Search results for: list scheduling algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3697

Search results for: list scheduling algorithm

3697 Performance Analysis of List Scheduling in Heterogeneous Computing Systems

Authors: Keqin Li

Abstract:

Given a parallel program to be executed on a heterogeneous computing system, the overall execution time of the program is determined by a schedule. In this paper, we analyze the worst-case performance of the list scheduling algorithm for scheduling tasks of a parallel program in a mixed-machine heterogeneous computing system such that the total execution time of the program is minimized. We prove tight lower and upper bounds for the worst-case performance ratio of the list scheduling algorithm. We also examine the average-case performance of the list scheduling algorithm. Our experimental data reveal that the average-case performance of the list scheduling algorithm is much better than the worst-case performance and is very close to optimal, except for large systems with large heterogeneity. Thus, the list scheduling algorithm is very useful in real applications.

Keywords: Average-case performance, list scheduling algorithm, mixed-machine heterogeneous computing system, worst-case performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
3696 The Simulation and Realization of Input-Buffer Scheduling Algorithm in Satellite Switching System

Authors: Yi Zhang, Quan Zhou, Jun Li, Yanlang Hu

Abstract:

Scheduling algorithm is a key technology in satellite switching system with input-buffer. In this paper, a new scheduling algorithm and its realization are proposed. Based on Crossbar switching fabric, the algorithm adopts serial scheduling strategy and adjusts the output port arbitrating strategy for the better equity of every port. Consequently, it increases the matching probability. The algorithm can greatly reduce the scheduling delay and cell loss rate. The analysis and simulation results by OPNET show that the proposed algorithm has the better performance than others in average delay and cell loss rate, and has the equivalent complexity. On the basis of these results, the hardware realization and simulation based on FPGA are completed, which validate the feasibility of the new scheduling algorithm.

Keywords: Scheduling algorithm, input-buffer, serial scheduling, hardware design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
3695 A Modified Maximum Urgency First Scheduling Algorithm for Real-Time Tasks

Authors: Vahid Salmani, Saman Taghavi Zargar, Mahmoud Naghibzadeh

Abstract:

This paper presents a modified version of the maximum urgency first scheduling algorithm. The maximum urgency algorithm combines the advantages of fixed and dynamic scheduling to provide the dynamically changing systems with flexible scheduling. This algorithm, however, has a major shortcoming due to its scheduling mechanism which may cause a critical task to fail. The modified maximum urgency first scheduling algorithm resolves the mentioned problem. In this paper, we propose two possible implementations for this algorithm by using either earliest deadline first or modified least laxity first algorithms for calculating the dynamic priorities. These two approaches are compared together by simulating the two algorithms. The earliest deadline first algorithm as the preferred implementation is then recommended. Afterwards, we make a comparison between our proposed algorithm and maximum urgency first algorithm using simulation and results are presented. It is shown that modified maximum urgency first is superior to maximum urgency first, since it usually has less task preemption and hence, less related overhead. It also leads to less failed non-critical tasks in overloaded situations.

Keywords: Modified maximum urgency first, maximum urgency first, real-time systems, scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2673
3694 A Survey of Job Scheduling and Resource Management in Grid Computing

Authors: Raksha Sharma, Vishnu Kant Soni, Manoj Kumar Mishra, Prachet Bhuyan

Abstract:

Grid computing is a form of distributed computing that involves coordinating and sharing computational power, data storage and network resources across dynamic and geographically dispersed organizations. Scheduling onto the Grid is NP-complete, so there is no best scheduling algorithm for all grid computing systems. An alternative is to select an appropriate scheduling algorithm to use in a given grid environment because of the characteristics of the tasks, machines and network connectivity. Job and resource scheduling is one of the key research area in grid computing. The goal of scheduling is to achieve highest possible system throughput and to match the application need with the available computing resources. Motivation of the survey is to encourage the amateur researcher in the field of grid computing, so that they can understand easily the concept of scheduling and can contribute in developing more efficient scheduling algorithm. This will benefit interested researchers to carry out further work in this thrust area of research.

