Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30011
Comparative Study of Calcium Content on in vitro Biological and Antibacterial Properties of Silicon-Based Bioglass

Authors: Morteza Elsa, Amirhossein Moghanian

Abstract:

The major aim of this study was to evaluate the effect of CaO content on in vitro hydroxyapatite formation, MC3T3 cells cytotoxicity and proliferation as well as antibacterial efficiency of sol-gel derived SiO2–CaO–P2O5 ternary system. For this purpose, first two grades of bioactive glass (BG); BG-58s (mol%: 60%SiO2–36%CaO–4%P2O5) and BG-68s (mol%: 70%SiO2–26%CaO–4%P2O5)) were synthesized by sol-gel method. Second, the effect of CaO content in their composition on in vitro bioactivity was investigated by soaking the BG-58s and BG-68s powders in simulated body fluid (SBF) for time periods up to 14 days and followed by characterization inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Additionally, live/dead staining, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and alkaline phosphatase (ALP) activity assays were conducted respectively, as qualitatively and quantitatively assess for cell viability, proliferation and differentiations of MC3T3 cells in presence of 58s and 68s BGs. Results showed that BG-58s with higher CaO content showed higher in vitro bioactivity with respect to BG-68s. Moreover, the dissolution rate was inversely proportional to oxygen density of the BG. Live/dead assay revealed that both 58s and 68s increased the mean number live cells which were in good accordance with MTT assay. Furthermore, BG-58s showed more potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Taken together, BG-58s with enhanced MC3T3 cells proliferation and ALP activity, acceptable bioactivity and significant high antibacterial effect against MRSA bacteria is suggested as a suitable candidate in order to further functionalizing for delivery of therapeutic ions and growth factors in bone tissue engineering.

Keywords: Antibacterial, bioactive glass, hydroxyapatite, proliferation, sol-gel processes.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3299721

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF

References:


