Search results for: data grid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7804

Search results for: data grid

7294 Quantitative Precipitation Forecast using MM5 and WRF models for Kelantan River Basin

Authors: Wardah, T., Kamil, A.A., Sahol Hamid, A.B., Maisarah, W.W.I

Abstract:

Quantitative precipitation forecast (QPF) from atmospheric model as input to hydrological model in an integrated hydro-meteorological flood forecasting system has been operational in many countries worldwide. High-resolution numerical weather prediction (NWP) models with grid cell sizes between 2 and 14 km have great potential in contributing towards reasonably accurate QPF. In this study the potential of two NWP models to forecast precipitation for a flood-prone area in a tropical region is examined. The precipitation forecasts produced from the Fifth Generation Penn State/NCAR Mesoscale (MM5) and Weather Research and Forecasting (WRF) models are statistically verified with the observed rain in Kelantan River Basin, Malaysia. The statistical verification indicates that the models have performed quite satisfactorily for low and moderate rainfall but not very satisfactory for heavy rainfall.

Keywords: MM5, Numerical weather prediction (NWP), quantitative precipitation forecast (QPF), WRF

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2930
7293 Collaborative Education Practice in a Data Structure E-Learning Course

Authors: Gang Chen, Ruimin Shen

Abstract:

This paper presented a collaborative education model, which consists four parts: collaborative teaching, collaborative working, collaborative training and interaction. Supported by an e-learning platform, collaborative education was practiced in a data structure e-learning course. Data collected shows that most of students accept collaborative education. This paper goes one step attempting to determine which aspects appear to be most important or helpful in collaborative education.

Keywords: Collaborative work, education, data structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
7292 Solution of Two Dimensional Quasi-Harmonic Equations with CA Approach

Authors: F. Rezaie Moghaddam, J. Amani, T. Rezaie Moghaddam

Abstract:

Many computational techniques were applied to solution of heat conduction problem. Those techniques were the finite difference (FD), finite element (FE) and recently meshless methods. FE is commonly used in solution of equation of heat conduction problem based on the summation of stiffness matrix of elements and the solution of the final system of equations. Because of summation process of finite element, convergence rate was decreased. Hence in the present paper Cellular Automata (CA) approach is presented for the solution of heat conduction problem. Each cell considered as a fixed point in a regular grid lead to the solution of a system of equations is substituted by discrete systems of equations with small dimensions. Results show that CA can be used for solution of heat conduction problem.

Keywords: Heat conduction, Cellular automata, convergencerate, discrete system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
7291 Generic Data Warehousing for Consumer Electronics Retail Industry

Authors: S. Habte, K. Ouazzane, P. Patel, S. Patel

Abstract:

The dynamic and highly competitive nature of the consumer electronics retail industry means that businesses in this industry are experiencing different decision making challenges in relation to pricing, inventory control, consumer satisfaction and product offerings. To overcome the challenges facing retailers and create opportunities, we propose a generic data warehousing solution which can be applied to a wide range of consumer electronics retailers with a minimum configuration. The solution includes a dimensional data model, a template SQL script, a high level architectural descriptions, ETL tool developed using C#, a set of APIs, and data access tools. It has been successfully applied by ASK Outlets Ltd UK resulting in improved productivity and enhanced sales growth.

Keywords: Consumer electronics retail, dimensional data model, data analysis, generic data warehousing, reporting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
7290 An Algebra for Protein Structure Data

Authors: Yanchao Wang, Rajshekhar Sunderraman

Abstract:

This paper presents an algebraic approach to optimize queries in domain-specific database management system for protein structure data. The approach involves the introduction of several protein structure specific algebraic operators to query the complex data stored in an object-oriented database system. The Protein Algebra provides an extensible set of high-level Genomic Data Types and Protein Data Types along with a comprehensive collection of appropriate genomic and protein functions. The paper also presents a query translator that converts high-level query specifications in algebra into low-level query specifications in Protein-QL, a query language designed to query protein structure data. The query transformation process uses a Protein Ontology that serves the purpose of a dictionary.

