Search results for: flow induced vibration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3142

Search results for: flow induced vibration

2632 Computation of D8 Flow Line at Ron Phibun Area, Nakhon Si Thammarat, Thailand

Authors: O. Boonklong, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

A flow line computational technique based on the D8 method using Mathematica was developed. The technique was applied to Ron Phibun area, Nakhon Si Thammarat Province. This area is highly contaminated with arsenic 3 and 5. It was found that the technique using Mathematica can produce similar results to those obtained from GRASS v 5.0.2.

Keywords: Arsenic contamination, flow line, D8 method, Ron Phibun.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
2631 A Genetic and Simulated Annealing Based Algorithms for Solving the Flow Assignment Problem in Computer Networks

Authors: Tarek M. Mahmoud

Abstract:

Selecting the routes and the assignment of link flow in a computer communication networks are extremely complex combinatorial optimization problems. Metaheuristics, such as genetic or simulated annealing algorithms, are widely applicable heuristic optimization strategies that have shown encouraging results for a large number of difficult combinatorial optimization problems. This paper considers the route selection and hence the flow assignment problem. A genetic algorithm and simulated annealing algorithm are used to solve this problem. A new hybrid algorithm combining the genetic with the simulated annealing algorithm is introduced. A modification of the genetic algorithm is also introduced. Computational experiments with sample networks are reported. The results show that the proposed modified genetic algorithm is efficient in finding good solutions of the flow assignment problem compared with other techniques.

Keywords: Genetic Algorithms, Flow Assignment, Routing, Computer network, Simulated Annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
2630 Free Vibration Analysis of Carbon Nanotube Reinforced Laminated Composite Panels

Authors: B. Ramgopal Reddy, K. Ramji, B. Satyanarayana

Abstract:

In this paper, free vibration analysis of carbon nanotube (CNT) reinforced laminated composite panels is presented. Three types of panels such as flat, concave and convex are considered for study. Numerical simulation is carried out using commercially available finite element analysis software ANSYS. Numerical homogenization is employed to calculate the effective elastic properties of randomly distributed carbon nanotube reinforced composites. To verify the accuracy of the finite element method, comparisons are made with existing results available in the literature for conventional laminated composite panels and good agreements are obtained. The results of the CNT reinforced composite materials are compared with conventional composite materials under different boundary conditions.

Keywords: CNT Reinforced Composite Panels, Effective ElasticProperties, Finite Element Method, Natural Frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3004
2629 Computational Initial Value Method for Vibration Analysis of Symmetrically Laminated Composite Plate

Authors: Ahmed M. Farag, Wael F. Mohamed, Atef A. Ata, Burhamy M. Burhamy

Abstract:

In the present paper, an improved initial value numerical technique is presented to analyze the free vibration of symmetrically laminated rectangular plate. A combination of the initial value method (IV) and the finite differences (FD) devices is utilized to develop the present (IVFD) technique. The achieved technique is applied to the equation of motion of vibrating laminated rectangular plate under various types of boundary conditions. Three common types of laminated symmetrically cross-ply, orthotropic and isotropic plates are analyzed here. The convergence and accuracy of the presented Initial Value-Finite Differences (IVFD) technique have been examined. Also, the merits and validity of improved technique are satisfied via comparing the obtained results with those available in literature indicating good agreements.

Keywords: Free Vibrations, Initial Value, Finite Differences, Laminated plates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530
2628 Flow and Heat Transfer Mechanism Analysis in Outward Convex Asymmetrical Corrugated Tubes

Authors: Huaizhi Han, Bingxi Li, Yurong He, Rushan Bie, Zhao Wu

Abstract:

The flow and heat transfer mechanism in convex corrugated tubes have been investigated through numerical simulations in this paper. Two kinds of tube types named as symmetric corrugated tube (SCT) and asymmetric corrugated tube (ACT) are modeled and studied numerically based on the RST model. The predictive capability of RST model is examined in the corrugation wall in order to check the reliability of RST model under the corrugation wall condition. We propose a comparison between the RST modelling the corrugation wall with existing direct numerical simulation of Maaß C and Schumann U [14]. The numerical results pressure coefficient at different profiles between RST and DNS are well matched. The influences of large corrugation tough radii to heat transfer and flow characteristic had been considered. Flow and heat transfer comparison between SCT and ACT had been discussed. The numerical results show that ACT exhibits higher overall heat transfer performance than SCT.

