Search results for: Parallel sorting algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2059

Search results for: Parallel sorting algorithms

1549 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach

Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh

Abstract:

Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system.  This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.

Keywords: Handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
1548 Blind Identification of MA Models Using Cumulants

Authors: Mohamed Boulouird, Moha M'Rabet Hassani

Abstract:

In this paper, many techniques for blind identification of moving average (MA) process are presented. These methods utilize third- and fourth-order cumulants of the noisy observations of the system output. The system is driven by an independent and identically distributed (i.i.d) non-Gaussian sequence that is not observed. Two nonlinear optimization algorithms, namely the Gradient Descent and the Gauss-Newton algorithms are exposed. An algorithm based on the joint-diagonalization of the fourth-order cumulant matrices (FOSI) is also considered, as well as an improved version of the classical C(q, 0, k) algorithm based on the choice of the Best 1-D Slice of fourth-order cumulants. To illustrate the effectiveness of our methods, various simulation examples are presented.

Keywords: Cumulants, Identification, MA models, Parameter estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
1547 Parameters Identification of Mathematical Model of the Fission Yeast Cell Cycle Control Using Evolutionary Strategy

Authors: A. Ghaffari, A. S. Mostafavi

Abstract:

Complex assemblies of interacting proteins carry out most of the interesting jobs in a cell, such as metabolism, DNA synthesis, mitosis and cell division. These physiological properties play out as a subtle molecular dance, choreographed by underlying regulatory networks that control the activities of cyclin-dependent kinases (CDK). The network can be modeled by a set of nonlinear differential equations and its behavior predicted by numerical simulation. In this paper, an innovative approach has been proposed that uses genetic algorithms to mine a set of behavior data output by a biological system in order to determine the kinetic parameters of the system. In our approach, the machine learning method is integrated with the framework of existent biological information in a wiring diagram so that its findings are expressed in a form of system dynamic behavior. By numerical simulations it has been illustrated that the model is consistent with experiments and successfully shown that such application of genetic algorithms will highly improve the performance of mathematical model of the cell division cycle to simulate such a complicated bio-system.

Keywords: Cell cycle, Cyclin-dependent kinase, Fission yeast, Genetic algorithms, Mathematical modeling, Wiring diagram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
1546 Detection and Classification of Power Quality Disturbances Using S-Transform and Wavelet Algorithm

Authors: Mohamed E. Salem Abozaed

Abstract:

Detection and classification of power quality (PQ) disturbances is an important consideration to electrical utilities and many industrial customers so that diagnosis and mitigation of such disturbance can be implemented quickly. S-transform algorithm and continuous wavelet transforms (CWT) are time-frequency algorithms, and both of them are powerful in detection and classification of PQ disturbances. This paper presents detection and classification of PQ disturbances using S-transform and CWT algorithms. The results of detection and classification, provides that S-transform is more accurate in detection and classification for most PQ disturbance than CWT algorithm, where as CWT algorithm more powerful in detection in some disturbances like notching

Keywords: CWT, Disturbances classification, Disturbances detection, Power quality, S-transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
1545 An Investigation on Hot-Spot Temperature Calculation Methods of Power Transformers

Authors: Ahmet Y. Arabul, Ibrahim Senol, Fatma Keskin Arabul, Mustafa G. Aydeniz, Yasemin Oner, Gokhan Kalkan

Abstract:

In the standards of IEC 60076-2 and IEC 60076-7, three different hot-spot temperature estimation methods are suggested. In this study, the algorithms which used in hot-spot temperature calculations are analyzed by comparing the algorithms with the results of an experimental set-up made by a Transformer Monitoring System (TMS) in use. In tested system, TMS uses only top oil temperature and load ratio for hot-spot temperature calculation. And also, it uses some constants from standards which are on agreed statements tables. During the tests, it came out that hot-spot temperature calculation method is just making a simple calculation and not uses significant all other variables that could affect the hot-spot temperature.

