Search results for: Database modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2729

Search results for: Database modeling

2219 Improving Spatiotemporal Change Detection: A High Level Fusion Approach for Discovering Uncertain Knowledge from Satellite Image Database

Authors: Wadii Boulila, Imed Riadh Farah, Karim Saheb Ettabaa, Basel Solaiman, Henda Ben Ghezala

Abstract:

This paper investigates the problem of tracking spa¬tiotemporal changes of a satellite image through the use of Knowledge Discovery in Database (KDD). The purpose of this study is to help a given user effectively discover interesting knowledge and then build prediction and decision models. Unfortunately, the KDD process for spatiotemporal data is always marked by several types of imperfections. In our paper, we take these imperfections into consideration in order to provide more accurate decisions. To achieve this objective, different KDD methods are used to discover knowledge in satellite image databases. Each method presents a different point of view of spatiotemporal evolution of a query model (which represents an extracted object from a satellite image). In order to combine these methods, we use the evidence fusion theory which considerably improves the spatiotemporal knowledge discovery process and increases our belief in the spatiotemporal model change. Experimental results of satellite images representing the region of Auckland in New Zealand depict the improvement in the overall change detection as compared to using classical methods.

Keywords: Knowledge discovery in satellite databases, knowledge fusion, data imperfection, data mining, spatiotemporal change detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
2218 Control-Oriented Enhanced Zero-Dimensional Two-Zone Combustion Modelling of Internal Combustion Engines

Authors: Razieh Arian, Hadi Adibi-Asl

Abstract:

This paper investigates an efficient combustion modeling for cycle simulation of internal combustion engine (ICE) studies. The term “efficient model” means that the models must generate desired simulation results while having fast simulation time. In other words, the efficient model is defined based on the application of the model. The objective of this study is to develop math-based models for control applications or shortly control-oriented models. This study compares different modeling approaches used to model the ICEs such as mean-value models, zero dimensional, quasi-dimensional, and multi-dimensional models for control applications. Mean-value models have been widely used for model-based control applications, but recently by developing advanced simulation tools (e.g. Maple/MapleSim) the higher order models (more complex) could be considered as control-oriented models. This paper presents the enhanced zero-dimensional cycle-by-cycle modeling and simulation of a spark ignition engine with a two-zone combustion model. The simulation results are cross-validated against the simulation results from GT-Power package and show a good agreement in terms of trends and values.

Keywords: Two-zone combustion, control-oriented model, wiebe function, internal combustion engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094
2217 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
2216 An Implicit Representation of Spherical Product for Increasing the Shape Variety of Super-quadrics in Implicit Surface Modeling

Authors: Pi-Chung Hsu

Abstract:

Super-quadrics can represent a set of implicit surfaces, which can be used furthermore as primitive surfaces to construct a complex object via Boolean set operations in implicit surface modeling. In fact, super-quadrics were developed to create a parametric surface by performing spherical product on two parametric curves and some of the resulting parametric surfaces were also represented as implicit surfaces. However, because not every parametric curve can be redefined implicitly, this causes only implicit super-elliptic and super-hyperbolic curves are applied to perform spherical product and so only implicit super-ellipsoids and hyperboloids are developed in super-quadrics. To create implicit surfaces with more diverse shapes than super-quadrics, this paper proposes an implicit representation of spherical product, which performs spherical product on two implicit curves like super-quadrics do. By means of the implicit representation, many new implicit curves such as polygonal, star-shaped and rose-shaped curves can be used to develop new implicit surfaces with a greater variety of shapes than super-quadrics, such as polyhedrons, hyper-ellipsoids, superhyperboloids and hyper-toroids containing star-shaped and roseshaped major and minor circles. Besides, the newly developed implicit surfaces can also be used to define new primitive implicit surfaces for constructing a more complex implicit surface in implicit surface modeling.

Keywords: Implicit surfaces, Soft objects, Super-quadrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
2215 Modeling Methodologies for Optimization and Decision Support on Coastal Transport Information System (Co.Tr.I.S.)

