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Abstract—The paper deals with the classical fiber bundle model
of equal load sharing, sometimes referred to as the Daniels’ bundle
or the democratic bundle. Daniels formulated a multidimensional
integral and also a recursive formula for evaluation of the
strength cumulative distribution function. This paper describes
three algorithms for evaluation of the recursive formula and also
their implementations with source codes in the Python high-level
programming language. A comparison of the algorithms are provided
with respect to execution time. Analysis of orders of magnitudes of
addends in the recursion is also provided.
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I. INTRODUCTION

THIS PAPER deals with the classical fiber bundle model

with equal load sharing, sometimes referred to as the

Daniels bundle model [1] or the democratic bundle [4]. This

model is significant for the strength of fibrous materials and

composites, and the generally random strength of quasi-brittle

structures. The model is also relevant for the analysis of the

reliability of various parallel systems (computer components,

infrastructure etc.). Daniels formulated a multidimensional

integral and also recursive formula for the evaluation of

the strength distribution function. In the same paper, he

showed that the distribution of the strength of the bundle,

Gn(x), tends to Gaussian distribution under quite broad

conditions and he gave closed formulas for the mean value

and standard deviation of the Gaussian distribution. Sornette

[4] later confirmed this result using a Kolmogorov theorem.

The convergence of a random strength to Gaussian distribution

is very slow in terms of the number of fibers and therefore,

Smith [3] proposed a corrected term for the mean value that

improves the original Daniels formula for small bundles. Even

though the knowledge of the asymptotic form of Gn for the

number of fibers n → ∞ is important, the normality does

not hold in the tails of the distribution and it also does not

hold when there is a small number of parallel components in

the system (fibers). The real cumulative distribution function

(CDF) Gn strongly deviates from the normal distribution for

values of x far from the mean strength. Only a little is known

about the behavior of the tails. The left tail (x → 0) is of great

importance for reliability considerations, however.

In the present paper, the authors describe an analysis of the

recursive formula by Daniels. The advantage of the recursive

formula is that it provides exact values of the CDF Gn for
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arbitrary values of x and for any number of fibers n. The

disadvantage is that a naı̈ve implementation of the function

makes it usable only for bundles as small as approx 20 fibers.

However, we show that the number of arithmetic operations

can be significantly decreased by exploiting the fact that some

terms in the naı̈ve recursive formula are repeated. The authors

also describe a computer implementation carried out in the

Python high-level programming language [5] using the NumPy

[7] (scientific computing with arrays) and the mpmath [6]

(library for real and complex floating-point arithmetic with

arbitrary precision) packages. This implementation enables the

calculation of cumulative distribution function (CDF) values

for large numbers (thousands) of fibers in a bundle, including

values deep in the left tail of the distribution (probabilities

10−600). This computer program is used to accurately calculate

the distribution functions Gn for bundles with Weibull fibers

with the scale parameter s = 1, the varying number of

fibers n and the varying shape parameter m. The obtained

results are stored in a new created database and compared

to the available formulas [1]–[3]. The main motivation of the

work is to formulate an improved analytical formula for the

distribution function Gn that will be valid deep to the left tail

where the real distribution strongly deviates from the Gaussian

approximation.

II. BUNDLE STRENGTH

The cumulative distribution function, Gn, of bundle strength

formulated by Daniels [1] reads:

Gn (x) =
n∑

k=1

(−1)
k+1

(
n

k

)
[F (x)]

k
Gn−k

(
n x

n− k

)
(1)

where x is a value of random strength per fiber, X , for

which the probability P (X ≤ x) = Gn(x) is evaluated,

G1 (x) ≡ F (x), G0 (x) ≡ 1,
(
n
k

)
is the standard Binomial

coefficient and n is the number of fibers. The most frequently

selected distribution function for a single fiber, F (x), is

Weibull distribution. With no loss of generality, let us assume

the bundles contain Weibullian fibers (elements in parallel) so

that the CDF of the strength of single fiber is

F (x) = 1− e−(x/s)m (2)

where s is the scale parameter and m is the shape parameter.

III. IMPLEMETATIONS OF THE RECURSIVE FORMULA

The implementations were carried out in the Python

high-level programming language. Three approaches to
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evaluate the recursive formula (1) will be described in the

following text:

A. recursive implementation,

B. recursion with memoization, and

C. loop-based implementation (no recursion).

A. Recursive implementation

The recursive definition in (1) can be translated directly into

Python as follows:

1import math
2from scipy.misc import comb
3
4def Gn(x, scale , shape, n ):
5cdf = 1 − math.exp(−(x/scale)∗∗shape)
6if n < 1:
7return 1.
8if n == 1.:
9return cdf
10cdf k = 1.
11res = 0.
12for k in range(1, int (n )):
13cdf k ∗= cdf
14komb = comb(n, k) #binomial coefficient
15if k % 2 == 0.:
16komb = −komb
17res 1 = komb ∗ cdf k ∗ Gn((n / (n − k)) ∗ x,
18scale , shape, n − k)
19res += res 1
20
21cdf k ∗= cdf
22if n % 2 == 0.:
23res −= cdf k
24else :
25res += cdf k
26
27return res