Keywords: Asymmetric corrugated tube, RST, DNS, flow and heat transfer mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
2627 Unsteady Aerodynamics of Multiple Airfoils in Configuration

Authors: Hossain Aziz, Rinku Mukherjee

Abstract:

A potential flow model is used to study the unsteady flow past two airfoils in configuration, each of which is suddenly set into motion. The airfoil bound vortices are modeled using lumped vortex elements and the wake behind the airfoil is modeled by discrete vortices. This consists of solving a steady state flow problem at each time-step where unsteadiness is incorporated through the “zero normal flow on a solid surface" boundary condition at every time instant. Additionally, along with the “zero normal flow on a solid surface" boundary condition Kelvin-s condition is used to compute the strength of the latest wake vortex shed from the trailing edge of the airfoil. Location of the wake vortices is updated at each time-step to get the wake shape at each time instant. Results are presented to show the effect of airfoil-airfoil interaction and airfoil-wake interaction on the aerodynamic characteristics of each airfoil.

Keywords: Aerodynamics, Airfoils, Configuration, Unsteady.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
2626 Heat Transfer of an Impinging Jet on a Plane Surface

Authors: Jian-Jun Shu

Abstract:

A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.

Keywords: Flux, free impinging jet, solid-surface, uniform wall temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
2625 Numerical Simulations of Cross-Flow around Four Square Cylinders in an In-Line Rectangular Configuration

Authors: Shams Ul Islam, Chao Ying Zhou, Farooq Ahmad

Abstract:

A two-dimensional numerical simulation of crossflow around four cylinders in an in-line rectangular configuration is studied by using the lattice Boltzmann method (LBM). Special attention is paid to the effect of the spacing between the cylinders. The Reynolds number ( Re ) is chosen to be e 100 R = and the spacing ratio L / D is set at 0.5, 1.5, 2.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0. Results show that, as in the case of four cylinders in an inline rectangular configuration , flow fields show four different features depending on the spacing (single square cylinder, stable shielding flow, wiggling shielding flow and a vortex shedding flow) are observed in this study. The effects of spacing ratio on physical quantities such as mean drag coefficient, Strouhal number and rootmean- square value of the drag and lift coefficients are also presented. There is more than one shedding frequency at small spacing ratios. The mean drag coefficients for downstream cylinders are less than that of the single cylinder for all spacing ratios. The present results using the LBM are compared with some existing experimental data and numerical studies. The comparison shows that the LBM can capture the characteristics of the bluff body flow reasonably well and is a good tool for bluff body flow studies.

Keywords: Four square cylinders, Lattice Boltzmann method, rectangular configuration, spacing ratios, vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2701
2624 Development of an Artificial Ear for Bone-Conducted Objective Occlusion Measurement

Authors: Yu Luan

Abstract:

The bone-conducted objective occlusion effect (OE) is characterized by a discomforting sensation of fullness experienced in an occluded ear. This phenomenon arises from various external stimuli, such as human speech, chewing, and walking, which generate vibrations transmitted through the body to the ear canal walls. The bone-conducted OE occurs due to the pressure build-up inside the occluded ear caused by sound radiating into the ear canal cavity from its walls. In the hearing aid industry, artificial ears are utilized as a tool for developing hearing aids. However, the currently available commercial artificial ears primarily focus on pure acoustics measurements, neglecting the bone-conducted vibration aspect. This research endeavors to develop an artificial ear specifically designed for bone-conducted occlusion measurements. Finite Element Analysis (FEA) modeling has been employed to gain insights into the behavior of the artificial ear.