Keywords: Hot-spot temperature, monitoring system, power transformer, smart grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3172
1544 Anticoagulatory Role of an Ergot Mesylate: Hydergine

Authors: Fareeha A., Irfan Z Qureshi

Abstract:

Thrombosis can be life threatening, necessitating therefore its instant treatment. Hydergine, a nootropic agent is used as a cognition enhancer in stroke patients but relatively little is known about its anti-thrombolytic effect. To investigate this aspect, in vivo and ex vivo experiments were designed and conducted. Three groups of rats were injected 1.5mg, 3.0mg and 4.5mg hydergine intraperitonealy with and without prior exposure to fresh plasma. Positive and negative controls were run in parallel. Animals were sacrificed after 1.5hrs and BT, CT, PT, INR, APTT, plasma calcium levels were estimated. For ex vivo analyses, each 1ml blood aspirated was exposed to 0.1mg, 0.2mg, 0.3mg dose of hydergine with parallel controls. Parameters analyzed were as above. Statistical analysis was through one-way ANOVA. Dunken-s and Tukey-s tests provided intra-group variance. BT, CT, PT, INR and APTT increased while calcium levels dropped significantly (P<0.05). Ex vivo, CT, PT and APTT were elevated while plasma calcium levels lowered significantly (P<0.05). Our study suggests that hydergine may act as a thrombolytic agent but warrants further studies to elucidate this role of ergot mesylates.

Keywords: Hydergine, Coagulation assays, plasma calcium, ergot mesylates, thrombosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
1543 Identification of States and Events for the Static and Dynamic Simulation of Single Electron Tunneling Circuits

Authors: Sharief F. Babiker, Abdelkareem Bedri, Rania Naeem

Abstract:

The implementation of single-electron tunneling (SET) simulators based on the master-equation (ME) formalism requires the efficient and accurate identification of an exhaustive list of active states and related tunnel events. Dynamic simulations also require the control of the emerging states and guarantee the safe elimination of decaying states. This paper describes algorithms for use in the stationary and dynamic control of the lists of active states and events. The paper presents results obtained using these algorithms with different SET structures.

Keywords: Active state, Coulomb blockade, Master Equation, Single electron devices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
1542 Particle Swarm Optimization and Quantum Particle Swarm Optimization to Multidimensional Function Approximation

Authors: Diogo Silva, Fadul Rodor, Carlos Moraes

Abstract:

This work compares the results of multidimensional function approximation using two algorithms: the classical Particle Swarm Optimization (PSO) and the Quantum Particle Swarm Optimization (QPSO). These algorithms were both tested on three functions - The Rosenbrock, the Rastrigin, and the sphere functions - with different characteristics by increasing their number of dimensions. As a result, this study shows that the higher the function space, i.e. the larger the function dimension, the more evident the advantages of using the QPSO method compared to the PSO method in terms of performance and number of necessary iterations to reach the stop criterion.

Keywords: PSO, QPSO, function approximation, AI, optimization, multidimensional functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 978
1541 Investigating the Effects of Thermal and Surface Energy on the Two-Dimensional Flow Characteristics of Oil in Water Mixture between Two Parallel Plates: A Lattice Boltzmann Method Study

Authors: W. Hasan, H. Farhat

Abstract:

A hybrid quasi-steady thermal lattice Boltzmann model was used to study the combined effects of temperature and contact angle on the movement of slugs and droplets of oil in water (O/W) system flowing between two parallel plates. The model static contact angle due to the deposition of the O/W droplet on a flat surface with simulated hydrophilic characteristic at different fluid temperatures, matched very well the proposed theoretical calculation. Furthermore, the model was used to simulate the dynamic behavior of droplets and slugs deposited on the domain’s upper and lower surfaces, while subjected to parabolic flow conditions. The model accurately simulated the contact angle hysteresis for the dynamic droplets cases. It was also shown that at elevated temperatures the required power to transport the mixture diminished remarkably.