Authors: Vassilios Moussas, Dimos N. Pantazis, Panagiotis Stratakis

Abstract:

The aim of this paper is to present the optimization methodology developed in the frame of a Coastal Transport Information System. The system will be used for the effective design of coastal transportation lines and incorporates subsystems that implement models, tools and techniques that may support the design of improved networks. The role of the optimization and decision subsystem is to provide the user with better and optimal scenarios that will best fulfill any constrains, goals or requirements posed. The complexity of the problem and the large number of parameters and objectives involved led to the adoption of an evolutionary method (Genetic Algorithms). The problem model and the subsystem structure are presented in detail, and, its support for simulation is also discussed.

Keywords: Coastal transport, modeling, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
2214 Optimal Model Order Selection for Transient Error Autoregressive Moving Average (TERA) MRI Reconstruction Method

Authors: Abiodun M. Aibinu, Athaur Rahman Najeeb, Momoh J. E. Salami, Amir A. Shafie

Abstract:

An alternative approach to the use of Discrete Fourier Transform (DFT) for Magnetic Resonance Imaging (MRI) reconstruction is the use of parametric modeling technique. This method is suitable for problems in which the image can be modeled by explicit known source functions with a few adjustable parameters. Despite the success reported in the use of modeling technique as an alternative MRI reconstruction technique, two important problems constitutes challenges to the applicability of this method, these are estimation of Model order and model coefficient determination. In this paper, five of the suggested method of evaluating the model order have been evaluated, these are: The Final Prediction Error (FPE), Akaike Information Criterion (AIC), Residual Variance (RV), Minimum Description Length (MDL) and Hannan and Quinn (HNQ) criterion. These criteria were evaluated on MRI data sets based on the method of Transient Error Reconstruction Algorithm (TERA). The result for each criterion is compared to result obtained by the use of a fixed order technique and three measures of similarity were evaluated. Result obtained shows that the use of MDL gives the highest measure of similarity to that use by a fixed order technique.

Keywords: Autoregressive Moving Average (ARMA), MagneticResonance Imaging (MRI), Parametric modeling, Transient Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
2213 Evaluation of Hydrogen Particle Volume on Surfaces of Selected Nanocarbons

Authors: M. Ziółkowska, J. T. Duda, J. Milewska-Duda

Abstract:

This paper describes an approach to the adsorption phenomena modeling aimed at specifying the adsorption mechanisms on localized or nonlocalized adsorbent sites, when applied to the nanocarbons. The concept comes from the fundamental thermodynamic description of adsorption equilibrium and is based on numerical calculations of the hydrogen adsorbed particles volume on the surface of selected nanocarbons: single-walled nanotube and nanocone. This approach enables to obtain information on adsorption mechanism and then as a consequence to take appropriate mathematical adsorption model, thus allowing for a more reliable identification of the material porous structure. Theoretical basis of the approach is discussed and newly derived results of the numerical calculations are presented for the selected nanocarbons.

Keywords: Adsorption, mathematical modeling, nanocarbons, numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
2212 GMDH Modeling Based on Polynomial Spline Estimation and Its Applications

Authors: LI qiu-min, TIAN yi-xiang, ZHANG gao-xun

Abstract:

GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline  stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).

Keywords: spline, GMDH, nonparametric, bias, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
2211 Riemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images

Authors: Mohamed Gouskir, Belaid Bouikhalene, Hicham Aissaoui, Benachir Elhadadi

Abstract:

In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in this paper, is the use of an edge-based anisotropic diffusion tensor for the segmentation task by integrating both image edge geometry and Riemannian manifold (geodesic, metric tensor) to regularize the convergence contour and extract complex anatomical structures. We check the accuracy of the segmentation results on simulated brain MRI scans of single T1-weighted, T2-weighted and Proton Density sequences. We validate our approach using two different databases: BrainWeb database, and MRI Multiple sclerosis Database (MRI MS DB). We have compared, qualitatively and quantitatively, our approach with the well-known brain extraction algorithms. We show that using a Riemannian manifolds to medical image analysis improves the efficient results to brain extraction, in real time, outperforming the results of the standard techniques.