This Python implementation is limited to n ≈ 20 due to the

execution time and precision of double-precision floating-point

format of numbers. The mpmath (library for real and complex

floating-point arithmetic with arbitrary precision) package was

used to remedy the precision problem however the problem

with an explosion of the number of recursive calls is still

present. This naı̈ve implementation of the recursive formula

(1) for Gn requires 2n − 1 function calls. For example, a

bundle with n = 50 fibers necessitates 1015 calls to get the

value of Gn for a single value of strength x.

B. Recursion with memoization

Although the straightforward implementation of the

recursive formula (1) (given above) is elegant and close

to the mathematical definition, it is not very practical.

The time required to calculate Gn(x) is exponential in

n. To remedy this, we can employ memoization to cache

previous computations. A closer look at the structure of the

formula (1) reveals that many identical terms for given n
and k are computer repeatedly. These terms can be stored

in memoization cache and accessed for repeated use. The

memoization cache is an 2D array gn arr where one axis is

accessed over n and the other one over k and the stored

value is the corresponding Gn(x). The memoized Gn function

recursively computes and stores the value of Gn(x) if it has not

been previously stored in the memo array. Otherwise it returns

the memoized value of Gn. The memoized values fill the lower

triangle of the array ( 12n(n+1) values). This implementation

uses packages NumPy to store data in an array and mpmath to

increase floating-point precision of numbers.

28import numpy as np
29import mpmath as mp
30
31# set number of decimal places for multiprecision numbers
32mp.mp.dps = 1000
33
34# pre−conversion of frequently used values
35MPF ZERO = mp.mpf(’0’)
36MPF ONE = mp.mpf(’1’)
37MPF TWO = mp.mpf(’2’)
38MPF THREE = mp.mpf(’3’)

MPF ZERO, MPF ONE,. . . are pre-converted values because

repeated type conversions from floats, strings and integers are

expensive. The precision used to evaluate Gn(x) up to n =
1500 was set to 1000 decimal places (3325 bits). This value

was found to be sufficient while considering demands on the

execution time and to requested accuracy. Any tests of optimal

precision were not performed yet.

The Binomial coefficients
(
n
k

)
are calculated including the

sign (−1)k+1 and stored in the lower triangle of 2D array

binom tab.

39def get binom tab(n):
40binom tab = np.zeros ((n, n ), dtype=object)
41for i in range(1, n + 1):
42for j in range(1, i + 1):
43binom tab[i − 1, j − 1] = (mp.binomial(i , j ) ∗
44(−1) ∗∗ ( j + 1))
45return binom tab

This array can be precalculated for greater n and stored in a

file on hard-disk. It is useful in case of repeated calculations.

The CDF of Weibull distribution is implemented

consistently with F (x) in (2):

46def weib cdf(x, shape, scale ):
47’’’ Cumulative distribution function of Weibull
48distribution with two parameters (shape and scale ).
49’’’
50return MPF ONE − mp.exp(−(x / scale) ∗∗ shape)

The following code shows the implementation of Gn(x)
with memoization:

51def gn mp(x, scale , shape, n, binom tab):
52’’’
53Return value of CDF of a bundle strength
54considering Weibullian fibers .
55
56Parameters
57−−−−−−−−−−
58x : mpf
59Bundle strength
60scale : mpf
61Scale parameter of Weibull distribution
62shape : mpf
63Shape parameter of Weibull distribution
64n : mpf
65Number of fibers
66
67Returns
68−−−−−−−
69out : mpf
70CDF value for the strength x
71
72Notes
73−−−−−
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74Parameters can be float but it can cause
75inaccuracies in results .
76
77Examples
78−−−−−−−−
79>>> mp.mp.pretty = True
80>>> mp.mp.dps = 30
81>>> shape = mp.mpf(’6.’)
82>>> scale = mp.mpf(’1.’)
83>>> n fil = mp.mpf(’10’)
84>>> x = mp.exp(mp.mpf(’−1’))
85>>> binom tab = get binom tab(n fil)
86>>> gn mp(x, scale, shape, n fil , binom tab)
870.000000329859130502740500994574682994
88’’’
89gn arr = np.zeros ((n, n ), dtype=object)
90gn arr . fill (None)
91cdf arr = np.zeros (n, dtype=object)
92cdf arr . fill (None)
93x arr = np.zeros (n, dtype=object)
94for i in range(1, int (n )):
95x arr [n − i] = mp. fraction (n, n − i) ∗ x
96def recursion gn mp(x val, scale , shape, n ):
97index n = int (n) − 1
98res = MPF ZERO
99cdf = cdf arr [index n]
100if cdf == None:
101cdf = weib cdf(x val , shape, scale )
102cdf arr [index n] = cdf
103for k in range(1, int (n) + 1):
104gn = gn arr[index n, k − 1]
105if gn == None:
106cdf k = cdf ∗∗ k
107komb = binom tab[index n, k − 1]
108if k != n:
109gn = (komb ∗ cdf k ∗
110recursion gn mp(x arr[index n ],
111scale , shape, n − k))
112else :
113gn = komb ∗ cdf k # ∗ G 0(x) (= 1.0)
114gn arr[index n, k − 1] = gn
115res += gn
116return res
117#execute recursion
118gn m = recursion gn mp(x, scale, shape, n)
119
120return gn m