Keywords: Domain-Specific Data Management, Protein Algebra, Protein Ontology, Protein Structure Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
7289 Utilization of Agro-Industrial Waste in Metal Matrix Composites: Towards Sustainability

Authors: L. Lancaster, M. H. Lung, D. Sujan

Abstract:

The application of agro-industrial waste in Aluminum Metal Matrix Composites has been getting more attention as they can reinforce particles in metal matrix which enhance the strength properties of the composites. In addition, by applying these agroindustrial wastes in useful way not only save the manufacturing cost of products but also reduce the pollutions on environment. This paper represents a literature review on a range of industrial wastes and their utilization in metal matrix composites. The paper describes the synthesis methods of agro-industrial waste filled metal matrix composite materials and their mechanical, wear, corrosion, and physical properties. It also highlights the current application and future potential of agro-industrial waste reinforced composites in aerospace, automotive and other construction industries.

Keywords: Bond layer, Interfacial shear stress, Bi-layered assembly, Thermal mismatch, Flip Chip Ball Grid Array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4586
7288 A Family of Zero Stable Block Integrator for the Solutions of Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations with associated initial or boundary conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different four discrete schemes, each of order (5,5,5,5)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block methods are tested on linear and non-linear ordinary differential equations and the results obtained compared favorably with the exact solution.

Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
7287 A Combined Cipher Text Policy Attribute-Based Encryption and Timed-Release Encryption Method for Securing Medical Data in Cloud

Authors: G. Shruthi, Purohit Shrinivasacharya

Abstract:

The biggest problem in cloud is securing an outsourcing data. A cloud environment cannot be considered to be trusted. It becomes more challenging when outsourced data sources are managed by multiple outsourcers with different access rights. Several methods have been proposed to protect data confidentiality against the cloud service provider to support fine-grained data access control. We propose a method with combined Cipher Text Policy Attribute-based Encryption (CP-ABE) and Timed-release encryption (TRE) secure method to control medical data storage in public cloud.

Keywords: Attribute, encryption, security, trapdoor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
7286 Data Mining Classification Methods Applied in Drug Design

Authors: Mária Stachová, Lukáš Sobíšek

Abstract:

Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.

Keywords: data mining, classification, drug design, QSAR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849
7285 Distortion of Flow Measurement and Cavitation Occurs Due to Orifice Inlet Velocity Profiles

Authors: Byung-Soo Shin, Nam-Seok Kim, Sang-Kyu Lee, O-Hyun Keum

Abstract:

This analysis investigates the distortion of flow measurement and the increase of cavitation along orifice flowmeter. The analysis using the numerical method (CFD) validated the distortion of flow measurement through the inlet velocity profile considering the convergence and grid dependency. Realizable k-e model was selected and y+ was about 50 in this numerical analysis. This analysis also estimated the vulnerability of cavitation effect due to inlet velocity profile. The investigation concludes that inclined inlet velocity profile could vary the pressure which was measured at pressure tab near pipe wall and it led to distort the pressure values ranged from -3.8% to 5.3% near the orifice plate and to make the increase of cavitation. The investigation recommends that the fully developed inlet velocity flow is beneficial to accurate flow measurement in orifice flowmeter.

Keywords: Orifice, k-e model, CFD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
7284 EPR Hiding in Medical Images for Telemedicine

Authors: K. A. Navas, S. Archana Thampy, M. Sasikumar

Abstract:

Medical image data hiding has strict constrains such as high imperceptibility, high capacity and high robustness. Achieving these three requirements simultaneously is highly cumbersome. Some works have been reported in the literature on data hiding, watermarking and stegnography which are suitable for telemedicine applications. None is reliable in all aspects. Electronic Patient Report (EPR) data hiding for telemedicine demand it blind and reversible. This paper proposes a novel approach to blind reversible data hiding based on integer wavelet transform. Experimental results shows that this scheme outperforms the prior arts in terms of zero BER (Bit Error Rate), higher PSNR (Peak Signal to Noise Ratio), and large EPR data embedding capacity with WPSNR (Weighted Peak Signal to Noise Ratio) around 53 dB, compared with the existing reversible data hiding schemes.

Keywords: Biomedical imaging, Data security, Datacommunication, Teleconferencing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754
7283 A Robust Method for Encrypted Data Hiding Technique Based on Neighborhood Pixels Information

Authors: Ali Shariq Imran, M. Younus Javed, Naveed Sarfraz Khattak

Abstract:

This paper presents a novel method for data hiding based on neighborhood pixels information to calculate the number of bits that can be used for substitution and modified Least Significant Bits technique for data embedding. The modified solution is independent of the nature of the data to be hidden and gives correct results along with un-noticeable image degradation. The technique, to find the number of bits that can be used for data hiding, uses the green component of the image as it is less sensitive to human eye and thus it is totally impossible for human eye to predict whether the image is encrypted or not. The application further encrypts the data using a custom designed algorithm before embedding bits into image for further security. The overall process consists of three main modules namely embedding, encryption and extraction cm.