Keywords: Artificial ear, bone conducted vibration, occlusion measurement, Finite Element Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187
2623 Analysis of Slip Flow Heat Transfer between Asymmetrically Heated Parallel Plates

Authors: Hari Mohan Kushwaha, Santosh K. Sahu

Abstract:

In the present study, analysis of heat transfer is carried out in the slip flow region for the fluid flowing between two parallel plates by employing the asymmetric heat fluxes at surface of the plates. The flow is assumed to be hydrodynamically and thermally fully developed for the analysis. The second order velocity slip and viscous dissipation effects are considered for the analysis. Closed form expressions are obtained for the Nusselt number as a function of Knudsen number and modified Brinkman number. The limiting condition of the present prediction for Kn = 0, Kn2 = 0, and Brq1 = 0 is considered and found to agree well with other analytical results.

Keywords: Knudsen Number, Modified Brinkman Number, Slip Flow, Velocity Slip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
2622 Unsteady Laminar Boundary Layer Forced Flow in the Region of the Stagnation Point on a Stretching Flat Sheet

Authors: A. T. Eswara

Abstract:

This paper analyses the unsteady, two-dimensional stagnation point flow of an incompressible viscous fluid over a flat sheet when the flow is started impulsively from rest and at the same time, the sheet is suddenly stretched in its own plane with a velocity proportional to the distance from the stagnation point. The partial differential equations governing the laminar boundary layer forced convection flow are non-dimensionalised using semi-similar transformations and then solved numerically using an implicit finitedifference scheme known as the Keller-box method. Results pertaining to the flow and heat transfer characteristics are computed for all dimensionless time, uniformly valid in the whole spatial region without any numerical difficulties. Analytical solutions are also obtained for both small and large times, respectively representing the initial unsteady and final steady state flow and heat transfer. Numerical results indicate that the velocity ratio parameter is found to have a significant effect on skin friction and heat transfer rate at the surface. Furthermore, it is exposed that there is a smooth transition from the initial unsteady state flow (small time solution) to the final steady state (large time solution).

Keywords: Forced flow, Keller-box method, Stagnation point, Stretching flat sheet, Unsteady laminar boundary layer, Velocity ratio parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
2621 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series

Authors: Mohammad H. Fattahi

Abstract:

Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. Noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.

Keywords: Chaotic behavior, wavelet, noise reduction, river flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
2620 Convective Heat Transfer of Viscoelastic Flow in a Curved Duct

Authors: M. Norouzi, M. H. Kayhani, M. R. H. Nobari, M. Karimi Demneh

Abstract:

In this paper, fully developed flow and heat transfer of viscoelastic materials in curved ducts with square cross section under constant heat flux have been investigated. Here, staggered mesh is used as computational grids and flow and heat transfer parameters have been allocated in this mesh with marker and cell method. Numerical solution of governing equations has being performed with FTCS finite difference method. Furthermore, Criminale-Eriksen- Filbey (CEF) constitutive equation has being used as viscoelastic model. CEF constitutive equation is a suitable model for studying steady shear flow of viscoelastic materials which is able to model both effects of the first and second normal stress differences. Here, it is shown that the first and second normal stresses differences have noticeable and inverse effect on secondary flows intensity and mean Nusselt number which is the main novelty of current research.

Keywords: Viscoelastic, fluid flow, heat convection, CEF model, curved duct, square cross section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
2619 GRCNN: Graph Recognition Convolutional Neural Network for Synthesizing Programs from Flow Charts

Authors: Lin Cheng, Zijiang Yang

Abstract:

Program synthesis is the task to automatically generate programs based on user specification. In this paper, we present a framework that synthesizes programs from flow charts that serve as accurate and intuitive specification. In order doing so, we propose a deep neural network called GRCNN that recognizes graph structure from its image. GRCNN is trained end-to-end, which can predict edge and node information of the flow chart simultaneously. Experiments show that the accuracy rate to synthesize a program is 66.4%, and the accuracy rates to recognize edge and node are 94.1% and 67.9%, respectively. On average, it takes about 60 milliseconds to synthesize a program.