Keywords: Lattice Boltzmann method, Gunstensen model, thermal, contact angle, high viscosity ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
1540 Using Mean-Shift Tracking Algorithms for Real-Time Tracking of Moving Images on an Autonomous Vehicle Testbed Platform

Authors: Benjamin Gorry, Zezhi Chen, Kevin Hammond, Andy Wallace, Greg Michaelson

Abstract:

This paper describes new computer vision algorithms that have been developed to track moving objects as part of a long-term study into the design of (semi-)autonomous vehicles. We present the results of a study to exploit variable kernels for tracking in video sequences. The basis of our work is the mean shift object-tracking algorithm; for a moving target, it is usual to define a rectangular target window in an initial frame, and then process the data within that window to separate the tracked object from the background by the mean shift segmentation algorithm. Rather than use the standard, Epanechnikov kernel, we have used a kernel weighted by the Chamfer distance transform to improve the accuracy of target representation and localization, minimising the distance between the two distributions in RGB color space using the Bhattacharyya coefficient. Experimental results show the improved tracking capability and versatility of the algorithm in comparison with results using the standard kernel. These algorithms are incorporated as part of a robot test-bed architecture which has been used to demonstrate their effectiveness.

Keywords: Hume, functional programming, autonomous vehicle, pioneer robot, vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
1539 Method of Moments for Analysis of Multiple Crack Interaction in an Isotropic Elastic Solid

Authors: Weifeng Wang, Xianwei Zeng, Jianping Ding

Abstract:

The problem of N cracks interaction in an isotropic elastic solid is decomposed into a subproblem of a homogeneous solid without crack and N subproblems with each having a single crack subjected to unknown tractions on the two crack faces. The unknown tractions, namely pseudo tractions on each crack are expanded into polynomials with unknown coefficients, which have to be determined by the consistency condition, i.e. by the equivalence of the original multiple cracks interaction problem and the superposition of the N+1 subproblems. In this paper, Kachanov-s approach of average tractions is extended into the method of moments to approximately impose the consistence condition. Hence Kachanov-s method can be viewed as the zero-order method of moments. Numerical results of the stress intensity factors are presented for interactions of two collinear cracks, three collinear cracks, two parallel cracks, and three parallel cracks. As the order of moment increases, the accuracy of the method of moments improves.

Keywords: Crack interaction, stress intensity factor, multiplecracks, method of moments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
1538 Implementation of the Recursive Formula for Evaluation of the Strength of Daniels’ Model

Authors: Václav Sadílek, Miroslav Vořechovský

Abstract:

The paper deals with the classical fiber bundle model of equal load sharing, sometimes referred to as the Daniels’ bundle or the democratic bundle. Daniels formulated a multidimensional integral and also a recursive formula for evaluation of the strength cumulative distribution function. This paper describes three algorithms for evaluation of the recursive formula and also their implementations with source codes in the Python high-level programming language. A comparison of the algorithms are provided with respect to execution time. Analysis of orders of magnitudes of addends in the recursion is also provided.

Keywords: Daniels bundle model, equal load sharing, Python, mpmath.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
1537 Performance Analysis of List Scheduling in Heterogeneous Computing Systems

Authors: Keqin Li

Abstract:

Given a parallel program to be executed on a heterogeneous computing system, the overall execution time of the program is determined by a schedule. In this paper, we analyze the worst-case performance of the list scheduling algorithm for scheduling tasks of a parallel program in a mixed-machine heterogeneous computing system such that the total execution time of the program is minimized. We prove tight lower and upper bounds for the worst-case performance ratio of the list scheduling algorithm. We also examine the average-case performance of the list scheduling algorithm. Our experimental data reveal that the average-case performance of the list scheduling algorithm is much better than the worst-case performance and is very close to optimal, except for large systems with large heterogeneity. Thus, the list scheduling algorithm is very useful in real applications.

Keywords: Average-case performance, list scheduling algorithm, mixed-machine heterogeneous computing system, worst-case performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
1536 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: Artificial Intelligence, machine learning, deep learning, convolutional neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
1535 Application of Granular Computing Paradigm in Knowledge Induction

Authors: Iftikhar U. Sikder

Abstract:

This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.

