (2 wt%, 4 wt%, and 6 wt%) and fiber content (20 wt%, 40 wt%, and 60 wt%). 27 different compositions were fabricated and a sequence of experiments were carried out to determine tensile strength and impact strength. The vital influencing factors fiber length, fiber content and filler content were chosen as 3 factors in 3 levels of Taguchi’s L9 orthogonal array. The influences of parameters were determined for tensile strength and impact strength by Analysis of variance (ANOVA) and S/N ratio. Using Artificial Neural Network (ANN) an expert system was devised to predict the properties of hybrid reinforcement GFRP composites. The predict models were experimentally proved with the maximum coincidence.

Keywords: Analysis of variance (ANOVA), Artificial neural network (ANN), Polymer composites, Taguchi’s orthogonal array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2378
770 Modeling of Processes Running in Radical Clusters Formed by Ionizing Radiation with the Help of Continuous Petri Nets and Oxygen Effect

Authors: J. Barilla, M. Lokajíček, H. Pisaková, P. Simr

Abstract:

The final biological effect of ionizing particles may be influenced strongly by some chemical substances present in cells mainly in the case of low-LET radiation. The influence of oxygen may by particularly important because oxygen is always present in living cells. The corresponding processes are then running mainly in the chemical stage of radiobiological mechanism.

The radical clusters formed by densely ionizing ends of primary or secondary charged particles are mainly responsible for final biological effect. The damage effect depends then on radical concentration at a time when the cluster meets a DNA molecule. It may be strongly influenced by oxygen present in a cell as oxygen may act in different directions: at small concentration of it the interaction with hydrogen radicals prevails while at higher concentrations additional efficient oxygen radicals may be formed.

The basic radical concentration in individual clusters diminishes, which is influenced by two parallel processes: chemical reactions and diffusion of corresponding clusters. The given simultaneous evolution may be modeled and analyzed well with the help of Continuous Petri nets. The influence of other substances present in cells during irradiation may be studied, too. Some results concerning the impact of oxygen content will be presented.

Keywords: DSB formation, chemical stage, Petri nets, radiobiological mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
769 Analysis of Electric Field and Potential Distributions along Surface of Silicone Rubber Insulators under Various Contamination Conditions Using Finite Element Method

Authors: B. Marungsri, W. Onchantuek, A. Oonsivilai, T. Kulworawanichpong

Abstract:

This paper presents the simulation results of electric field and potential distributions along surface of silicone rubber polymer insulators under clean and various contamination conditions with/without water droplets. Straight sheds insulator having leakage distance 290 mm was used in this study. Two type of contaminants, playwood dust and cement dust, have been studied the effect of contamination on the insulator surface. The objective of this work is to comparison the effect of contamination on potential and electric field distributions along the insulator surface when water droplets exist on the insulator surface. Finite element method (FEM) is adopted for this work. The simulation results show that contaminations have no effect on potential distribution along the insulator surface while electric field distributions are obviously depended on contamination conditions.

Keywords: electric field distribution, potential distribution, silicone rubber polymer insulator, finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3273
768 Visualization of Flow Behaviour in Micro-Cavities during Micro Injection Moulding

Authors: Reza Gheisari, Paulo J. Bartolo, Nicholas Goddard

Abstract:

Polymeric micro-cantilevers (Cs) are rapidly becoming popular for MEMS applications such as chemo- and biosensing as well as purely electromechanical applications such as microrelays. Polymer materials present suitable physical and chemical properties combined with low-cost mass production. Hence, micro-cantilevers made of polymers indicate much more biocompatibility and adaptability of rapid prototyping along with mechanical properties. This research studies the effects of three process and one size factors on the filling behaviour in micro cavity, and the role of each in the replication of micro parts using different polymer materials i.e. polypropylene (PP) SABIC 56M10 and acrylonitrile butadiene styrene (ABS) Magnum 8434 . In particular, the following factors are considered: barrel temperature, mould temperature, injection speed and the thickness of micro features. The study revealed that the barrel temperature and the injection speed are the key factors affecting the flow length of micro features replicated in PP and ABS. For both materials, an increase of feature sizes improves the melt flow. However, the melt fill of micro features does not increase linearly with the increase of their thickness.

