Search results for: Learning Algorithms
2774 Post Earthquake Volunteer Learning That Build Up Caring Learning Communities
Authors: Naoki Okamura
Abstract:
From a perspective of moral education, this study has examined the experiences of a group of college students who volunteered in disaster areas after the magnitude 9.0 Earthquake, which struck the Northeastern region of Japan in March, 2011. The research, utilizing the method of grounded theory, has uncovered that most of the students have gone through positive changes in their development of moral and social characters, such as attaining deeper sense of empathy and caring personalities. The study expresses, in identifying the nature of those transformations, that the importance of volunteer work should strongly be recognized by the colleges and universities in Japan, in fulfilling their public responsibility of creating and building learning communities that are responsible and caring.
Keywords: Moral development, moral education, service learning, volunteer learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17712773 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite
Authors: F. Lazzeri, I. Reiter
Abstract:
Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.
Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12932772 A Method for Consensus Building between Teachers and Learners in a Value Co-Creative Learning Service
Authors: Ryota Sugino, Satoshi Mizoguchi, Koji Kimita, Keiichi Muramatsu, Tatsunori Matsui, Yoshiki Shimomura
Abstract:
Improving added value and productivity of services entails improving both value-in-exchange and value-in-use. Value-in-use is realized by value co-creation, where providers and receivers create value together. In higher education services, value-in-use comes from learners achieving learning outcomes (e.g., knowledge and skills) that are consistent with their learning goals. To enhance the learning outcomes of a learner, it is necessary to enhance and utilize the abilities of the teacher along with the abilities of the learner. To do this, however, the learner and the teacher need to build a consensus about their respective roles. Teachers need to provide effective learning content; learners need to choose the appropriate learning strategies by using the learning content through consensus building. This makes consensus building an important factor in value co-creation. However, methods to build a consensus about their respective roles may not be clearly established, making such consensus difficult. In this paper, we propose some strategies for consensus building between a teacher and a learner in value co-creation. We focus on a teacher and learner co-design and propose an analysis method to clarify a collaborative design process to realize value co-creation. We then analyze some counseling data obtained from a university class. This counseling aimed to build a consensus for value-in-use, learning outcomes, and learning strategies between the teacher and the learner.Keywords: Consensus building, value co-creation, higher education, learning service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17742771 Architecture from Teaching to Learning to Practice: Authentic learning Tasks in Developing Professional Competencies
Authors: N. Utaberta, B. Hassanpour, M. Surat, A. I. Che Ani, N.M. Tawil
Abstract:
The concerns of education and practice of architecture do not necessarily overlap. Indeed the gap between them could be seen increasingly and less frequently bridged. We suggest that changing in architecture education and clarifying the relationship between these two can help to find and address the opportunities and unique positions to bridge this gulf.Keywords: Architecture education, Learning, Practice, Teaching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16122770 An Attribute-Centre Based Decision Tree Classification Algorithm
Authors: Gökhan Silahtaroğlu
Abstract:
Decision tree algorithms have very important place at classification model of data mining. In literature, algorithms use entropy concept or gini index to form the tree. The shape of the classes and their closeness to each other some of the factors that affect the performance of the algorithm. In this paper we introduce a new decision tree algorithm which employs data (attribute) folding method and variation of the class variables over the branches to be created. A comparative performance analysis has been held between the proposed algorithm and C4.5.Keywords: Classification, decision tree, split, pruning, entropy, gini.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13702769 Elephant Herding Optimization for Service Selection in QoS-Aware Web Service Composition
Authors: Samia Sadouki Chibani, Abdelkamel Tari
Abstract:
Web service composition combines available services to provide new functionality. Given the number of available services with similar functionalities and different non functional aspects (QoS), the problem of finding a QoS-optimal web service composition is considered as an optimization problem belonging to NP-hard class. Thus, an optimal solution cannot be found by exact algorithms within a reasonable time. In this paper, a meta-heuristic bio-inspired is presented to address the QoS aware web service composition; it is based on Elephant Herding Optimization (EHO) algorithm, which is inspired by the herding behavior of elephant group. EHO is characterized by a process of dividing and combining the population to sub populations (clan); this process allows the exchange of information between local searches to move toward a global optimum. However, with Applying others evolutionary algorithms the problem of early stagnancy in a local optimum cannot be avoided. Compared with PSO, the results of experimental evaluation show that our proposition significantly outperforms the existing algorithm with better performance of the fitness value and a fast convergence.Keywords: Elephant herding optimization, web service composition, bio-inspired algorithms, QoS optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10322768 A Dictionary Learning Method Based On EMD for Audio Sparse Representation
Authors: Yueming Wang, Zenghui Zhang, Rendong Ying, Peilin Liu
Abstract:
Sparse representation has long been studied and several dictionary learning methods have been proposed. The dictionary learning methods are widely used because they are adaptive. In this paper, a new dictionary learning method for audio is proposed. Signals are at first decomposed into different degrees of Intrinsic Mode Functions (IMF) using Empirical Mode Decomposition (EMD) technique. Then these IMFs form a learned dictionary. To reduce the size of the dictionary, the K-means method is applied to the dictionary to generate a K-EMD dictionary. Compared to K-SVD algorithm, the K-EMD dictionary decomposes audio signals into structured components, thus the sparsity of the representation is increased by 34.4% and the SNR of the recovered audio signals is increased by 20.9%.