Keywords: Concept approximation, granular computing, reducts, rough set theory, rule induction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
1534 Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge

Authors: Sabah I. Wais, Raghad Y. Mohammed, Sedki O. Yousif

Abstract:

The influence of axial magnetic field (B=0.48 T) on the variation of ionization efficiency coefficient h and secondary electron emission coefficient g with respect to reduced electric field E/P is studied at a new range of plane-parallel electrode spacing (0< d< 20 cm) and different nitrogen working pressure between 0.5-20 Pa. The axial magnetic field is produced from an inductive copper coil of radius 5.6 cm. The experimental data of breakdown voltage is adopted to estimate the mean Paschen curves at different working features. The secondary electron emission coefficient is calculated from the mean Paschen curve and used to determine the minimum breakdown voltage. A reduction of discharge voltage of about 25% is investigated by the applied of axial magnetic field. At high interelectrode spacing, the effect of axial magnetic field becomes more significant for the obtained values of h but it was less for the values of g.

Keywords: Paschen curve, Townsend coefficient, Secondaryelectron emission, Magnetic field, Minimum breakdown voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613
1533 Analysis of Diverse Clustering Tools in Data Mining

Authors: S. Sarumathi, N. Shanthi, M. Sharmila

Abstract:

Clustering in data mining is an unsupervised learning technique of aggregating the data objects into meaningful groups such that the intra cluster similarity of objects are maximized and inter cluster similarity of objects are minimized. Over the past decades several clustering tools were emerged in which clustering algorithms are inbuilt and are easier to use and extract the expected results. Data mining mainly deals with the huge databases that inflicts on cluster analysis and additional rigorous computational constraints. These challenges pave the way for the emergence of powerful expansive data mining clustering softwares. In this survey, a variety of clustering tools used in data mining are elucidated along with the pros and cons of each software.

Keywords: Cluster Analysis, Clustering Algorithms, Clustering Techniques, Association, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202
1532 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller

Authors: Jia-Shiun Chen, Hsiu-Ying Hwang

Abstract:

Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.

Keywords: Hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2609
1531 Ethylene Epoxidation in a Low-Temperature Parallel Plate Dielectric Barrier Discharge System: Effects of Ethylene Feed Position and O2/C2H4 Feed Molar Ratio

Authors: Bunphot Paosombat, Thitiporn Suttikul, Sumaeth Chavadej

Abstract:

The effects of ethylene (C2H4) feed position and O2/C2H4 feed molar ratio on ethylene epoxidation in a parallel dielectric barrier discharge (DBD) were studied. The results showed that the ethylene feed position fraction of 0.5 and the feed molar ratio of O2/C2H4 of 0.2:1 gave the highest EO selectivity of 34.3% and the highest EO yield of 5.28% with low power consumptions of 2.11×10-16 Ws/molecule of ethylene converted and 6.34×10-16 Ws/molecule of EO produced when the DBD system was operated under the best conditions: an applied voltage of 19 kV, an input frequency of 500 Hz and a total feed flow rate of 50 cm3/min. The separate ethylene feed system provided much higher epoxidation activity as compared to the mixed feed system which gave EO selectivity of 15.5%, EO yield of 2.1% and the power consumption of EO produced of 7.7×10-16 Ws/molecule.

Keywords: Dielectric Barrier Discharge, C2H4 Feed Position, Epoxidation, Ethylene Oxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
1530 Evaluating per-user Fairness of Goal-Oriented Parallel Computer Job Scheduling Policies

Authors: Sangsuree Vasupongayya

Abstract:

Fair share objective has been included into the goaloriented parallel computer job scheduling policy recently. However, the previous work only presented the overall scheduling performance. Thus, the per-user performance of the policy is still lacking. In this work, the details of per-user fair share performance under the Tradeoff-fs(Tx:avgX) policy will be further evaluated. A basic fair share priority backfill policy namely RelShare(1d) is also studied. The performance of all policies is collected using an event-driven simulator with three real job traces as input. The experimental results show that the high demand users are usually benefited under most policies because their jobs are large or they have a lot of jobs. In the large job case, one job executed may result in over-share during that period. In the other case, the jobs may be backfilled for performances. However, the users with a mixture of jobs may suffer because if the smaller jobs are executing the priority of the remaining jobs from the same user will be lower. Further analysis does not show any significant impact of users with a lot of jobs or users with a large runtime approximation error.

Keywords: deviation, fair share, discrepancy search, priority scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352
1529 Real-time Network Anomaly Detection Systems Based on Machine-Learning Algorithms

Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract:

This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.