Arrays x arr and cdf arr contain precalculated values of x
and F (x).

For number of fibers n > 980 the implementation will

raise error “RuntimeError: maximum recursion depth exceeded

in cmp”. This error is caused by the default Python setting

for maximum recursion depth – to increase it use import sys;
sys.setrecursionlimit(value). The default value can be obtained

by executing sys.getrecursionlimit(). The disadvantage of this

implementation is that the memoized values are accessed

repeatedly (
(n−2)2(n−1)

2 − (n−3)(n−2)(n−1)
3 times).

C. Loop-based implementation

The most efficient formulation of the algorithm, which is

also a computer implementation among the three seems to be

the following one. Let us divide (1) into three parts

Gn (x) =

n∑
k=1

(−1)k+1

(
n

k

)
︸ ︷︷ ︸

Bi,k

[F (x)]︸ ︷︷ ︸
Fi

k Gn−k

(
x

n

n− k

)
︸ ︷︷ ︸

Si

. (3)

At the highest level of recursion, formula (3) represents a

summation over k = 1, . . . , n. Each of these addends calls for

a recursion – an evaluation of the recursion function Gn(x)
with a new parameter n renamed here as nk = n − k.

By analyzing all arguments of random strength, x, one can

see that there are only n different values for which the

distribution function of strength is evaluated, namely xi = xn
i ,

i = 1, . . . , n. The values of x are stored in an array named

x arr.

For each element of vector x, one must compute the

distribution function of the strength of one fiber, F (x). Let

us now define a vector, F , that contains the values of the

basic CDF evaluated at points xi:

F : Fi = F (xi) = F
(
x
n

i

)
, i = 1, . . . , n (4)

This vector is precalculated and cached in computer memory

as an array named cdf arr at the beginning of computation. In

later stages of computation, the elements of this vector are

raised to integer powers k = 1, . . . , n.

The next ingredient is a lower triangular matrix B, with

n rows and n columns, pre-filled with binomial coefficients

multiplied by the alternating sign. Each element of the

triangular matrix initially reads

B : Bi,k = (−1)k+1

(
n

k

)
, i = 1, . . . , n and

k = 1, . . . , i. (5)

This matrix is stored in an array named gn arr.

Once these two ingredients are calculated, the algorithm

continues with the following two loops (the algorithm uses

in-place operations and updates values of B matrix):

1. Loop over n columns of the B matrix – Starting with

the first column k = 1, each column k = 1, . . . , n is

multiplied by the kth power of elements Fi: Bi,k =
Bi,kF

k
i for k = 1, . . . , n and i = k, .., n.

2. Loop over n−1 rows of the B matrix – Starting with the

row i = 2, run a cycle over rows i = 2 . . . , n that (i) sums

the elements in the preceding row: Si−1 =
∑i−1

k=1 Bi−1,k

and (ii) use this value to update (multiply) this value with

all elements of sub-diagonal number i within a cycle over

columns j = 1, . . . , n− i+1: Bi+j−1,j = Si−1Bi+j−1,j .

After these two cycles are finished, the sum of n elements

in the last row is the desired value of Gn(x):

Gn(x) = Sn =
n∑

k=1

Bn,k (6)

Fig. 1 shows a diagram of the triangular array for the number

of fibers n = 4; factors featured in 3 are highlighted.