Keywords: Riemannian manifolds, Riemannian Tensor, Brain Segmentation, Non-Euclidean data, Brain Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
2210 Kinetic Modeling of the Fischer-Tropsch Reactions and Modeling Steady State Heterogeneous Reactor

Authors: M. Ahmadi Marvast, M. Sohrabi, H. Ganji

Abstract:

The rate of production of main products of the Fischer-Tropsch reactions over Fe/HZSM5 bifunctional catalyst in a fixed bed reactor is investigated at a broad range of temperature, pressure, space velocity, H2/CO feed molar ratio and CO2, CH4 and water flow rates. Model discrimination and parameter estimation were performed according to the integral method of kinetic analysis. Due to lack of mechanism development for Fisher – Tropsch Synthesis on bifunctional catalysts, 26 different models were tested and the best model is selected. Comprehensive one and two dimensional heterogeneous reactor models are developed to simulate the performance of fixed-bed Fischer – Tropsch reactors. To reduce computational time for optimization purposes, an Artificial Feed Forward Neural Network (AFFNN) has been used to describe intra particle mass and heat transfer diffusion in the catalyst pellet. It is seen that products' reaction rates have direct relation with H2 partial pressure and reverse relation with CO partial pressure. The results show that the hybrid model has good agreement with rigorous mechanistic model, favoring that the hybrid model is about 25-30 times faster.

Keywords: Fischer-Tropsch, heterogeneous modeling, kinetic study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2816
2209 Zero Truncated Strict Arcsine Model

Authors: Y. N. Phang, E. F. Loh

Abstract:

The zero truncated model is usually used in modeling count data without zero. It is the opposite of zero inflated model. Zero truncated Poisson and zero truncated negative binomial models are discussed and used by some researchers in analyzing the abundance of rare species and hospital stay. Zero truncated models are used as the base in developing hurdle models. In this study, we developed a new model, the zero truncated strict arcsine model, which can be used as an alternative model in modeling count data without zero and with extra variation. Two simulated and one real life data sets are used and fitted into this developed model. The results show that the model provides a good fit to the data. Maximum likelihood estimation method is used in estimating the parameters.

Keywords: Hurdle models, maximum likelihood estimation method, positive count data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
2208 Context Modeling and Reasoning Approach in Context-Aware Middleware for URC System

Authors: Chung-Seong Hong, Hyung-Sun Kim, Joonmyun Cho, Hyun Kyu Cho, Hyun-Chan Lee

Abstract:

To realize the vision of ubiquitous computing, it is important to develop a context-aware infrastructure which can help ubiquitous agents, services, and devices become aware of their contexts because such computational entities need to adapt themselves to changing situations. A context-aware infrastructure manages the context model representing contextual information and provides appropriate information. In this paper, we introduce Context-Aware Middleware for URC System (hereafter CAMUS) as a context-aware infrastructure for a network-based intelligent robot system and discuss the ontology-based context modeling and reasoning approach which is used in that infrastructure.

Keywords: CAMUS, Context-Aware, Context Model, Ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
2207 Fuzzy Modeling Tool for Creating a Component Model of Information System

Authors: Bogdan Walek, Jiri Bartos, Cyril Klimes, Jaroslav Prochazka, Pavel Smolka, Juraj Masar, Martin Pesl

Abstract:

This paper focuses on creating a component model of information system under uncertainty. The paper identifies problem in current approach of component modeling and proposes fuzzy tool, which will work with vague customer requirements and propose components of the resulting component model. The proposed tool is verified on specific information system and results are shown in paper. After finding suitable sub-components of the resulting component model, the component model is visualised by tool.

Keywords: Component, component model, fuzzy, fuzzy rules, fuzzy sets, information system, modelling, tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
2206 Empirical Statistical Modeling of Rainfall Prediction over Myanmar

Authors: Wint Thida Zaw, Thinn Thu Naing

Abstract:

One of the essential sectors of Myanmar economy is agriculture which is sensitive to climate variation. The most important climatic element which impacts on agriculture sector is rainfall. Thus rainfall prediction becomes an important issue in agriculture country. Multi variables polynomial regression (MPR) provides an effective way to describe complex nonlinear input output relationships so that an outcome variable can be predicted from the other or others. In this paper, the modeling of monthly rainfall prediction over Myanmar is described in detail by applying the polynomial regression equation. The proposed model results are compared to the results produced by multiple linear regression model (MLR). Experiments indicate that the prediction model based on MPR has higher accuracy than using MLR.