Keywords: Flow length, micro-cantilevers, micro injection moulding, microfabrication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
767 Investigation of Electrical, Thermal and Structural Properties on Polyacrylonitrile Nano-Fiber

Authors: N. Demirsoy, N. Uçar, A. Önen, N. Kızıldağ, Ö. F. Vurur, O. Eren, İ. Karacan

Abstract:

Polymer composite nano-fibers including (1, 3 wt %) silver nano-particles have been produced by electrospinning method. Polyacrylonitrile/N,N-dimethylformamide (PAN/DMF) solution have been prepared and the amount of silver nitrate have been adjusted to PAN weight. Silver nano-particles were obtained from reduction of silver ions into silver nano-particles by chemical reduction by hydrazine hydroxide (N2H5OH). The different amount of silver salt was loaded into polymer matrix to obtain polyacrylonitrile composite nano-fiber containing silver nano-particles. The effect of the amount of silver nano-particles on the properties of composite nano-fiber web was investigated. Electrical conductivity, mechanical properties, thermal properties were examined by Microtest LCR Meter 6370 (0.01 mΩ-100 MΩ), Tensile tester, Differential scanning calorimeter DSC (Q10) and SEM respectively. Also antimicrobial efficiency test (ASTM E2149-10) was done against to Staphylococcus aureus bacteria. It has been seen that breaking strength, conductivity, antimicrobial effect, enthalpy during cyclization increase by use of silver nano-particles while the diameter of nano-fiber decreases.

Keywords: Composite polyacrylonitrile nano-fiber, electrical conductivity, electrospinning, mechanical and thermal properties, silver nano-particles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
766 Multi-Walled Carbon Nanotubes/Polyacrylonitrile Composite as Novel Semi-Permeable Mixed Matrix Membrane in Reverse Osmosis Water Treatment Process

Authors: M. M. Doroodmand, Z.Tahvildar, M. H.Sheikhi

Abstract:

novel and simple method is introduced for rapid and highly efficient water treatment by reverse osmosis (RO) method using multi-walled carbon nanotubes (MWCNTs) / polyacrylonitrile (PAN) polymer as a flexible, highly efficient, reusable and semi-permeable mixed matrix membrane (MMM). For this purpose, MWCNTs were directly synthesized and on-line purified by chemical vapor deposition (CVD) process, followed by directing the MWCNT bundles towards an ultrasonic bath, in which PAN polymer was simultaneously suspended inside a solid porous silica support in water at temperature to ~70 οC. Fabrication process of MMM was finally completed by hot isostatic pressing (HIP) process. In accordance with the analytical figures of merit, the efficiency of fabricated MMM was ~97%. The rate of water treatment process was also evaluated to 6.35 L min-1. The results reveal that, the CNT-based MMM is suitable for rapid treatment of different forms of industrial, sea, drinking and well water samples.

Keywords: Mixed Matrix Membrane, Carbon Nanostructures, Chemical Vapour Deposition, Hot Isostatic Pressing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
765 Influence of Mass Flow Rate on Forced Convective Heat Transfer through a Nanofluid Filled Direct Absorption Solar Collector

Authors: Salma Parvin, M. A. Alim

Abstract:

The convective and radiative heat transfer performance and entropy generation on forced convection through a direct absorption solar collector (DASC) is investigated numerically. Four different fluids, including Cu-water nanofluid, Al2O3-waternanofluid, TiO2-waternanofluid, and pure water are used as the working fluid. Entropy production has been taken into account in addition to the collector efficiency and heat transfer enhancement. Penalty finite element method with Galerkin’s weighted residual technique is used to solve the governing non-linear partial differential equations. Numerical simulations are performed for the variation of mass flow rate. The outcomes are presented in the form of isotherms, average output temperature, the average Nusselt number, collector efficiency, average entropy generation, and Bejan number. The results present that the rate of heat transfer and collector efficiency enhance significantly for raising the values of m up to a certain range.