Keywords: program synthesis, flow chart, specification, graph recognition, CNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821
2618 Quantifying Freeway Capacity Reductions by Rainfall Intensities Based on Stochastic Nature of Flow Breakdown

Authors: Hoyoung Lee, Dong-Kyu Kim, Seung-Young Kho, R. Eddie Wilson

Abstract:

This study quantifies a decrement in freeway capacity during rainfall. Traffic and rainfall data were gathered from Highway Agencies and Wunderground weather service. Three inter-urban freeway sections and its nearest weather stations were selected as experimental sites. Capacity analysis found reductions of maximum and mean pre-breakdown flow rates due to rainfall. The Kruskal-Wallis test also provided some evidence to suggest that the variance in the pre-breakdown flow rate is statistically insignificant. Potential application of this study lies in the operation of real time traffic management schemes such as Variable Speed Limits (VSL), Hard Shoulder Running (HSR), and Ramp Metering System (RMS), where speed or flow limits could be set based on a number of factors, including rainfall events and their intensities.

Keywords: Capacity randomness, flow breakdown, freeway capacity, rainfall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
2617 Fibers Presence Effects on Air Flow of Attenuator of Spun-Bond Production System

Authors: Nasser Ghassembaglou, Abdullah Bolek, Oktay Yilmaz, Ertan Oznergiz, Hikmet Kocabas, Safak Yilmaz

Abstract:

Different designs of attenuator systems have been studied in this research; new analysis have been done on existed designs considering fibers effect on air flow; it was comprehended that, at fibers presence, there is an air flow which agglomerates fibers as a negative effect. So some new representations have been designed and CFD analysis has been done on them. Afterwards, one of these representations selected as the most optimum and effective design which is brought in this paper.

Keywords: Attenuator, CFD, nanofiber, spun-bond.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
2616 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation

Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi

Abstract:

This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.

Keywords: Fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
2615 Performance Analysis of Fuzzy Logic Based Unified Power Flow Controller

Authors: Lütfü Saribulut, Mehmet Tümay, İlyas Eker

Abstract:

FACTS devices are used to control the power flow, to increase the transmission capacity and to optimize the stability of the power system. One of the most widely used FACTS devices is Unified Power Flow Controller (UPFC). The controller used in the control mechanism has a significantly effects on controlling of the power flow and enhancing the system stability of UPFC. According to this, the capability of UPFC is observed by using different control mechanisms based on P, PI, PID and fuzzy logic controllers (FLC) in this study. FLC was developed by taking consideration of Takagi- Sugeno inference system in the decision process and Sugeno-s weighted average method in the defuzzification process. Case studies with different operating conditions are applied to prove the ability of UPFC on controlling the power flow and the effectiveness of controllers on the performance of UPFC. PSCAD/EMTDC program is used to create the FLC and to simulate UPFC model.

Keywords: FACTS, Fuzzy Logic Controller, UPFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2882
2614 Symmetrical In-Plane Resonant Gyroscope with Decoupled Modes

Authors: Shady Sayed, Samer Wagdy, Ahmed Badawy, Moutaz M. Hegaze

Abstract:

A symmetrical single mass resonant gyroscope is discussed in this paper. The symmetrical design allows matched resonant frequencies for driving and sensing vibration modes, which leads to amplifying the sensitivity of the gyroscope by the mechanical quality factor of the sense mode. It also achieves decoupled vibration modes for getting a low zero-rate output shift and more stable operation environment. A new suspension beams design is developed to get a symmetrical gyroscope with matched and decoupled modes at the same time. Finite element simulations are performed using ANSYS software package to verify the theoretical calculations. The gyroscope is fabricated from aluminum alloy 2024 substrate, the measured drive and sense resonant frequencies of the fabricated model are matched and equal 81.4 Hz with 5.7% error from the simulation results.