Keywords: Dictionary Learning, EMD, K-means Method, Sparse Representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26292767 Restartings: A Technique to Improve Classic Genetic Algorithms Performance
Authors: Grigorios N. Beligiannis, Georgios A. Tsirogiannis, Panayotis E. Pintelas
Abstract:
In this contribution, a way to enhance the performance of the classic Genetic Algorithm is proposed. The idea of restarting a Genetic Algorithm is applied in order to obtain better knowledge of the solution space of the problem. A new operator of 'insertion' is introduced so as to exploit (utilize) the information that has already been collected before the restarting procedure. Finally, numerical experiments comparing the performance of the classic Genetic Algorithm and the Genetic Algorithm with restartings, for some well known test functions, are given.
Keywords: Genetic Algorithms, Restartings, Search space exploration, Search space exploitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21392766 Energy Efficient Clustering Algorithm with Global and Local Re-clustering for Wireless Sensor Networks
Authors: Ashanie Guanathillake, Kithsiri Samarasinghe
Abstract:
Wireless Sensor Networks consist of inexpensive, low power sensor nodes deployed to monitor the environment and collect data. Gathering information in an energy efficient manner is a critical aspect to prolong the network lifetime. Clustering algorithms have an advantage of enhancing the network lifetime. Current clustering algorithms usually focus on global re-clustering and local re-clustering separately. This paper, proposed a combination of those two reclustering methods to reduce the energy consumption of the network. Furthermore, the proposed algorithm can apply to homogeneous as well as heterogeneous wireless sensor networks. In addition, the cluster head rotation happens, only when its energy drops below a dynamic threshold value computed by the algorithm. The simulation result shows that the proposed algorithm prolong the network lifetime compared to existing algorithms.
Keywords: Energy efficient, Global re-clustering, Local re-clustering, Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23712765 Using Technology to Enhance the Student Assessment Experience
Authors: D. J. Smith, M. A. Qayyum
Abstract:
The use of information tools is a common activity for students of any educational stage when they encounter online learning activities. Finding the relevant information for particular learning tasks is the topic of this paper as it investigates the use of information tools for a group of student participants. The paper describes and discusses the results with particular implications for use in higher education, and the findings suggest that improvement in assessment design and subsequent student learning may be achieved by structuring the purposefulness of information tools usage and online reading behaviors of university students.
Keywords: Information tools, assessment, online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17232764 Improving the Quality of e-learning Courses in Higher Education through Student Satisfaction
Authors: Susana Lemos, Neuza Pedro
Abstract:
Thepurpose of the research is to characterize the levels of satisfaction of the students in e-learning post-graduate courses, taking into account specific dimensions of the course which were considered as benchmarks for the quality of this type of online learning initiative, as well as the levels of satisfaction towards each specific indicator identified in each dimension. It was also an aim of this study to understand how thesedimensions relate to one another. Using a quantitative research approach in the collection and analysis of the data, the study involves the participation of the students who attended on e-learning course in 2010/2011. The conclusions of this study suggest that online students present relatively high levels of satisfaction, which points towards a positive experience during the course. It is possible to note that there is a correlation between the different dimensions studied, consequently leading to different improvement strategies. Ultimately, this investigation aims to contribute to the promotion of quality and the success of e-learning initiatives in Higher Education.Keywords: e-learning, higher education, quality, students satisfaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15982763 Use of Semantic Networks as Learning Material and Evaluation of the Approach by Students
Authors: Philippe A. Martin
Abstract:
This article first summarizes reasons why current approaches supporting Open Learning and Distance Education need to be complemented by tools permitting lecturers, researchers and students to cooperatively organize the semantic content of Learning related materials (courses, discussions, etc.) into a fine-grained shared semantic network. This first part of the article also quickly describes the approach adopted to permit such a collaborative work. Then, examples of such semantic networks are presented. Finally, an evaluation of the approach by students is provided and analyzed.