Keywords: Cyber-security, Intrusion Detection Systems, Temporal Graph Network, Anomaly Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505
1528 The Influence of Disturbances Generated by Arc Furnaces on the Power Quality

Authors: Z. Olczykowski

Abstract:

The paper presents the impact of work on the electric arc furnace. Arc equipment is one of the largest receivers powered by the power system. Electric arc disturbances arising during melting process occurring in these furnaces are the cause of an abrupt change of the passive power of furnaces. Currents drawn by these devices undergo an abrupt change, which in turn cause voltage fluctuations and light flicker. The quantitative evaluation of the voltage fluctuations is now the basic criterion of assessment of an influence of unquiet receiver on the supplying net. The paper presents the method of determination of range of voltage fluctuations and light flicker at parallel operation of arc devices. The results of measurements of voltage fluctuations and light flicker indicators recorded in power supply networks of steelworks were presented, with different number of parallel arc devices. Measurements of energy quality parameters were aimed at verifying the proposed method in practice. It was also analyzed changes in other parameters of electricity: the content of higher harmonics, asymmetry, voltage dips.

Keywords: Power quality, arc furnaces, propagation of voltage fluctuations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 722
1527 Identifying the Kinematic Parameters of Hexapod Machine Tool

Authors: M. M. Agheli, M. J. Nategh

Abstract:

Hexapod Machine Tool (HMT) is a parallel robot mostly based on Stewart platform. Identification of kinematic parameters of HMT is an important step of calibration procedure. In this paper an algorithm is presented for identifying the kinematic parameters of HMT using inverse kinematics error model. Based on this algorithm, the calibration procedure is simulated. Measurement configurations with maximum observability are decided as the first step of this algorithm for a robust calibration. The errors occurring in various configurations are illustrated graphically. It has been shown that the boundaries of the workspace should be searched for the maximum observability of errors. The importance of using configurations with sufficient observability in calibrating hexapod machine tools is verified by trial calibration with two different groups of randomly selected configurations. One group is selected to have sufficient observability and the other is in disregard of the observability criterion. Simulation results confirm the validity of the proposed identification algorithm.

Keywords: Calibration, Hexapod Machine Tool (HMT), InverseKinematics Error Model, Observability, Parallel Robot, ParameterIdentification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
1526 IMLFQ Scheduling Algorithm with Combinational Fault Tolerant Method

Authors: MohammadReza EffatParvar, Akbar Bemana, Mehdi EffatParvar

Abstract:

Scheduling algorithms are used in operating systems to optimize the usage of processors. One of the most efficient algorithms for scheduling is Multi-Layer Feedback Queue (MLFQ) algorithm which uses several queues with different quanta. The most important weakness of this method is the inability to define the optimized the number of the queues and quantum of each queue. This weakness has been improved in IMLFQ scheduling algorithm. Number of the queues and quantum of each queue affect the response time directly. In this paper, we review the IMLFQ algorithm for solving these problems and minimizing the response time. In this algorithm Recurrent Neural Network has been utilized to find both the number of queues and the optimized quantum of each queue. Also in order to prevent any probable faults in processes' response time computation, a new fault tolerant approach has been presented. In this approach we use combinational software redundancy to prevent the any probable faults. The experimental results show that using the IMLFQ algorithm results in better response time in comparison with other scheduling algorithms also by using fault tolerant mechanism we improve IMLFQ performance.

Keywords: IMLFQ, Fault Tolerant, Scheduling, Queue, Recurrent Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
1525 Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates

Authors: Djalal Hamed

Abstract:

The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study.

Keywords: Buoyancy force, friction force, friction factor, MTR-type fuel, natural convection, vertical heated rectangular channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
1524 On-line Image Mosaicing of Live Stem Cells

Authors: Alessandro Bevilacqua, Alessandro Gherardi, Filippo Piccinini

Abstract:

Image mosaicing is a technique that permits to enlarge the field of view of a camera. For instance, it is employed to achieve panoramas with common cameras or even in scientific applications, to achieve the image of a whole culture in microscopical imaging. Usually, a mosaic of cell cultures is achieved through using automated microscopes. However, this is often performed in batch, through CPU intensive minimization algorithms. In addition, live stem cells are studied in phase contrast, showing a low contrast that cannot be improved further. We present a method to study the flat field from live stem cells images even in case of 100% confluence, this permitting to build accurate mosaics on-line using high performance algorithms.