Keywords: Grid Computing, Job Scheduling, ResourceScheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3360
3693 Scheduling Multiple Workflow Using De-De Dodging Algorithm and PBD Algorithm in Cloud: Detailed Study

Authors: B. Arun Kumar, T. Ravichandran

Abstract:

Workflow scheduling is an important part of cloud computing and based on different criteria it decides cost, execution time, and performances. A cloud workflow system is a platform service facilitating automation of distributed applications based on new cloud infrastructure. An aspect which differentiates cloud workflow system from others is market-oriented business model, an innovation which challenges conventional workflow scheduling strategies. Time and Cost optimization algorithm for scheduling Hybrid Clouds (TCHC) algorithm decides which resource should be chartered from public providers is combined with a new De-De algorithm considering that every instance of single and multiple workflows work without deadlocks. To offset this, two new concepts - De-De Dodging Algorithm and Priority Based Decisive Algorithm - combine with conventional deadlock avoidance issues by proposing one algorithm that maximizes active (not just allocated) resource use and reduces Makespan.

Keywords: Workflow Scheduling, cloud workflow, TCHC algorithm, De-De Dodging Algorithm, Priority Based Decisive Algorithm (PBD), Makespan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2747
3692 Feedback-Controlled Server for Scheduling Aperiodic Tasks

Authors: Shinpei Kato, Nobuyuki Yamasaki

Abstract:

This paper proposes a scheduling scheme using feedback control to reduce the response time of aperiodic tasks with soft real-time constraints. We design an algorithm based on the proposed scheduling scheme and Total Bandwidth Server (TBS) that is a conventional server technique for scheduling aperiodic tasks. We then describe the feedback controller of the algorithm and give the control parameter tuning methods. The simulation study demonstrates that the algorithm can reduce the mean response time up to 26% compared to TBS in exchange for slight deadline misses.

Keywords: Real-Time Systems, Aperiodic Task Scheduling, Feedback-Control Scheduling, Total Bandwidth Server.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
3691 Efficient Scheduling Algorithm for QoS Support in High Speed Downlink Packet Access Networks

Authors: MohammadReza HeidariNezhad, Zuriati Ahmad Zukarnain, Nur Izura Udzir, Mohamed Othman

Abstract:

In this paper, we propose APO, a new packet scheduling scheme with Quality of Service (QoS) support for hybrid of real and non-real time services in HSDPA networks. The APO scheduling algorithm is based on the effective channel anticipation model. In contrast to the traditional schemes, the proposed method is implemented based on a cyclic non-work-conserving discipline. Simulation results indicated that proposed scheme has good capability to maximize the channel usage efficiency in compared to another exist scheduling methods. Simulation results demonstrate the effectiveness of the proposed algorithm.

Keywords: Scheduling Algorithm, Quality of Service, HSDPA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
3690 Accrual Based Scheduling for Cloud in Single and Multi Resource System: Study of Three Techniques

Authors: R. Santhosh, T. Ravichandran

Abstract:

This paper evaluates the accrual based scheduling for cloud in single and multi-resource system. Numerous organizations benefit from Cloud computing by hosting their applications. The cloud model provides needed access to computing with potentially unlimited resources. Scheduling is tasks and resources mapping to a certain optimal goal principle. Scheduling, schedules tasks to virtual machines in accordance with adaptable time, in sequence under transaction logic constraints. A good scheduling algorithm improves CPU use, turnaround time, and throughput. In this paper, three realtime cloud services scheduling algorithm for single resources and multiple resources are investigated. Experimental results show Resource matching algorithm performance to be superior for both single and multi-resource scheduling when compared to benefit first scheduling, Migration, Checkpoint algorithms.