We note that the sums Si of any row correspond to the

strength distribution function of a fiber bundle with i fibers

evaluated at load xn
i :

Si = Gi(x
n

i
) =

i∑
k=1

Bi,k i = 1, . . . , n. (7)

The following source code implements the described

algorithm.
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S1 =
∑

S2 =
∑

S3 =
∑

G4 =
∑

⎡
⎢⎢⎢⎢⎣

B1,1F 1
1

B2,1F 1
2 S1 B2,2F 2

2

B3,1F 1
3 S2 B3,2F 2

3 S1 B3,3F 3
3

B4,1F 1
4 S3 B4,2F 2

4 S2 B4,3F 3
4 S1 B4,4F 4

4

⎤
⎥⎥⎥⎥⎦

Fig. 1: Diagram of the cached array for the number of fibers n = 4. The
sum of the last line returns G4(x). (red: row indexes i, blue: column

indexes k, sums of rows Si as diagonal members)

121def gn mp(x, scale , shape, n, binom tab):
122’’’ see doc string in memoized version’’’
123ni = int (n) # retype n from mp.mpf to int
124cdf arr = np.zeros (ni , dtype=object)
125x arr = np.zeros (ni , dtype=object)
126# precalculate x and F(x) vectors
127for i in range(0, ni ):
128xx = mp. fraction (n, n − i) ∗ x
129x arr [ni − i − 1] = xx
130cdf arr [ni − i − 1] = weib cdf(xx, shape, scale )
131
132# prepare B matrix
133gn arr = binom tab[:ni , : ni ]. copy()
134for i in range(ni ): # loop 1
135gn arr[ i : ni , i ] ∗= cdf arr [ i : ni ] ∗∗ ( i + 1)
136
137for k in xrange(1, ni ): # loop 2
138idx1 = np.arange (0, ni − k)
139idx2 = np.arange(k, ni )
140idx3 = np.arange (0, k)
141gn arr[idx2 , idx1] ∗= np.sum(gn arr[k − 1, idx3])
142gn m = np.sum(gn arr[−1, :])
143
144return gn m

IV. DISCUSSION

Fig. 2 shows the measured execution times of the described

implementations to evaluate Gn(x) for a single value of load

(random strength) x and for various numbers of fibers. The

execution times for selected values of n are arranged in Tab. I.

The values of execution times of the recursive implementation

(A) were estimated on the basis of exponential dependency on

n.

TABLE I
CALCULATED AND ESTIMATED EXECUTION TIMES FOR

IMPLEMENTATIONS OF THE RECURSIVE FORMULA.

n A B C

50 8094 years 0.58 s 0.12 s

1000 2.5 · 10284 years 1 h 70 s

1500 — 3.5 h 167 s

[Dell T7610, 2x Intel Xeon E5-2687w, 192 GB, Kubuntu 14.04]

The implementations using mpmath enable to calculate

values of CDF for large numbers (thousands) of fibers

in bundle including values deep in the left tail of the

distribution (probabilities 10−600). In addition, the loop-based

implementation C reduces significantly the execution time

(speedup for n = 1000 compared to B is 51× and for

n = 1500 it is 75×).

Fig. 2: Execution time of implementations A, B, and C. Left: semi-log plot
shows the exponential dependence on n of the implementation A (blue

linear line). Right: log-log plot.

V. ANALYSIS OF ADDENDS

The analysis of the recursive formula exploited in algorithm

C seems to require the minimal possible number of arithmetic

operations. The only option how to reduce the computing

time could be to ignore elements of loop implementation that

are insignificant for the resulting Gn(x). To identify such

elements, the analysis of orders log10 Gi of magnitudes of

Gi was performed. The following results were obtained for

the number of fibers n = 100 and for the shape parameter

m = 6. The mean value of strength of one fiber μx = 0.928
(standard deviation σx = 0.180).
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Fig. 3: Left: left column plots orders of the sum of the row and triangle
contains orders of the B matrix. Right: CDF plot (blue line) and values of

x and F (x) used in evaluation of Gn (red crosses)

Fig. 3 shows results of Gn for the various strengths x:
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• x = 0.01 - the CDF value is G100 = 2.384334× 10−847

• x = 0.3 - the CDF value is G100 = 2.305565× 10−64

• x = μx = 0.98 - the CDF value is very close to 1 and

therefore we present the value of complement (survival

probability) 1−G100 = 2× 10−39

• x = 1.5 - the complement to the CDF value is G100 = 2×
10−495. In the right plot of Fig. 3, all values of F (x) are

close to 1 and this implies that the orders of magnitudes

in the left triangular plot are, in fact, just the orders of

the Binomial coefficients Bi,kF
k
i Si ≈ Bi,k ·1k ·1 = Bi,k.

Based on the analysis of contributions to the value of Gn from

the B matrix, we conclude that no systematic way of ignoring

any elements of the B matrix to further reduce the execution

time can be suggested.

VI. CONCLUSION

The paper describes three approaches to the implementation

of the recursive formula for evaluation of the cumulative

distribution function of random bundle strength with:

A) naı̈ve Python recursive implementation, B) recursive

implementation with memoization and mpmath, and C)

loop-based implementation. The last implementation (C)

significantly reduces the execution times and enables to

calculate Gn(x) for thousands of fibers and small probabilities.

The presented algorithms are used to create a database of

CDF of bundle strengths for various m and n parameters. The

database will serve as a data support for newly formulated

analytical approximate formulas for the CDF of Daniels

bundle strength.
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