Keywords: Microscopy, image mosaicing, stem cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
1523 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: Intelligent transportation systems, object detection, video processing, road traffic, vehicle counting, vehicle classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
1522 A New Heuristic Approach for the Large-Scale Generalized Assignment Problem

Authors: S. Raja Balachandar, K.Kannan

Abstract:

This paper presents a heuristic approach to solve the Generalized Assignment Problem (GAP) which is NP-hard. It is worth mentioning that many researches used to develop algorithms for identifying the redundant constraints and variables in linear programming model. Some of the algorithms are presented using intercept matrix of the constraints to identify redundant constraints and variables prior to the start of the solution process. Here a new heuristic approach based on the dominance property of the intercept matrix to find optimal or near optimal solution of the GAP is proposed. In this heuristic, redundant variables of the GAP are identified by applying the dominance property of the intercept matrix repeatedly. This heuristic approach is tested for 90 benchmark problems of sizes upto 4000, taken from OR-library and the results are compared with optimum solutions. Computational complexity is proved to be O(mn2) of solving GAP using this approach. The performance of our heuristic is compared with the best state-ofthe- art heuristic algorithms with respect to both the quality of the solutions. The encouraging results especially for relatively large size test problems indicate that this heuristic approach can successfully be used for finding good solutions for highly constrained NP-hard problems.

Keywords: Combinatorial Optimization Problem, Generalized Assignment Problem, Intercept Matrix, Heuristic, Computational Complexity, NP-Hard Problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348
1521 Grid Coordination with Marketmaker Agents

Authors: Xin Bai, Kresimir Sivoncik, Damla Turgut, Ladislau Bölöni

Abstract:

Market based models are frequently used in the resource allocation on the computational grid. However, as the size of the grid grows, it becomes difficult for the customer to negotiate directly with all the providers. Middle agents are introduced to mediate between the providers and customers and facilitate the resource allocation process. The most frequently deployed middle agents are the matchmakers and the brokers. The matchmaking agent finds possible candidate providers who can satisfy the requirements of the consumers, after which the customer directly negotiates with the candidates. The broker agents are mediating the negotiation with the providers in real time. In this paper we present a new type of middle agent, the marketmaker. Its operation is based on two parallel operations - through the investment process the marketmaker is acquiring resources and resource reservations in large quantities, while through the resale process it sells them to the customers. The operation of the marketmaker is based on the fact that through its global view of the grid it can perform a more efficient resource allocation than the one possible in one-to-one negotiations between the customers and providers. We present the operation and algorithms governing the operation of the marketmaker agent, contrasting it with the matchmaker and broker agents. Through a series of simulations in the task oriented domain we compare the operation of the three agents types. We find that the use of marketmaker agent leads to a better performance in the allocation of large tasks and a significant reduction of the messaging overhead.

Keywords: grid computing, autonomous agents, market-basedgrid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
1520 Parallel Distributed Computational Microcontroller System for Adaptive Antenna Downlink Transmitter Power Optimization

Authors: K. Prajindra Sankar, S.K. Tiong, S.P. Johnny Koh

Abstract:

This paper presents a tested research concept that implements a complex evolutionary algorithm, genetic algorithm (GA), in a multi-microcontroller environment. Parallel Distributed Genetic Algorithm (PDGA) is employed in adaptive beam forming technique to reduce power usage of adaptive antenna at WCDMA base station. Adaptive antenna has dynamic beam that requires more advanced beam forming algorithm such as genetic algorithm which requires heavy computation and memory space. Microcontrollers are low resource platforms that are normally not associated with GAs, which are typically resource intensive. The aim of this project was to design a cooperative multiprocessor system by expanding the role of small scale PIC microcontrollers to optimize WCDMA base station transmitter power. Implementation results have shown that PDGA multi-microcontroller system returned optimal transmitted power compared to conventional GA.

Keywords: Microcontroller, Genetic Algorithm, Adaptiveantenna, Power optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784