Keywords: knowledge sharing, knowledge evaluation, e-learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15092762 Integrating Agents and Computational Intelligence Techniques in E-learning Environments
Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis
Abstract:
In this contribution a newly developed elearning environment is presented, which incorporates Intelligent Agents and Computational Intelligence Techniques. The new e-learning environment is constituted by three parts, the E-learning platform Front-End, the Student Questioner Reasoning and the Student Model Agent. These parts are distributed geographically in dispersed computer servers, with main focus on the design and development of these subsystems through the use of new and emerging technologies. These parts are interconnected in an interoperable way, using web services for the integration of the subsystems, in order to enhance the user modelling procedure and achieve the goals of the learning process.
Keywords: E-learning environments, intelligent agents, user modeling, Bayesian Networks, computational intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18822761 Automatically-generated Concept Maps as a Learning Tool
Authors: Xia Lin
Abstract:
Concept maps can be generated manually or automatically. It is important to recognize differences of the two types of concept maps. The automatically generated concept maps are dynamic, interactive, and full of associations between the terms on the maps and the underlying documents. Through a specific concept mapping system, Visual Concept Explorer (VCE), this paper discusses how automatically generated concept maps are different from manually generated concept maps and how different applications and learning opportunities might be created with the automatically generated concept maps. The paper presents several examples of learning strategies that take advantages of the automatically generated concept maps for concept learning and exploration.Keywords: Concept maps, Dynamic concept representation, learning strategies, visual interface, Visual Concept Explorer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15142760 Implementation of Channel Estimation and Timing Synchronization Algorithms for MIMO-OFDM System Using NI USRP 2920
Authors: Ali Beydoun, Hamzé H. Alaeddine
Abstract:
MIMO-OFDM communication system presents a key solution for the next generation of mobile communication due to its high spectral efficiency, high data rate and robustness against multi-path fading channels. However, MIMO-OFDM system requires a perfect knowledge of the channel state information and a good synchronization between the transmitter and the receiver to achieve the expected performances. Recently, we have proposed two algorithms for channel estimation and timing synchronization with good performances and very low implementation complexity compared to those proposed in the literature. In order to validate and evaluate the efficiency of these algorithms in real environments, this paper presents in detail the implementation of 2 × 2 MIMO-OFDM system based on LabVIEW and USRP 2920. Implementation results show a good agreement with the simulation results under different configuration parameters.Keywords: MIMO-OFDM system, timing synchronization, channel estimation, STBC, USRP 2920.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8462759 Stock Movement Prediction Using Price Factor and Deep Learning
Abstract:
The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.
Keywords: Classification, machine learning, time representation, stock prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11552758 Feature Weighting and Selection - A Novel Genetic Evolutionary Approach
Authors: Serkawt Khola
Abstract:
A feature weighting and selection method is proposed which uses the structure of a weightless neuron and exploits the principles that govern the operation of Genetic Algorithms and Evolution. Features are coded onto chromosomes in a novel way which allows weighting information regarding the features to be directly inferred from the gene values. The proposed method is significant in that it addresses several problems concerned with algorithms for feature selection and weighting as well as providing significant advantages such as speed, simplicity and suitability for real-time systems.Keywords: Feature weighting, genetic algorithm, pattern recognition, weightless neuron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18582757 Learning Process Enhancement for Robot Behaviors
Authors: Saeed Mohammed Baneamoon, Rosalina Abdul Salam, Abdullah Zawawi Hj. Talib
Abstract:
Designing a simulated system and training it to optimize its tasks in simulated environment helps the designers to avoid problems that may appear when designing the system directly in real world. These problems are: time consuming, high cost, high errors percentage and low efficiency and accuracy of the system. The proposed system will investigate and improve the efficiency and accuracy of a simulated robot to choose correct behavior to perform its task. In this paper, machine learning, which uses genetic algorithm, is adopted. This type of machine learning is called genetic-based machine learning in which a distributed classifier system is used to improve the efficiency and accuracy of the robot. Consequently, it helps the robot to achieve optimal action.Keywords: Machine Learning, Genetic-Based MachineLearning, Learning Classifier System, Behaviors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15292756 An Augmented-Reality Interactive Card Game for Teaching Elementary School Students
Authors: YuLung Wu, YuTien Wu, ShuMey Yu
Abstract:
Game-based learning can enhance the learning motivation of students and provide a means for them to learn through playing games. This study used augmented reality technology to develop an interactive card game as a game-based teaching aid for delivering elementary school science course content with the aim of enhancing student learning processes and outcomes. Through playing the proposed card game, students can familiarize themselves with appearance, features, and foraging behaviors of insects. The system records the actions of students, enabling teachers to determine their students’ learning progress. In this study, 37 students participated in an assessment experiment and provided feedback through questionnaires. Their responses indicated that they were significantly more motivated to learn after playing the game, and their feedback was mostly positive.Keywords: Game-based learning, learning motivation, teaching aid, augmented reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26632755 A Family of Distributions on Learnable Problems without Uniform Convergence
Authors: César Garza
Abstract:
In supervised binary classification and regression problems, it is well-known that learnability is equivalent to uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.