Keywords: Data hiding, image processing, information security, stagonography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
7282 Unsupervised Outlier Detection in Streaming Data Using Weighted Clustering

Authors: Yogita, Durga Toshniwal

Abstract:

Outlier detection in streaming data is very challenging because streaming data cannot be scanned multiple times and also new concepts may keep evolving. Irrelevant attributes can be termed as noisy attributes and such attributes further magnify the challenge of working with data streams. In this paper, we propose an unsupervised outlier detection scheme for streaming data. This scheme is based on clustering as clustering is an unsupervised data mining task and it does not require labeled data, both density based and partitioning clustering are combined for outlier detection. In this scheme partitioning clustering is also used to assign weights to attributes depending upon their respective relevance and weights are adaptive. Weighted attributes are helpful to reduce or remove the effect of noisy attributes. Keeping in view the challenges of streaming data, the proposed scheme is incremental and adaptive to concept evolution. Experimental results on synthetic and real world data sets show that our proposed approach outperforms other existing approach (CORM) in terms of outlier detection rate, false alarm rate, and increasing percentages of outliers.

Keywords: Concept Evolution, Irrelevant Attributes, Streaming Data, Unsupervised Outlier Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637
7281 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.

Keywords: Gaussian process, Nonlinearity distribution, Particle filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
7280 Exponentially Weighted Simultaneous Estimation of Several Quantiles

Authors: Valeriy Naumov, Olli Martikainen

Abstract:

In this paper we propose new method for simultaneous generating multiple quantiles corresponding to given probability levels from data streams and massive data sets. This method provides a basis for development of single-pass low-storage quantile estimation algorithms, which differ in complexity, storage requirement and accuracy. We demonstrate that such algorithms may perform well even for heavy-tailed data.

Keywords: Quantile estimation, data stream, heavy-taileddistribution, tail index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
7279 Enhanced Data Access Control of Cooperative Environment used for DMU Based Design

Authors: Wei Lifan, Zhang Huaiyu, Yang Yunbin, Li Jia

Abstract:

Through the analysis of the process digital design based on digital mockup, the fact indicates that a distributed cooperative supporting environment is the foundation conditions to adopt design approach based on DMU. Data access authorization is concerned firstly because the value and sensitivity of the data for the enterprise. The access control for administrators is often rather weak other than business user. So authors established an enhanced system to avoid the administrators accessing the engineering data by potential approach and without authorization. Thus the data security is improved.

Keywords: access control, DMU, PLM, virtual prototype.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
7278 Pattern Recognition Using Feature Based Die-Map Clusteringin the Semiconductor Manufacturing Process

Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek

Abstract:

Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.

Keywords: Die-Map Clustering, Feature Extraction, Pattern Recognition, Semiconductor Manufacturing Process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3151
7277 MPC of Single Phase Inverter for PV System

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: Matlab/Simulink, Model Predictive Control, Phase Locked Loop, Single Phase Inverter, Voltage Source Inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4551
7276 Speed Characteristics of Mixed Traffic Flow on Urban Arterials

Authors: Ashish Dhamaniya, Satish Chandra

Abstract:

Speed and traffic volume data are collected on different sections of four lane and six lane roads in three metropolitan cities in India. Speed data are analyzed to fit the statistical distribution to individual vehicle speed data and all vehicles speed data. It is noted that speed data of individual vehicle generally follows a normal distribution but speed data of all vehicle combined at a section of urban road may or may not follow the normal distribution depending upon the composition of traffic stream. A new term Speed Spread Ratio (SSR) is introduced in this paper which is the ratio of difference in 85th and 50th percentile speed to the difference in 50th and 15th percentile speed. If SSR is unity then speed data are truly normally distributed. It is noted that on six lane urban roads, speed data follow a normal distribution only when SSR is in the range of 0.86 – 1.11. The range of SSR is validated on four lane roads also.