Keywords: Cloud computing, Scheduling, Migration, Checkpoint, Resource Matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
3689 Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm

Authors: T. Vigneswari, M. A. Maluk Mohamed

Abstract:

Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Heterogeneous Earliest First Min- Min Artificial Bee Colony (CHMM-ABC), to optimally schedule jobs for the available resources. The proposed model utilizes a novel Heterogeneous Earliest Finish Time (HEFT) Heuristic Algorithm along with Min-Min algorithm to identify the initial food source. Simulation results show the performance improvement of the proposed algorithm over other swarm intelligence techniques.

Keywords: Grid Computing, Grid Scheduling, Heterogeneous Earliest Finish Time (HEFT), Artificial Bee colony (ABC) Algorithm, Resource Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3052
3688 A New Scheduling Algorithm Based on Traffic Classification Using Imprecise Computation

Authors: Farzad Abtahi, Sahar Khanmohamadi, Bahram Sadeghi Bigham

Abstract:

Wireless channels are characterized by more serious bursty and location-dependent errors. Many packet scheduling algorithms have been proposed for wireless networks to guarantee fairness and delay bounds. However, most existing schemes do not consider the difference of traffic natures among packet flows. This will cause the delay-weight coupling problem. In particular, serious queuing delays may be incurred for real-time flows. In this paper, it is proposed a scheduling algorithm that takes traffic types of flows into consideration when scheduling packets and also it is provided scheduling flexibility by trading off video quality to meet the playback deadline.

Keywords: Data communication, Real-time, Scheduling, Video transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
3687 Adaptive Fuzzy Control on EDF Scheduling

Authors: Xiangbin Zhu

Abstract:

EDF (Early Deadline First) algorithm is a very important scheduling algorithm for real- time systems . The EDF algorithm assigns priorities to each job according to their absolute deadlines and has good performance when the real-time system is not overloaded. When the real-time system is overloaded, many misdeadlines will be produced. But these misdeadlines are not uniformly distributed, which usually focus on some tasks. In this paper, we present an adaptive fuzzy control scheduling based on EDF algorithm. The improved algorithm can have a rectangular distribution of misdeadline ratios among all real-time tasks when the system is overloaded. To evaluate the effectiveness of the improved algorithm, we have done extensive simulation studies. The simulation results show that the new algorithm is superior to the old algorithm.

Keywords: Fuzzy control, real-time systems, EDF, misdeadline ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
3686 Applying Lagrangian Relaxation-Based Algorithm for the Airline Coordinated Flight Scheduling Problems

Authors: Chia-Hung Chen, Shangyao Yan

Abstract:

The solution algorithm, based on Lagrangian relaxation, a sub-gradient method and a heuristic to find the upper bound of the solution, is proposed to solve the coordinated fleet routing and flight scheduling problems. Numerical tests are performed to evaluate the proposed algorithm using real operating data from two Taiwan airlines. The test results indicate that the solution algorithm is a significant improvement over those obtained with CPLEX, consequently they could be useful for allied airlines to solve coordinated fleet routing and flight scheduling problems.

Keywords: Coordinated flight scheduling, multiple commodity network flow problem, Lagrangian relaxation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
3685 Performance Analysis of OQSMS and MDDR Scheduling Algorithms for IQ Switches

Authors: K. Navaz, Kannan Balasubramanian

Abstract:

Due to the increasing growth of internet users, the emerging applications of multicast are growing day by day and there is a requisite for the design of high-speed switches/routers. Huge amounts of effort have been done into the research area of multicast switch fabric design and algorithms. Different traffic scenarios are the influencing factor which affect the throughput and delay of the switch. The pointer based multicast scheduling algorithms are not performed well under non-uniform traffic conditions. In this work, performance of the switch has been analyzed by applying the advanced multicast scheduling algorithm OQSMS (Optimal Queue Selection Based Multicast Scheduling Algorithm), MDDR (Multicast Due Date Round-Robin Scheduling Algorithm) and MDRR (Multicast Dual Round-Robin Scheduling Algorithm). The results show that OQSMS achieves better switching performance than other algorithms under the uniform, non-uniform and bursty traffic conditions and it estimates optimal queue in each time slot so that it achieves maximum possible throughput.