Keywords: Decoupled mode shapes, resonant sensor, symmetrical gyroscope, finite element simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135
2613 Camel Thorn Has Hepatoprotective Activity against Carbon Tetrachloride or Acetaminophen Induced Hepatotoxicity, but Enhances the Cardiac Toxicity of Adriamycin in Rodents

Authors: A. G. Abdellatif, H. M.Gargoum, A. A. Debani, M. Bengleil, S. Alshalmani, N. El Zuki, O. El Fitouri

Abstract:

In this study the administration of 660 mg/kg of the ethanolic extract of the Alhagigraecorum (Camel Thorn)to mice, showed a significant decrease in the level of transaminases in animals treated with a combination of CTE plus carbon tetrachloride (CCl4) or acetaminophen as compared to animals receiving CCl4 or acetaminophen alone. Histopatological investigation also confirmed that, camel thorn extract protects liver against damage-induced either by carbon tetrachloride or acetaminophen. On the other hand the cardiac toxicity produced by adriamycine was significantly increased in the presence of the ethanolic extract of camel thorn. Our study suggested that camel thorn can protect the liver against the injury produced by carbon tetrachloride or acetaminophen, with unexpected increase in the cardiac toxicity –induced by adriamycin in rodents.

Keywords: Acetaminophen, Adriamycin, Alhagi graecorum, Carbon tetrachloride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
2612 Temperature Dependent Interaction Energies among X (=Ru, Rh) Impurities in Pd-Rich PdX Alloys

Authors: M. Asato, C. Liu, N. Fujima, T. Hoshino, Y. Chen, T. Mohri

Abstract:

We study the temperature dependence of the interaction energies (IEs) of X (=Ru, Rh) impurities in Pd, due to the Fermi-Dirac (FD) distribution and the thermal vibration effect by the Debye-Grüneisen model. The n-body (n=2~4) IEs among X impurities in Pd, being used to calculate the internal energies in the free energies of the Pd-rich PdX alloys, are determined uniquely and successively from the lower-order to higher-order, by the full-potential Korringa-Kohn-Rostoker Green’s function method (FPKKR), combined with the generalized gradient approximation in the density functional theory. We found that the temperature dependence of IEs due to the FD distribution, being usually neglected, is very important to reproduce the X-concentration dependence of the observed solvus temperatures of the Pd-rich PdX (X=Ru, Rh) alloys.

Keywords: Full-potential KKR-Green’s function method, Fermi-Dirac distribution, GGA, phase diagram of Pd-rich PdX (X=Ru, Rh) alloys, thermal vibration effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
2611 Computational Simulation of Turbulence Heat Transfer in Multiple Rectangular Ducts

Authors: Azli Abd. Razak, Yusli Yaakob, Mohd Nazir Ramli

Abstract:

This study comprehensively simulate the use of k-ε model for predicting flow and heat transfer with measured flow field data in a stationary duct with elucidates on the detailed physics encountered in the fully developed flow region, and the sharp 180° bend region. Among the major flow features predicted with accuracy are flow transition at the entrance of the duct, the distribution of mean and turbulent quantities in the developing, fully developed, and sharp 180° bend, the development of secondary flows in the duct cross-section and the sharp 180° bend, and heat transfer augmentation. Turbulence intensities in the sharp 180° bend are found to reach high values and local heat transfer comparisons show that the heat transfer augmentation shifts towards the wall and along the duct. Therefore, understanding of the unsteady heat transfer in sharp 180° bends is important. The design and simulation are related to concept of fluid mechanics, heat transfer and thermodynamics. Simulation study has been conducted on the response of turbulent flow in a rectangular duct in order to evaluate the heat transfer rate along the small scale multiple rectangular duct

