Camel Thorn Has Hepatoprotective Activity against Carbon Tetrachloride or Acetaminophen Induced Hepatotoxicity, but Enhances the Cardiac Toxicity of Adriamycin in Rodents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Camel Thorn Has Hepatoprotective Activity against Carbon Tetrachloride or Acetaminophen Induced Hepatotoxicity, but Enhances the Cardiac Toxicity of Adriamycin in Rodents

Authors: A. G. Abdellatif, H. M.Gargoum, A. A. Debani, M. Bengleil, S. Alshalmani, N. El Zuki, O. El Fitouri

Abstract:

In this study the administration of 660 mg/kg of the ethanolic extract of the Alhagigraecorum (Camel Thorn)to mice, showed a significant decrease in the level of transaminases in animals treated with a combination of CTE plus carbon tetrachloride (CCl4) or acetaminophen as compared to animals receiving CCl4 or acetaminophen alone. Histopatological investigation also confirmed that, camel thorn extract protects liver against damage-induced either by carbon tetrachloride or acetaminophen. On the other hand the cardiac toxicity produced by adriamycine was significantly increased in the presence of the ethanolic extract of camel thorn. Our study suggested that camel thorn can protect the liver against the injury produced by carbon tetrachloride or acetaminophen, with unexpected increase in the cardiac toxicity –induced by adriamycin in rodents.

Keywords: Acetaminophen, Adriamycin, Alhagi graecorum, Carbon tetrachloride.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1091538

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883

References:


[1] Friedman, Scott E.; Grendell, James H.; McQuaid, Kenneth R. (2003). Current Diagnosis &Treatment in Gastroenterology. New York: Lang Medical Books/McGraw-Hill, p664-679.
[2] Bénichou C (1990). "Criteria of Drug-Induced Liver Disorders. Report of an International Consensus Meeting". J. Hepatol. 11 (2): 272–6.
[3] Mumoli N, Cei M, &Cosimi A (2006). "Drug-Related Hepatotoxicity". N. Engl. J. Med. 354 (20): 2191-3; author reply 2191-3
[4] Singh B.,.Saxena A.K, Chandan B.K.,Anand K.K, Suri O.P., Suri K.A. and Satti N.K., HepatoprotectiveActivity of Verbenalinon Experimental Liver Damage in Rodents. Fitoterapia., 59(2), 1998, 135-140.
[5] Sibel K. and Canan K., The Protective Effects of Achillea L. Species Native in Turkey against H2O2 - Induced Oxidative Damage in Human Erythrocytes and Leucocytes. J. Ethnopharmacol., 102, 2005, 221- 227.
[6] Raju R.W., Radhika S.S., Kunal Mahesh T.,Kalpana S.P., Sunil S.J., (2008,. Screening of Roots of Baliospermummontanum for Hepatoprotective Activity against Paracetamol- Induced Liver Damage in Albino Rats. Int.. J. Green Pharm. October-December,220-223.
[7] Singal A. and Kumar V.I., Effect of Aqueous Suspension of Dried Latex of Calotropisprocera on Hepatorenal Functions in rat, J.Ethnopharmacol., 122, 2009, 172- 174.
[8] Sisodia S.S. and Bhatnagar M.,HepatoprotectiveActivity of Eugeniajambolana Lam. in Carbon Tetrachloride Treated Rats. Indian J. Pharmacol. 41(1), 2009,23-27.
[9] Pushpalatha M and Ananthi T (2012) Protective Effect of SolanumpubescensLINN on CCl4Induced Hepatotoxicity in Albino Rats.Mintage Journal of Pharmaceutical and Medicinal Science, Vol 1, Issue 1, page 11-13.
[10] Formica J.V. and Regelson W., Review of the Biology of Quercetinand RelatedBioflavonoids. Food Chem. Toxicol., 33 (12),1995, 1061-1080.
[11] Rice-Evans, C., Miller N. and PagangaG., AntioxidantProperties of PhenolicCompounds. Trends in Plant Sci., 2 (4), 1997,154-159.
[12] Xiao-feng Jin, JieQian, and Yan-hua Lu (2011). The Role of Hepatoprotective Effect of a Flavonoid-Rich Extract of Salvia plebeia R.Br. on Carbon TetrachlorideInduced Acute Hepatic Injury in Mice J. Med. Plant. Res. Vol. 5(9), pp. 1558-1563
[13] Bergmeyer HU, Herder M, and Rej R. (1986) Approved Recommendation 1985) on IFCC Method for Measurement of Catalytic Concentration of Enzyme. Part 2. (IFCC Method for Aspartate Aminotransferase). J ClinChem Biochem;24:49
[14] Szasz G, Gruber W, andbernt E (1976) Creatine Kinase in Serum: 1. Determination of Optimum Reaction Conditions.Clin Chem. 22(5):650-6
[15] Wacker, W.E.C., Ulmer, D.D., and Valu D.D. (1956), Metalloenzymes and Myocardial Infarction. II Malic and Lactic Dehydrogenase Activities and Zinc Concentrations in Serum. New Engl. J. Med., 225: 449-454
[16] Zidek N, Hellmann J, Kramer PJ, & Hewitt PG (2007). Acute Hepatotoxicity: A Predictive Model Based On Focused Illumina Microarrays. Toxicol Sci. Sep; 99(1):289-302.
[17] Bhattacharyya D, Mukherjee R, Pandit S, Das N, and Sur TK. (2003)a. HepatoprotectiveEffect of Himoliv, a Polyherbal Formulation. Indian J Pharmacol;47:435-40.
[18] Bhattacharyya D, Mukherjee R, Pandit S, Das N, and Sur TK. (2003)b. Prevention of Carbon Tetrachloride Induced Hepatotoxicity in Rat by Himoliv, a Polyherbal Formulation. Indian J Pharmacol;35:183-5.
[19] Noguchi T, Fong KL, Lai EK, Alexander SS, King MM, Olson L, Poyer JL, &Mccay PB.(1982). Specificity of Aphenobarbital-Induced Cytochrome P450 for Metabolism of Carbontetrachlorideto the Trichloromethyl Radical. Biochem Pharmacol.;31: (82) 440-443.
[20] Slater, T.F., K.H. Cheeseman and Ingold K.U. (1985). Carbon Tetrachloride Toxicity as a Model for Studying Free-Radical Mediated Liver Injury. Philosophical Transactions of the Royal Society of London-Series B: Biol. Sci. 311(1152): 633-645
[21] Clawson, G.A. (1989) Mechanisms of Carbon Tetrachloride Hepatotoxicity. Pathol. Immunopath. Res. 8(2): 104-112.
[22] Weber, L. W., Boll, M., and Stampfl, A. (2003). Hepatotoxicity and Mechanism of Action of Haloalkanes: Carbon Tetrachloride as a Toxicological Model. Crit. Rev. Toxicol. 33, 105–136.
[23] Nelson, S.D. (1990). Molecular Mechanisms of Hepatotoxicity Caused by Acetaminophen. Semin. Liver Dis. 10(4): 267-278
[24] Umack B H (2002) Acetaminophen Hepatotoxicity:The First 35 Year. Clinical Toxicology 40(1), 3-20.
[25] Miller, M.G. and Jollow D.J (1987). Relationship between SulfotransferaseActivity and Susceptibility to Acetaminophen-Induced Liver Necrosis in the Hamster. Drug Metab. Dispos. 15(2): 143-150.
[26] Potter, D.W. and J.A. Hinson (1989). Acetaminophen Peroxidation Reactions. Drug Metab. Rev. 20(2-4): 341-358.
[27] Moffit JS, Aleksunes LM, Kardas MJ, Slitt AL, Klaassen CD,&Manautou (2007). JE Role of NAD (P) H:Quinoneoxidoreductase1 in Clofibrate-Mediated Hepatoprotectionfrom Acetaminophen. Toxicology. Feb 12;230(2-3):197-206
[28] ObakJ,&Gryglewski R. J. (1988). Flavonoids as Scavengers of Superoxide Anions. Biochem. Pharmacol. 37:837-841.
[29] Chen Y, Zheng R, Jia Z, &Ju Y, (1990) Flavonoids as Superoxide Scavengers and Antioxidants. Free Radical. Biol med 9:19-21
[30] Sudheesh S, Sandhya C, Asha S,&Vijayalakshmi N.R (1999),Anti- Oxidant Activity of Flavonoids from Solanummelongena. Phytotherapy Research. 13:393-396.
[31] Alessandra B, Chandra S, Matteo P, Ivano M, Jeannette M. (2002) Anti-Oxidant Activity of Flavonoids from Licanialicaniaeflora. Journal of Ethnopharmacology.79:379-381
[32] Singal, P.K. &Iliskovic, N. Doxorubicin-Induced Cardiomyopathy N. Engl. J. Med. 339, 900–905 (1998).
[33] Myers, C. Bonow R, Palmeri S, Jenkins J, Corden B, Locker G, Doroshow J,and Epstein S. (1983). A Randomized Controlled Trial Assessing the Prevention of Doxorubicin Cardiomyopathy by N-AcetylcysteineSeminOncol. 10, 53–55 (1983).
[34] Martin E, Thougaard AV, Grauslund M, Jensen PB, Bjorkling F, Hasinoff BB,(2009). Evaluation of theTopoisomerase II-Inactive BisdioxopiperazineICRF-161 as a Protectant against Doxorubicin-Induced Cardiomyopathy. Toxicology 255(1-2):72-9.
[35] Sui Z, Xiaobing L, Tasneem B, Long-Sheng L, Yi L, Leroy F& Edward T(2012).Identification of the Molecular Basis of Doxorubicin-Induced Cardiotoxicity. Nature Medicine.Vo,l8 , No., 11:1639-1645
[36] Maira S Oliveira, Marcos B Melo, Juliana L Carvalho, Isabela M Melo, Mario SL Lavor, Dawidson A Gomes, Alfredo M de Goes, and Marilia M Melo (2013) Doxorubicin Cardiotoxicity and Cardiac Function Improvement after Stem Cell Therapy Diagnosed by Strain Echocardiography.J.CancerSciTher.; 5(2): 052–057.