Keywords: Multicast, Switch, Delay, Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
3684 A Branch and Bound Algorithm for Resource Constrained Project Scheduling Problem Subject to Cumulative Resources

Authors: A. Shirzadeh Chaleshtari, Sh. Shadrokh

Abstract:

Renewable and non-renewable resource constraints have been vast studied in theoretical fields of project scheduling problems. However, although cumulative resources are widespread in practical cases, the literature on project scheduling problems subject to these resources is scant. So in order to study this type of resources more, in this paper we use the framework of a resource constrained project scheduling problem (RCPSP) with finish-start precedence relations between activities and subject to the cumulative resources in addition to the renewable resources. We develop a branch and bound algorithm for this problem customizing precedence tree algorithm of RCPSP. We perform extensive experimental analysis on the algorithm to check its effectiveness and performance for solving different instances of the problem in question.

Keywords: Resource constrained project scheduling problem, cumulative resources, branch and bound algorithm, precedence tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2857
3683 Emission Constrained Hydrothermal Scheduling Algorithm

Authors: Sayeed Salam

Abstract:

This paper presents an efficient emission constrained hydrothermal scheduling algorithm that deals with nonlinear functions such as the water discharge characteristics, thermal cost, and transmission loss. It is then incorporated into the hydrothermal coordination program. The program has been tested on a practical utility system having 32 thermal and 12 hydro generating units. Test results show that a slight increase in production cost causes a substantial reduction in emission.

Keywords: Emission constraint, Hydrothermal coordination, and Hydrothermal scheduling algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
3682 An Effective Hybrid Genetic Algorithm for Job Shop Scheduling Problem

Authors: Bin Cai, Shilong Wang, Haibo Hu

Abstract:

The job shop scheduling problem (JSSP) is well known as one of the most difficult combinatorial optimization problems. This paper presents a hybrid genetic algorithm for the JSSP with the objective of minimizing makespan. The efficiency of the genetic algorithm is enhanced by integrating it with a local search method. The chromosome representation of the problem is based on operations. Schedules are constructed using a procedure that generates full active schedules. In each generation, a local search heuristic based on Nowicki and Smutnicki-s neighborhood is applied to improve the solutions. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.

Keywords: Genetic algorithm, Job shop scheduling problem, Local search, Meta-heuristic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
3681 Scheduling a Project to Minimize Costs of Material Requirements

Authors: Amir Abbas Najafi, Nima Zoraghi, Fatemeh Azimi

Abstract:

Traditionally, project scheduling and material planning have been treated independently. In this research, a mixed integer programming model is presented to integrate project scheduling and materials ordering problems. The goal is to minimize the total material holding and ordering costs. In addition, an efficient metaheuristic algorithm is proposed to solve the model. The proposed algorithm is computationally tested, the results are analyzed, and conclusions are given.

Keywords: Project scheduling, metaheuristic, material ordering, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
3680 Optimization of SAD Algorithm on VLIW DSP

Authors: Hui-Jae You, Sun-Tae Chung, Souhwan Jung

Abstract:

SAD (Sum of Absolute Difference) algorithm is heavily used in motion estimation which is computationally highly demanding process in motion picture encoding. To enhance the performance of motion picture encoding on a VLIW processor, an efficient implementation of SAD algorithm on the VLIW processor is essential. SAD algorithm is programmed as a nested loop with a conditional branch. In VLIW processors, loop is usually optimized by software pipelining, but researches on optimal scheduling of software pipelining for nested loops, especially nested loops with conditional branches are rare. In this paper, we propose an optimal scheduling and implementation of SAD algorithm with conditional branch on a VLIW DSP processor. The proposed optimal scheduling first transforms the nested loop with conditional branch into a single loop with conditional branch with consideration of full utilization of ILP capability of the VLIW processor and realization of earlier escape from the loop. Next, the proposed optimal scheduling applies a modulo scheduling technique developed for single loop. Based on this optimal scheduling strategy, optimal implementation of SAD algorithm on TMS320C67x, a VLIW DSP is presented. Through experiments on TMS320C6713 DSK, it is shown that H.263 encoder with the proposed SAD implementation performs better than other H.263 encoder with other SAD implementations, and that the code size of the optimal SAD implementation is small enough to be appropriate for embedded environments.