Keywords: Normal distribution, percentile speed, speed spread ratio, traffic volume.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4246
7275 A Comparative Study between Discrete Wavelet Transform and Maximal Overlap Discrete Wavelet Transform for Testing Stationarity

Authors: Amel Abdoullah Ahmed Dghais, Mohd Tahir Ismail

Abstract:

In this paper the core objective is to apply discrete wavelet transform and maximal overlap discrete wavelet transform functions namely Haar, Daubechies2, Symmlet4, Coiflet2 and discrete approximation of the Meyer wavelets in non stationary financial time series data from Dow Jones index (DJIA30) of US stock market. The data consists of 2048 daily data of closing index from December 17, 2004 to October 23, 2012. Unit root test affirms that the data is non stationary in the level. A comparison between the results to transform non stationary data to stationary data using aforesaid transforms is given which clearly shows that the decomposition stock market index by discrete wavelet transform is better than maximal overlap discrete wavelet transform for original data.

Keywords: Discrete wavelet transform, maximal overlap discrete wavelet transform, stationarity, autocorrelation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4728
7274 Comparative Study of Transformed and Concealed Data in Experimental Designs and Analyses

Authors: K. Chinda, P. Luangpaiboon

Abstract:

This paper presents the comparative study of coded data methods for finding the benefit of concealing the natural data which is the mercantile secret. Influential parameters of the number of replicates (rep), treatment effects (τ) and standard deviation (σ) against the efficiency of each transformation method are investigated. The experimental data are generated via computer simulations under the specified condition of the process with the completely randomized design (CRD). Three ways of data transformation consist of Box-Cox, arcsine and logit methods. The difference values of F statistic between coded data and natural data (Fc-Fn) and hypothesis testing results were determined. The experimental results indicate that the Box-Cox results are significantly different from natural data in cases of smaller levels of replicates and seem to be improper when the parameter of minus lambda has been assigned. On the other hand, arcsine and logit transformations are more robust and obviously, provide more precise numerical results. In addition, the alternate ways to select the lambda in the power transformation are also offered to achieve much more appropriate outcomes.

Keywords: Experimental Designs, Box-Cox, Arcsine, Logit Transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
7273 Three-Dimensional Off-Line Path Planning for Unmanned Aerial Vehicle Using Modified Particle Swarm Optimization

Authors: Lana Dalawr Jalal

Abstract:

This paper addresses the problem of offline path planning for Unmanned Aerial Vehicles (UAVs) in complex threedimensional environment with obstacles, which is modelled by 3D Cartesian grid system. Path planning for UAVs require the computational intelligence methods to move aerial vehicles along the flight path effectively to target while avoiding obstacles. In this paper Modified Particle Swarm Optimization (MPSO) algorithm is applied to generate the optimal collision free 3D flight path for UAV. The simulations results clearly demonstrate effectiveness of the proposed algorithm in guiding UAV to the final destination by providing optimal feasible path quickly and effectively.

Keywords: Obstacle Avoidance, Particle Swarm Optimization, Three-Dimensional Path Planning Unmanned Aerial Vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
7272 Oil-Water Two-Phase Flow Characteristics in Horizontal Pipeline – A Comprehensive CFD Study

Authors: Anand B. Desamala, Ashok Kumar Dasamahapatra, Tapas K. Mandal

Abstract:

In the present work, detailed analysis on flow characteristics of a pair of immiscible liquids through horizontal pipeline is simulated by using ANSYS FLUENT 6.2. Moderately viscous oil and water (viscosity ratio = 107, density ratio = 0.89 and interfacial tension = 0.024 N/m) have been taken as system fluids for the study. Volume of Fluid (VOF) method has been employed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, and co-axial flow. Meshing has been done using GAMBIT. Quadrilateral mesh type has been chosen to account for the surface tension effect more accurately. From the grid independent study, we have selected 47037 number of mesh elements for the entire geometry. Simulation successfully predicts slug, stratified wavy, stratified mixed and annular flow, except dispersion of oil in water, and dispersion of water in oil. Simulation results are validated with horizontal literature data and good conformity is observed. Subsequently, we have simulated the hydrodynamics (viz., velocity profile, area average pressure across a cross section and volume fraction profile along the radius) of stratified wavy and annular flow at different phase velocities. The simulation results show that in the annular flow, total pressure of the mixture decreases with increase in oil velocity due to the fact that pipe cross section is completely wetted with water. Simulated oil volume fraction shows maximum at the centre in core annular flow, whereas, in stratified flow, maximum value appears at upper side of the pipeline. These results are in accord with the actual flow configuration. Our findings could be useful in designing pipeline for transportation of crude oil.