[1] L. L. Hench, The story of Bioglass®, J. Mater. Sci. Mater. Med. 17 (2006) 967–978.
[2] L. L. Hench, Bioceramics: From Concept to Clinic, J. Am. Ceram. Soc. 74 (1991) 1487–1510.
[3] P. Saravanapavan, J. R. Jones, R. S. Pryce, L. L. Hench, Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2P5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O), J. Biomed. Mater. Res. 66A (2003) 110–119.
[4] T. Kokubo, Apatite formation on surfaces of ceramics, metals and polymers in body environment, Acta Mater. 46 (1998) 2519–2527.
[5] F. Sharifianjazi, N. Parvin, M. Tahriri, Formation of apatite nano-needles on novel gel derived SiO2-P2O5-CaO-SrO-Ag2O bioactive glasses, Ceram. Int. 43 (2017) 15214–15220.
[6] X. Lu, L. Deng, C. Huntley, M. Ren, P.-H. Kuo, T. Thomas, J. Chen, J. Du, Mixed Network Former Effect on Structure, Physical Properties, and Bioactivity of 45S5 Bioactive Glasses: An Integrated Experimental and Molecular Dynamics Simulation Study, J. Phys. Chem. B. 122 (2018) 2564–2577.
[7] M. Mozafari, F. Moztarzadeh, M. Tahriri, Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluid, J. Non. Cryst. Solids. 356 (2010) 1470–1478.
[8] R. Gupta, A. Kumar, Bioactive materials for biomedical applications using sol–gel technology, Biomed. Mater. 3 (2008) 34005.
[9] L. L. Hench, Biomaterials: a forecast for the future, Biomaterials. 19 (1998) 1419–1423.
[10] M. Vallet-Regí, A. J. Salinas, D. Arcos, From the bioactive glasses to the star gels, J. Mater. Sci. Mater. Med. 17 (2006) 1011–1017.
[11] P. Sepulveda, J. R. Jones, L. L. Hench, Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses, J. Biomed. Mater. Res. 58 (2001) 734–740.
[12] N. Li, Q. Jie, S. Zhu, R. Wang, Preparation and characterization of macroporous sol–gel bioglass, Ceram. Int. 31 (2005) 641–646.
[13] P. Sepulveda, J. R. Jones, L. L. Hench, In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses, J. Biomed. Mater. Res. 61 (2002) 301–311.
[14] A. Perardi, M. Cerrruti, C. Morterra, Carbonate formation on sol-gel bioactive glass 58S and on Bioglass® 45S5, Stud. Surf. Sci. Catal. 155 (2005) 461–469.
[15] K. Ohura, T. Nakamura, T. Yamamuro, T. Kokubo, Y. Ebisawa, Y. Kotoura, M. Oka, Bone-bonding ability of P2O5-Free CaO • SiO2 glasses, J. Biomed. Mater. Res. 25 (1991) 357–365.
[16] J. Zhong, D. C. Greenspan, Processing and properties of sol-gel bioactive glasses, J. Biomed. Mater. Res. 53 (2000) 694–701.
[17] J. R. Jones, Review of bioactive glass: From Hench to hybrids, Acta Biomater. 9 (2013) 4457–4486.
[18] L. L. Hench, J.R. Jones, Bioactive Glasses: Frontiers and Challenges., Front. Bioeng. Biotechnol. 3 (2015) 194.
[19] J. Ye, J. He, C. Wang, K. Yao, Z. Gou, Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity, Biotechnol. Lett. 36 (2014) 961–968.
[20] A. Moghanian, S. Firoozi, M. Tahriri, Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass, Ceram. Int. 43 (2017).
[21] A. Moghanian, S. Firoozi, M. Tahriri, Synthesis and in vitro studies of sol-gel derived lithium substituted 58S bioactive glass, Ceram. Int. 43 (2017) 12835–12843.
[22] A. Moghanian, A. Sedghi, A. Ghorbanoghli, E. Salari, The effect of magnesium content on in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass, Ceram. Int. (2018).
[23] I.A. Silver, J. Deas, M. Erecińska, Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability, Biomaterials. 22 (2001) 175–185.
[24] A. Moghanian, S. Firoozi, M. Tahriri, A. Sedghi, A comparative study on the in vitro formation of hydroxyapatite, cytotoxicity and antibacterial activity of 58S bioactive glass substituted by Li and Sr, Mater. Sci. Eng. C. 91 (2018) 349–360.
[25] J. Liu, S. C. F. Rawlinson, R. G. Hill, F. Fortune, Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects, Dent. Mater. 32 (2016) 412–422.
[26] G. J. Moran, R. N. Amii, F. M. Abrahamian, D. A. Talan, Methicillin-resistant Staphylococcus aureus in community-acquired skin infections., Emerg. Infect. Dis. 11 (2005) 928–30.