Keywords: Statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3582754 E-Education in Multicultural Setting: The Success of Mobile Learning
Authors: Subramaniam Chandran
Abstract:
This paper explains how mobile learning assures sustainable e-education for multicultural group of students. This paper reports the impact of mobile learning on distance education in multicultural environment. The emergence of learning technologies through CD, internet, and mobile is increasingly adopted by distance institutes for quick delivery and cost-effective purposes. Their sustainability is conditioned by the structure of learners as well as the teaching community. The experimental study was conducted among the distant learners of Vinayaka Missions University located at Salem in India. Students were drawn from multicultural environment based on different languages, religions, class and communities. During the mobile learning sessions, the students, who are divided on language, religion, class and community, were dominated by play impulse rather than study anxiety or cultural inhibitions. This study confirmed that mobile learning improved the performance of the students despite their division based on region, language or culture. In other words, technology was able to transcend the relative deprivation in the multicultural groups. It also confirms sustainable e-education through mobile learning and cost-effective system of instruction. Mobile learning appropriates the self-motivation and play impulse of the young learners in providing sustainable e-education to multicultural social groups of students.
Keywords: E-Education, mobile learning, multiculturalism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20522753 The Use of a Tactical Simulator as a Learning Resource at the Norwegian Military Academy
Authors: O. Boe, A. Langaard Jensen
Abstract:
The Norwegian Military Academy (Army) has been using a tactical simulator for the last two years. During this time there has been some discussion concerning how to use the simulator most efficiently and what type of learning one achieves by using the simulator. The problem that is addressed in this paper is how simulators can be used as a learning resource for students concerned with developing their military profession. The aim of this article is to create a wider consciousness regarding the use of a simulator while educating officers in a military profession. The article discusses the use of simulators from two different perspectives. The first perspective deals with using the simulator as a computer game, and the second perspective looks at the simulator as a socio-cultural artefact. Furthermore the article discusses four different ways the simulator can be looked upon as a useful learning resource when educating students of a military profession.Keywords: Learning, military, profession, simulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12192752 Development and Usability Evaluation of Platform Independent Mobile Learning Tool(M-LT)
Authors: Sahilu Wendeson Sahilu, Wan Fatimah Wan Ahmad, Nazleeni Samiha Haron
Abstract:
Mobile learning (M-learning) integrates mobile devices and wireless computing technology to enhance the current conventional learning system. However, there are constraints which are affecting the implementation of platform and device independent M-learning. The main aim of this research is to fulfill the following main objectives: to develop platform independent mobile learning tool (M-LT) for structured programming course, and evaluate its effectiveness and usability using ADDIE instructional design model (ISD) as M-LT life cycle. J2ME (Java 2 micro edition) and XML (Extensible Markup Language) were used to develop platform independent M-LT. It has two modules lecture materials and quizzes. This study used Quasi experimental design to measure effectiveness of the tool. Meanwhile, questionnaire is used to evaluate the usability of the tool. Finally, the results show that the system was effective and also usability evaluation was positive.Keywords: ADDIE, Conventional learning, ISD, J2ME, Mlearning, Quasi Experiment, Wireless Technology, XML
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17202751 Evolving a Fuzzy Rule-Base for Image Segmentation
Abstract:
A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live together in colonies. We use comprehensive learning particle swarm optimization (CLPSO) technique to find optimal fuzzy rules and membership functions because it discourages premature convergence. Here each particle of the swarm codes a set of fuzzy rules. During evolution, a population member tries to maximize a fitness criterion which is here high classification rate and small number of rules. Finally, particle with the highest fitness value is selected as the best set of fuzzy rules for image segmentation. Our results, using this method for soccer field image segmentation in Robocop contests shows 89% performance. Less computational load is needed when using this method compared with other methods like ANFIS, because it generates a smaller number of fuzzy rules. Large train dataset and its variety, makes the proposed method invariant to illumination noiseKeywords: Comprehensive learning Particle Swarmoptimization, fuzzy classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19602750 The Effects of the Inference Process in Reading Texts in Arabic
Authors: May George
Abstract:
Inference plays an important role in the learning process and it can lead to a rapid acquisition of a second language. When learning a non-native language i.e., a critical language like Arabic, the students depend on the teacher’s support most of the time to learn new concepts. The students focus on memorizing the new vocabulary and stress on learning all the grammatical rules. Hence, the students became mechanical and cannot produce the language easily. As a result, they are unable to predicate the meaning of words in the context by relying heavily on the teacher, in that they cannot link their prior knowledge or even identify the meaning of the words without the support of the teacher. This study explores how the teacher guides students learning during the inference process and what are the processes of learning that can direct student’s inference.Keywords: Inference, Reading, Arabic, and Language Acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20522749 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations
Authors: Gilbert Makanda, Roelf Sypkens
Abstract:
A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.Keywords: Differential equations, knowledge acquisition, least squares nonlinear, dynamical systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9162748 Design of DC Voltage Control for D-STATCOM
Authors: Kittaya Somsai, Thanatchai Kulworawanichpong, Nitus Voraphonpiput
Abstract:
This paper presents the DC voltage control design of D-STATCOM when the D-STATCOM is used for load voltage regulation. Although, the DC voltage can be controlled by active current of the D-STATCOM, reactive current still affects the DC voltage. To eliminate this effect, the control strategy with elimination effect of the reactive current is proposed and the results of the control with and without the elimination the effect of the reactive current are compared. For obtaining the proportional and integral gains of the PI controllers, the symmetrical optimum and genetic algorithms methods are applied. The stability margin of these methods are obtained and discussed in detail. In addition, the performance of the DC voltage control based on symmetrical optimum and genetic algorithms methods are compared. Effectiveness of the controllers designed was verified through computer simulation performed by using Power System Tool Block (PSB) in SIMULINK/MATLAB. The simulation results demonstrated that the DC voltage control proposed is effective in regulating DC voltage when the DSTATCOM is used for load voltage regulation.
Keywords: D-STATCOM, DC voltage control, Symmetrical optimum, Genetic algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50402747 Factors Affecting Happiness Learning of Students of Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Somtop Keawchuer
Abstract:
The objectives of this research are to compare the satisfaction of students, towards the happiness learning, sorted by their personal profiles, and to figure out the factors that affect the students’ happiness learning. This paper used survey method to collect data from 362 students. The survey was mainly conducted in the Faculty of Management Science, Suan Sunandha Rajabhat University, including 3,443 students. The statistics used for interpreting the results included the frequencies, percentages, standard deviations and One-way ANOVA. The findings revealed that the students are aware and satisfaction that all the factors in 3 categories (knowledge, skill and attitude) influence the happiness learning at the highest levels. The comparison of the satisfaction levels of the students toward their happiness learning leads to the results that the students with different genders, ages, years of study, and majors of the study have the similar satisfaction at the high level.
Keywords: Happiness Learning, Satisfaction, Students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39422746 The Para-Universe of Collaborative Group Work in Today-s University Classrooms: Strategies to Help Ensure Success
Authors: Karen Armstrong
Abstract:
Group work, projects and discussions are important components of teacher education courses whether they are face-toface, blended or exclusively online formats. This paper examines the varieties of tasks and challenges with this learning format in a face to face class teacher education class providing specific examples of both failure and success from both the student and instructor perspective. The discussion begins with a brief history of collaborative and cooperative learning, moves to an exploration of the promised benefits and then takes a look at some of the challenges which can arise specifically from the use of new technologies. The discussion concludes with guidelines and specific suggestions.Keywords: collaborative learning, cooperative computersupported collaborative learning (CSCL), e-learning, group dynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15902745 The Effects of a Digital Dialogue Game on Higher Education Students’ Argumentation-Based Learning
Authors: Omid Noroozi
Abstract:
Digital dialogue games have opened up opportunities for learning skills by engaging students in complex problem solving that mimic real world situations, without importing unwanted constraints and risks of the real world. Digital dialogue games can be motivating and engaging to students for fun, creative thinking, and learning. This study explored how undergraduate students engage with argumentative discourse activities which have been designed to intensify debate. A pre-test, post-test design was used with students who were assigned to groups of four and asked to debate a controversial topic with the aim of exploring various 'pros and cons' on the 'Genetically Modified Organisms (GMOs)'. Findings reveal that the Digital dialogue game can facilitate argumentation-based learning. The digital Dialogue game was also evaluated positively in terms of students’ satisfaction and learning experiences.Keywords: Argumentation, dialogue, digital game, learning, motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201