Keywords: Optimal implementation, SAD algorithm, VLIW, TMS320C6713.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
3679 IMLFQ Scheduling Algorithm with Combinational Fault Tolerant Method

Authors: MohammadReza EffatParvar, Akbar Bemana, Mehdi EffatParvar

Abstract:

Scheduling algorithms are used in operating systems to optimize the usage of processors. One of the most efficient algorithms for scheduling is Multi-Layer Feedback Queue (MLFQ) algorithm which uses several queues with different quanta. The most important weakness of this method is the inability to define the optimized the number of the queues and quantum of each queue. This weakness has been improved in IMLFQ scheduling algorithm. Number of the queues and quantum of each queue affect the response time directly. In this paper, we review the IMLFQ algorithm for solving these problems and minimizing the response time. In this algorithm Recurrent Neural Network has been utilized to find both the number of queues and the optimized quantum of each queue. Also in order to prevent any probable faults in processes' response time computation, a new fault tolerant approach has been presented. In this approach we use combinational software redundancy to prevent the any probable faults. The experimental results show that using the IMLFQ algorithm results in better response time in comparison with other scheduling algorithms also by using fault tolerant mechanism we improve IMLFQ performance.

Keywords: IMLFQ, Fault Tolerant, Scheduling, Queue, Recurrent Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
3678 Bandwidth and Delay Aware Routing Protocol with Scheduling Algorithm for Multi Hop Mobile Ad Hoc Networks

Authors: Y. Harold Robinson, E. Golden Julie, S. Balaji

Abstract:

The scheduling based routing scheme is presented in this paper to avoid link failure. The main objective of this system is to introduce a cross-layer protocol framework that integrates routing with priority-based traffic management and distributed transmission scheduling. The reservation scheme is based on ID. The presented scheme guarantees that bandwidth reserved time slot is used by another packet in which end-to-end reservation is achieved. The Bandwidth and Delay Aware Routing Protocol with Scheduling Algorithm is presented to allocate channels efficiently. The experimental results show that the presented schemes performed well in various parameters compared to existing methods.

Keywords: Integrated routing, scheduling, MAC layer, IEEE 802.11.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
3677 An Ant Colony Optimization for Dynamic JobScheduling in Grid Environment

Authors: Siriluck Lorpunmanee, Mohd Noor Sap, Abdul Hanan Abdullah, Chai Chompoo-inwai

Abstract:

Grid computing is growing rapidly in the distributed heterogeneous systems for utilizing and sharing large-scale resources to solve complex scientific problems. Scheduling is the most recent topic used to achieve high performance in grid environments. It aims to find a suitable allocation of resources for each job. A typical problem which arises during this task is the decision of scheduling. It is about an effective utilization of processor to minimize tardiness time of a job, when it is being scheduled. This paper, therefore, addresses the problem by developing a general framework of grid scheduling using dynamic information and an ant colony optimization algorithm to improve the decision of scheduling. The performance of various dispatching rules such as First Come First Served (FCFS), Earliest Due Date (EDD), Earliest Release Date (ERD), and an Ant Colony Optimization (ACO) are compared. Moreover, the benefit of using an Ant Colony Optimization for performance improvement of the grid Scheduling is also discussed. It is found that the scheduling system using an Ant Colony Optimization algorithm can efficiently and effectively allocate jobs to proper resources.