Keywords: CFD, Horizontal pipeline, Oil-water flow, VOF technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5711
7271 Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems

Authors: Barış Can Yalçın

Abstract:

Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor.

Keywords: Calibration of sensors, data acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4336
7270 Assessment of Reliability and Quality Measures in Power Systems

Authors: Badr M. Alshammari, Mohamed A. El-Kady

Abstract:

The paper presents new results of a recent industry supported research and development study in which an efficient framework for evaluating practical and meaningful power system reliability and quality indices was applied. The system-wide integrated performance indices are capable of addressing and revealing areas of deficiencies and bottlenecks as well as redundancies in the composite generation-transmission-demand structure of large-scale power grids. The technique utilizes a linear programming formulation, which simulates practical operating actions and offers a general and comprehensive framework to assess the harmony and compatibility of generation, transmission and demand in a power system. Practical applications to a reduced system model as well as a portion of the Saudi power grid are also presented in the paper for demonstration purposes.

Keywords: Power systems, Linear programming, Quality assessment, Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
7269 Conceptual Multidimensional Model

Authors: Manpreet Singh, Parvinder Singh, Suman

Abstract:

The data is available in abundance in any business organization. It includes the records for finance, maintenance, inventory, progress reports etc. As the time progresses, the data keep on accumulating and the challenge is to extract the information from this data bank. Knowledge discovery from these large and complex databases is the key problem of this era. Data mining and machine learning techniques are needed which can scale to the size of the problems and can be customized to the application of business. For the development of accurate and required information for particular problem, business analyst needs to develop multidimensional models which give the reliable information so that they can take right decision for particular problem. If the multidimensional model does not possess the advance features, the accuracy cannot be expected. The present work involves the development of a Multidimensional data model incorporating advance features. The criterion of computation is based on the data precision and to include slowly change time dimension. The final results are displayed in graphical form.

Keywords: Multidimensional, data precision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
7268 Real Time Approach for Data Placement in Wireless Sensor Networks

Authors: Sanjeev Gupta, Mayank Dave

Abstract:

The issue of real-time and reliable report delivery is extremely important for taking effective decision in a real world mission critical Wireless Sensor Network (WSN) based application. The sensor data behaves differently in many ways from the data in traditional databases. WSNs need a mechanism to register, process queries, and disseminate data. In this paper we propose an architectural framework for data placement and management. We propose a reliable and real time approach for data placement and achieving data integrity using self organized sensor clusters. Instead of storing information in individual cluster heads as suggested in some protocols, in our architecture we suggest storing of information of all clusters within a cell in the corresponding base station. For data dissemination and action in the wireless sensor network we propose to use Action and Relay Stations (ARS). To reduce average energy dissipation of sensor nodes, the data is sent to the nearest ARS rather than base station. We have designed our architecture in such a way so as to achieve greater energy savings, enhanced availability and reliability.

Keywords: Cluster head, data reliability, real time communication, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
7267 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
7266 Analysis of One Dimensional Advection Diffusion Model Using Finite Difference Method

Authors: Vijay Kumar Kukreja, Ravneet Kaur

Abstract:

In this paper, one dimensional advection diffusion model is analyzed using finite difference method based on Crank-Nicolson scheme. A practical problem of filter cake washing of chemical engineering is analyzed. The model is converted into dimensionless form. For the grid Ω × ω = [0, 1] × [0, T], the Crank-Nicolson spatial derivative scheme is used in space domain and forward difference scheme is used in time domain. The scheme is found to be unconditionally convergent, stable, first order accurate in time and second order accurate in space domain. For a test problem, numerical results are compared with the analytical ones for different values of parameter.

Keywords: Consistency, Crank-Nicolson scheme, Gerschgorin circle, Lax-Richtmyer theorem, Peclet number, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
7265 A Software Framework for Predicting Oil-Palm Yield from Climate Data

Authors: Mohd. Noor Md. Sap, A. Majid Awan

Abstract:

Intelligent systems based on machine learning techniques, such as classification, clustering, are gaining wide spread popularity in real world applications. This paper presents work on developing a software system for predicting crop yield, for example oil-palm yield, from climate and plantation data. At the core of our system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering the data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.

Keywords: Pattern analysis, clustering, kernel methods, spatial data, crop yield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979