[27] S. Hu, J. Chang, M. Liu, C. Ning, Study on antibacterial effect of 45S5 Bioglass®, J. Mater. Sci. Mater. Med. 20 (2009) 281–286.
[28] S. Hu, C. Ning, Y. Zhou, L. Chen, K. Lin, J. Chang, Antibacterial activity of silicate bioceramics, J. Wuhan Univ. Technol. Sci. Ed. 26 (2011) 226–230.
[29] F. Sharifianjazi, N. Parvin, M. Tahriri, Synthesis and characteristics of sol-gel bioactive SiO2-P2O5-CaO-Ag2O glasses, J. Non. Cryst. Solids. 476 (2017) 108–113.
[30] A. Balamurugan, G. Sockalingum, J. Michel, J. Fauré, V. Banchet, L. Wortham, S. Bouthors, D. Laurent-Maquin, G. Balossier, Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications, 2006.
[31] I. A. Silver, J. Deas, M. Erecińska, Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability, Biomaterials. 22 (2001) 175–185.
[32] M. Taghian Dehaghani, M. Ahmadian, M. Fathi, Synthesis, Characterization, and Bioactivity Evaluation of Amorphous and Crystallized 58S Bioglass Nanopowders, Int. J. Appl. Ceram. Technol. 12 (2015) 867–874.
[33] R. Li, A. E. Clark, L. L. Hench, An investigation of bioactive glass powders by sol-gel processing, J. Appl. Biomater. 2 (1991) 231–239.
[34] Z. Hong, R. L. Reis, J. F. Mano, Preparation and in vitro characterization of novel bioactive glass ceramic nanoparticles, J. Biomed. Mater. Res. Part A. 88A (2009) 304–313.
[35] D. Arcos, D. C. Greenspan, M. Vallet-Regí, A new quantitative method to evaluate the in vitro bioactivity of melt and sol-gel-derived silicate glasses, J. Biomed. Mater. Res. Part A. 65A (2003) 344–351.
[36] L. Francis, D. Meng, J. C. Knowles, I. Roy, A. R. Boccaccini, Multi-functional P(3HB) microsphere/45S5 Bioglass®-based composite scaffolds for bone tissue engineering, Acta Biomater. 6 (2010) 2773–2786.
[37] D. S. Brauer, R. Brückner, M. Tylkowski, L. Hupa, Sodium-free mixed alkali bioactive glasses, Biomed. Glas. 2 (2016).
[38] H. M. Elgendy, M. E. Norman, A. R. Keaton, C. T. Laurencin, Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material, Biomaterials. 14 (1993) 263–269.
[39] C. E. Yellowley, Z. Li, Z. Zhou, C. R. Jacobs, H. J. Donahue, Functional Gap Junctions Between Osteocytic and Osteoblastic Cells, J. Bone Miner. Res. 15 (2010) 209–217.
[40] M. Tylkowski, D. S. Brauer, Mixed alkali effects in Bioglass® 45S5, J. Non. Cryst. Solids. 376 (2013) 175–181.
[41] S. Shahrabi, S. Hesaraki, S. Moemeni, M. Khorami, Structural discrepancies and in vitro nanoapatite formation ability of sol–gel derived glasses doped with different bone stimulator ions, Ceram. Int. 37 (2011) 2737–2746.
[42] X. Wu, G. Meng, S. Wang, F. Wu, W. Huang, Z. Gu, Zn and Sr incorporated 64S bioglasses: Material characterization, in-vitro bioactivity and mesenchymal stem cell responses, Mater. Sci. Eng. C. 52 (2015) 242–250.
[43] X. Zhang, Y. Wu, S. He, D. Yang, Structural characterization of sol–gel composites using TEOS/MEMO as precursors, Surf. Coatings Technol. 201 (2007) 6051–6058.
[44] A. Rainer, S. M. Giannitelli, F. Abbruzzese, E. Traversa, S. Licoccia, M. Trombetta, Fabrication of bioactive glass–ceramic foams mimicking human bone portions for regenerative medicine, Acta Biomater. 4 (2008) 362–369.
[45] X. Zhao, B. C. Heng, S. Xiong, J. Guo, T. T.-Y. Tan, F. Y. C. Boey, K. W. Ng, J. S. C. Loo, In vitro assessment of cellular responses to rod-shaped hydroxyapatite nanoparticles of varying lengths and surface areas, Nanotoxicology. 5 (2011) 182–194.
[46] M. Ashok, N. Meenakshi Sundaram, S. Narayana Kalkura, Crystallization of hydroxyapatite at physiological temperature, Mater. Lett. 57 (2003) 2066–2070.
[47] A. Tavakolizadeh, M. Ahmadian, M. H. Fathi, A. Doostmohammadi, E. Seyedjafari, A. Ardeshirylajimi, Investigation of Osteoinductive Effects of Different Compositions of Bioactive Glass Nanoparticles for Bone Tissue Engineering, ASAIO J. 63 (2017) 512–517.
[48] D. Khvostenko, T. J. Hilton, J. L. Ferracane, J. C. Mitchell, J. J. Kruzic, Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations, Dent. Mater. 32 (2016) 73–81.