Keywords: Grid computing, Distributed heterogeneous system, Ant colony optimization algorithm, Grid scheduling, Dispatchingrules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2658
3676 New Hybrid Algorithm for Task Scheduling in Grid Computing to Decrease missed Task

Authors: Z. Pooranian, A. Harounabadi, M. Shojafar, N. Hedayat

Abstract:

The purpose of Grid computing is to utilize computational power of idle resources which are distributed in different areas. Given the grid dynamism and its decentralize resources, there is a need for an efficient scheduler for scheduling applications. Since task scheduling includes in the NP-hard problems various researches have focused on invented algorithms especially the genetic ones. But since genetic is an inherent algorithm which searches the problem space globally and does not have the efficiency required for local searching, therefore, its combination with local searching algorithms can compensate for this shortcomings. The aim of this paper is to combine the genetic algorithm and GELS (GAGELS) as a method to solve scheduling problem by which simultaneously pay attention to two factors of time and number of missed tasks. Results show that the proposed algorithm can decrease makespan while minimizing the number of missed tasks compared with the traditional methods.

Keywords: Grid Computing, Genetic Algorithm, Gravitational Emulation Local Search (GELS), missed task

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
3675 Simulation of Utility Accrual Scheduling and Recovery Algorithm in Multiprocessor Environment

Authors: A. Idawaty, O. Mohamed, A. Z. Zuriati

Abstract:

This paper presents the development of an event based Discrete Event Simulation (DES) for a recovery algorithm known Backward Recovery Global Preemptive Utility Accrual Scheduling (BR_GPUAS). This algorithm implements the Backward Recovery (BR) mechanism as a fault recovery solution under the existing Time/Utility Function/ Utility Accrual (TUF/UA) scheduling domain for multiprocessor environment. The BR mechanism attempts to take the faulty tasks back to its initial safe state and then proceeds to re-execute the affected section of the faulty tasks to enable recovery. Considering that faults may occur in the components of any system; a fault tolerance system that can nullify the erroneous effect is necessary to be developed. Current TUF/UA scheduling algorithm uses the abortion recovery mechanism and it simply aborts the erroneous task as their fault recovery solution. None of the existing algorithm in TUF/UA scheduling domain in multiprocessor scheduling environment have considered the transient fault and implement the BR mechanism as a fault recovery mechanism to nullify the erroneous effect and solve the recovery problem in this domain. The developed BR_GPUAS simulator has derived the set of parameter, events and performance metrics according to a detailed analysis of the base model. Simulation results revealed that BR_GPUAS algorithm can saved almost 20-30% of the accumulated utilities making it reliable and efficient for the real-time application in the multiprocessor scheduling environment.

Keywords: Time Utility Function/ Utility Accrual (TUF/UA) scheduling, Real-time system (RTS), Backward Recovery, Multiprocessor, Discrete Event Simulation (DES).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
3674 A Hybrid Genetic Algorithm for the Sequence Dependent Flow-Shop Scheduling Problem

Authors: Mohammad Mirabi

Abstract:

Flow-shop scheduling problem (FSP) deals with the scheduling of a set of jobs that visit a set of machines in the same order. The FSP is NP-hard, which means that an efficient algorithm for solving the problem to optimality is unavailable. To meet the requirements on time and to minimize the make-span performance of large permutation flow-shop scheduling problems in which there are sequence dependent setup times on each machine, this paper develops one hybrid genetic algorithms (HGA). Proposed HGA apply a modified approach to generate population of initial chromosomes and also use an improved heuristic called the iterated swap procedure to improve initial solutions. Also the author uses three genetic operators to make good new offspring. The results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.

Keywords: Hybrid genetic algorithm, Scheduling, Permutationflow-shop, Sequence dependent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
3673 Proposing a Pareto-based Multi-Objective Evolutionary Algorithm to Flexible Job Shop Scheduling Problem

Authors: Seyed Habib A. Rahmati

Abstract:

During last decades, developing multi-objective evolutionary algorithms for optimization problems has found considerable attention. Flexible job shop scheduling problem, as an important scheduling optimization problem, has found this attention too. However, most of the multi-objective algorithms that are developed for this problem use nonprofessional approaches. In another words, most of them combine their objectives and then solve multi-objective problem through single objective approaches. Of course, except some scarce researches that uses Pareto-based algorithms. Therefore, in this paper, a new Pareto-based algorithm called controlled elitism non-dominated sorting genetic algorithm (CENSGA) is proposed for the multi-objective FJSP (MOFJSP). Our considered objectives are makespan, critical machine work load, and total work load of machines. The proposed algorithm is also compared with one the best Pareto-based algorithms of the literature on some multi-objective criteria, statistically.