Keywords: Heat transfer, turbulence, rectangular duct, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
2610 The Effect of Ultrasonic Vibration of Workpiece in Electrical Discharge Machining of AISIH13 Tool Steel

Authors: M. R. Shabgard, B. Sadizadeh, H. Kakoulvand

Abstract:

In the present work, a study has been made on the combination of the electrical discharge machining (EDM) with ultrasonic vibrations to improve the machining efficiency. In experiments the graphite used as tool electrode and material of workpiece was AISIH13 tool steel. The parameters such as discharge peak current and pulse duration were changed to explore their effect on the material removal rate (MRR), relative tool wear ratio (TWR) and surface roughness. From the experimental result it can be seen that ultrasonic vibration of the workpiece can significantly reduces the inactive pulses and improves the stability of process. It was found that ultrasonic assisted EDM (US-EDM) is effective in attaining a high material removal rate (MRR) in finishing regime.

Keywords: AISIH13 tool steel, Electrical discharge machining(EDM), Material removal rate (MRR), Surface roughness (Ra), Toolwear ratio (TWR), Ultrasonic assisted EDM (US-EDM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3944
2609 Deoiling Hydrocyclones Flow Field-A Comparison between k-Epsilon and LES

Authors: Maysam Saidi, Reza Maddahian, Bijan Farhanieh

Abstract:

In this research a comparison between k-epsilon and LES model for a deoiling hydrocyclone is conducted. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Potential of prediction for both methods of this complex swirl flow is discussed. Large eddy simulation method results have more similarity to experiment and its results are presented in figures from different hydrocyclone cross sections.

Keywords: Deoiling hydrocyclones, k-epsilon model, Largeeddy simulation, OpenFOAM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
2608 Quantitative Estimation of Periodicities in Lyari River Flow Routing

Authors: Rana Khalid Naeem, Asif Mansoor

Abstract:

The hydrologic time series data display periodic structure and periodic autoregressive process receives considerable attention in modeling of such series. In this communication long term record of monthly waste flow of Lyari river is utilized to quantify by using PAR modeling technique. The parameters of model are estimated by using Frances & Paap methodology. This study shows that periodic autoregressive model of order 2 is the most parsimonious model for assessing periodicity in waste flow of the river. A careful statistical analysis of residuals of PAR (2) model is used for establishing goodness of fit. The forecast by using proposed model confirms significance and effectiveness of the model.

Keywords: Diagnostic checks, Lyari river, Model selection, Monthly waste flow, Periodicity, Periodic autoregressive model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
2607 Effect of Water- Cement Ratio (w/c) on Mechanical Properties of Self-Compacting Concrete (Case Study)

Authors: Hamed Ahmadi Moghadam, Omolbanin Arasteh Khoshbin

Abstract:

Nowadays, the performance required for concrete structures is more complicated and diversified. Self-compacting concrete is a fluid mixture suitable for placing in structures with congested reinforcement without vibration. Self-compacting concrete development must ensure a good balance between deformability and stability. Also, compatibility is affected by the characteristics of materials and the mix proportions; it becomes necessary to evolve a procedure for mix design of SCC. This paper presents an experimental procedure for the design of self-compacting concrete mixes with different water-cement ratios (w/c) and other constant ratios by local materials. The test results for acceptance characteristics of self-compacting concrete such as slump flow, V-funnel and L-Box are presented. Further, compressive strength, tensile strength and modulus of elasticity of specimens were also determined and results are included here

Keywords: Self-Compacting Concrete, Mix Design, Compressive Strength, Tensile Strength, Modulus of Elasticity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5587
2606 Behavior of Droplets in Microfluidic System with T-Junction

Authors: A. Guellati, F-M Lounis, N. Guemras, K. Daoud

Abstract:

Micro droplet formation is considered as a growing emerging area of research due to its wide-range application in chemistry as well as biology. The mechanism of micro droplet formation using two immiscible liquids running through a T-junction has been widely studied. We believe that the flow of these two immiscible phases can be of greater important factor that could have an impact on out-flow hydrodynamic behavior, the droplets generated and the size of the droplets. In this study, the type of the capillary tubes used also represents another important factor that can have an impact on the generation of micro droplets. The tygon capillary tubing with hydrophilic inner surface doesn't allow regular out-flows due to the fact that the continuous phase doesn't adhere to the wall of the capillary inner surface. Teflon capillary tubing, presents better wettability than tygon tubing, and allows to obtain steady and regular regimes of out-flow, and the micro droplets are homogeneoussize. The size of the droplets is directly dependent on the flows of the continuous and dispersed phases. Thus, as increasing the flow of the continuous phase, to flow of the dispersed phase stationary, the size of the drops decreases. Inversely, while increasing the flow of the dispersed phase, to flow of the continuous phase stationary, the size of the droplet increases.

Keywords: Microfluidic system, micro droplets generation, T-junction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
2605 Non-Linear Vibration and Stability Analysis of an Axially Moving Beam with Rotating-Prismatic Joint

Authors: M. Najafi, F. Rahimi Dehgolan

Abstract:

In this paper, the dynamic modeling of a single-link flexible beam with a tip mass is given by using Hamilton's principle. The link has been rotational and translational motion and it was assumed that the beam is moving with a harmonic velocity about a constant mean velocity. Non-linearity has been introduced by including the non-linear strain to the analysis. Dynamic model is obtained by Euler-Bernoulli beam assumption and modal expansion method. Also, the effects of rotary inertia, axial force, and associated boundary conditions of the dynamic model were analyzed. Since the complex boundary value problem cannot be solved analytically, the multiple scale method is utilized to obtain an approximate solution. Finally, the effects of several conditions on the differences among the behavior of the non-linear term, mean velocity on natural frequencies and the system stability are discussed.

Keywords: Non-linear vibration, stability, axially moving beam, bifurcation, multiple scales method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
2604 Numerical Investigation of the Effect of Flow and Heat Transfer of a Semi-Cylindrical Obstacle Located in a Channel

Authors: Omer F. Can, Nevin Celik

Abstract:

In this study, a semi-cylinder obstacle placed in a channel is handled to determine the effect of flow and heat transfer around the obstacle. Both faces of the semi-cylinder are used in the numerical analysis. First, the front face of the semi-cylinder is stated perpendicular to flow, than the rear face is placed. The study is carried out numerically, by using commercial software ANSYS 11.0. The well-known κ-ε model is applied as the turbulence model. Reynolds number is in the range of 104 to 105 and air is assumed as the flowing fluid. The results showed that, heat transfer increased approximately 15 % in the front faze case, while it enhanced up to 28 % in the rear face case.

Keywords: External flow, semi-cylinder obstacle, heat transfer, friction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3182
2603 Singular Value Decomposition Based Optimisation of Design Parameters of a Gearbox

Authors: Mehmet Bozca

Abstract:

Singular value decomposition based optimisation of geometric design parameters of a 5-speed gearbox is studied. During the optimisation, a four-degree-of freedom torsional vibration model of the pinion gear-wheel gear system is obtained and the minimum singular value of the transfer matrix is considered as the objective functions. The computational cost of the associated singular value problems is quite low for the objective function, because it is only necessary to compute the largest and smallest singular values (μmax and μmin) that can be achieved by using selective eigenvalue solvers; the other singular values are not needed. The design parameters are optimised under several constraints that include bending stress, contact stress and constant distance between gear centres. Thus, by optimising the geometric parameters of the gearbox such as, the module, number of teeth and face width it is possible to obtain a light-weight-gearbox structure. It is concluded that the all optimised geometric design parameters also satisfy all constraints.

Keywords: Singular value, optimisation, gearbox, torsional vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946