Keywords: DASC, forced convection, mass flow rate, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831
764 Design and Implementation of Real-Time Automatic Censoring System on Chip for Radar Detection

Authors: Imron Rosyadi, Ridha A. Djemal, Saleh A. Alshebeili

Abstract:

Design and implementation of a novel B-ACOSD CFAR algorithm is presented in this paper. It is proposed for detecting radar target in log-normal distribution environment. The BACOSD detector is capable to detect automatically the number interference target in the reference cells and detect the real target by an adaptive threshold. The detector is implemented as a System on Chip on FPGA Altera Stratix II using parallelism and pipelining technique. For a reference window of length 16 cells, the experimental results showed that the processor works properly with a processing speed up to 115.13MHz and processing time0.29 ┬Ás, thus meets real-time requirement for a typical radar system.

Keywords: CFAR, FPGA, radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3071
763 Apoptosis Activity of Persea declinata (Bl.) Kosterm Bark Methanolic Crude Extract

Authors: P. Narrima, C. Y. Looi, M. A. Mohd, H. M. Ali

Abstract:

Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 .g/mL after 48h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development.

Keywords: Antiproliferative, apoptosis, MCF-7 human breast cancer, Persea declinata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
762 Harnessing the Potential of Renewable Energy Sources to Reduce Fossil Energy Consumption in the Wastewater Treatment Process

Authors: Hen Friman

Abstract:

Various categories of aqueous solutions are discharged within residential, institutional, commercial, and industrial structures. To safeguard public health and preserve the environment, it is imperative to subject wastewater to treatment processes that eliminate pathogens (such as bacteria and viruses), nutrients (such as nitrogen and phosphorus), and other compounds. Failure to address untreated sewage accumulation can result in an array of adverse consequences. Israel exemplifies a special case in wastewater management. Appropriate wastewater treatment significantly benefits sectors such as agriculture, tourism, horticulture, and industry. Nevertheless, untreated sewage in settlements lacking proper sewage collection or transportation networks remains an ongoing and substantial threat. Notably, the process of wastewater treatment entails substantial energy consumption. Consequently, this study explores the integration of solar energy as a renewable power source within the wastewater treatment framework. By incorporating renewable energy sources into the process, costs can be minimized, and decentralized facilities can be established even in areas lacking adequate infrastructure for traditional treatment methods.

Keywords: Renewable energy, solar energy, decentralized facilities, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64
761 Preparation of Polylactic Acid Graft Polyvinyl Acetate Compatibilizers for 50/50 Starch/PLLA Blending

Authors: S. Buchatip, A. Petchsuk

Abstract:

Polylactic acid-g-polyvinyl acetate (PLLA-g-PVAc) was used as a compatibilizer for 50/50 starch/PLLA blend. PLLA-g- PVAc with different mol% of PVAc contents were prepared by grafting PVAc onto PLLA backbone via free radical polymerization in solution process. Various conditions such as type and the amount of initiator, monomer concentration, polymerization time and temperature were studied. Results showed that the highest mol% of PVAc grafting (16 mol%) was achieved by conducting graft copolymerization in toluene at 110°C for 10 h using DCP as an initiator. Chemical structure of the PVAc grafted PLLA was confirmed by 1H NMR. Blending of modified starch and PLLA in the presence compatibilizer with different amounts and mol% PVAc was acquired using internal mixer at 160°C for 15 min. Effects of PVAc content and the amount of compatibilizer on mechanical properties of polymer blend were studied. Results revealed that tensile strength and tensile modulus of polymer blend with higher PVAc grafting content compatibilizer showed better properties than that of lower PVAc grafting content compatibilizer. The amount of compatibilizer was found optimized in the range of 0.5-1.0 Wt% depending on the mol% PVAc.

Keywords: starch, PLLA, compatibilizer, free radical polymerization, blending

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2445