Keywords: Scheduling, Flexible job shop scheduling problem, controlled elitism non-dominated sorting genetic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
3672 Performance Evaluation of Task Scheduling Algorithm on LCQ Network

Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad

Abstract:

The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear types of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.

Keywords: Dynamic algorithm, Load imbalance, Mapping, Task scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
3671 Customization of a Real-Time Operating System Scheduler with Aspect-Oriented Programming

Authors: Kazuki Abe, Myungryun Yoo, Takanori Yokoyama

Abstract:

Tasks of an application program of an embedded system are managed by the scheduler of a real-time operating system (RTOS). Most RTOSs adopt just fixed priority scheduling, which is not optimal in all cases. Some applications require earliest deadline first (EDF) scheduling, which is an optimal scheduling algorithm. In order to develop an efficient real-time embedded system, the scheduling algorithm of the RTOS should be selectable. The paper presents a method to customize the scheduler using aspectoriented programming. We define aspects to replace the fixed priority scheduling mechanism of an OSEK OS with an EDF scheduling mechanism. By using the aspects, we can customize the scheduler without modifying the original source code. We have applied the aspects to an OSEK OS and get a customized operating system with EDF scheduling. The evaluation results show that the overhead of aspect-oriented programming is small enough.

Keywords: aspect-oriented programming, embedded system, operating system, real-time system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
3670 A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)

Authors: R. Sahraian, A. Karampour Haghighi, E. Ghasemi

Abstract:

Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.

Keywords: Integrated process planning and scheduling, multi objective, MILP, Particle swarm optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
3669 Comparative Study of Scheduling Algorithms for LTE Networks

Authors: Samia Dardouri, Ridha Bouallegue

Abstract:

Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.

Keywords: LTE, Multimedia flows, Scheduling algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4764
3668 Analysis and Research of Two-Level Scheduling Profile for Open Real-Time System

Authors: Yongxian Jin, Jingzhou Huang

Abstract:

In an open real-time system environment, the coexistence of different kinds of real-time and non real-time applications makes the system scheduling mechanism face new requirements and challenges. One two-level scheduling scheme of the open real-time systems is introduced, and points out that hard and soft real-time applications are scheduled non-distinctively as the same type real-time applications, the Quality of Service (QoS) cannot be guaranteed. It has two flaws: The first, it can not differentiate scheduling priorities of hard and soft real-time applications, that is to say, it neglects characteristic differences between hard real-time applications and soft ones, so it does not suit a more complex real-time environment. The second, the worst case execution time of soft real-time applications cannot be predicted exactly, so it is not worth while to cost much spending in order to assure all soft real-time applications not to miss their deadlines, and doing that may cause resource wasting. In order to solve this problem, a novel two-level real-time scheduling mechanism (including scheduling profile and scheduling algorithm) which adds the process of dealing with soft real-time applications is proposed. Finally, we verify real-time scheduling mechanism from two aspects of theory and experiment. The results indicate that our scheduling mechanism can achieve the following objectives. (1) It can reflect the difference of priority when scheduling hard and soft real-time applications. (2) It can ensure schedulability of hard real-time applications, that is, their rate of missing deadline is 0. (3) The overall rate of missing deadline of soft real-time applications can be less than 1. (4) The deadline of a non-real-time application is not set, whereas the scheduling algorithm that server 0 S uses can avoid the “starvation" of jobs and increase QOS. By doing that, our scheduling mechanism is more compatible with different types of applications and it will be applied more widely.

Keywords: Hard real-time, two-level scheduling profile, open real-time system, non-distinctive schedule, soft real-time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517