Keywords: Polynomial Regression, Rainfall Forecasting, Statistical forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2631
2205 Effect of Temperature on the Performance of Multi-Stage Distillation

Authors: A. Diaf, H. Aburideh, Z.Tigrine, D. Tassalit, F.Alaoui

Abstract:

The tray/multi-tray distillation process is a topic that has been investigated to great detail over the last decade by many teams such as Jubran et al. [1], Adhikari et al. [2], Mowla et al. [3], Shatat et al. [4] and Fath [5] to name a few. A significant amount of work and effort was spent focusing on modeling and/simulation of specific distillation hardware designs. In this work, we have focused our efforts on investigating and gathering experimental data on several engineering and design variables to quantify their influence on the yield of the multi-tray distillation process. Our goals are to generate experimental performance data to bridge some existing gaps in the design, engineering, optimization and theoretical modeling aspects of the multi-tray distillation process.

Keywords: Distillation, Desalination, Multi-Stage still, Solar Energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
2204 Accurate And Efficient Global Approximation using Adaptive Polynomial RSM for Complex Mechanical and Vehicular Performance Models

Authors: Y. Z. Wu, Z. Dong, S. K. You

Abstract:

Global approximation using metamodel for complex mathematical function or computer model over a large variable domain is often needed in sensibility analysis, computer simulation, optimal control, and global design optimization of complex, multiphysics systems. To overcome the limitations of the existing response surface (RS), surrogate or metamodel modeling methods for complex models over large variable domain, a new adaptive and regressive RS modeling method using quadratic functions and local area model improvement schemes is introduced. The method applies an iterative and Latin hypercube sampling based RS update process, divides the entire domain of design variables into multiple cells, identifies rougher cells with large modeling error, and further divides these cells along the roughest dimension direction. A small number of additional sampling points from the original, expensive model are added over the small and isolated rough cells to improve the RS model locally until the model accuracy criteria are satisfied. The method then combines local RS cells to regenerate the global RS model with satisfactory accuracy. An effective RS cells sorting algorithm is also introduced to improve the efficiency of model evaluation. Benchmark tests are presented and use of the new metamodeling method to replace complex hybrid electrical vehicle powertrain performance model in vehicle design optimization and optimal control are discussed.

Keywords: Global approximation, polynomial response surface, domain decomposition, domain combination, multiphysics modeling, hybrid powertrain optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
2203 Optic Disc Detection by Earth Mover's Distance Template Matching

Authors: Fernando C. Monteiro, Vasco Cadavez

Abstract:

This paper presents a method for the detection of OD in the retina which takes advantage of the powerful preprocessing techniques such as the contrast enhancement, Gabor wavelet transform for vessel segmentation, mathematical morphology and Earth Mover-s distance (EMD) as the matching process. The OD detection algorithm is based on matching the expected directional pattern of the retinal blood vessels. Vessel segmentation method produces segmentations by classifying each image pixel as vessel or nonvessel, based on the pixel-s feature vector. Feature vectors are composed of the pixel-s intensity and 2D Gabor wavelet transform responses taken at multiple scales. A simple matched filter is proposed to roughly match the direction of the vessels at the OD vicinity using the EMD. The minimum distance provides an estimate of the OD center coordinates. The method-s performance is evaluated on publicly available DRIVE and STARE databases. On the DRIVE database the OD center was detected correctly in all of the 40 images (100%) and on the STARE database the OD was detected correctly in 76 out of the 81 images, even in rather difficult pathological situations.

Keywords: Diabetic retinopathy, Earth Mover's distance, Gabor wavelets, optic disc detection, retinal images

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
2202 Modeling of the Internet Film Piracy - Preliminary Report

Authors: Pavel Janak

Abstract:

This paper covers various aspects of film piracy over the Internet. In order to successfully deal with this matter, it is needed to recognize motivational factors related to film piracy. Thus, this study discusses group factors that could motivate individuals to engage in pirate activities. Furthermore, the paper discusses the theoretical effect on box office revenues and explains it on a proposed scheme of solutions for decreasing revenues. The article also maps the scheme of incentive motivational anti-piracy campaigns. Moreover, the paper proposes the preliminary scheme for system dynamic modeling of the Internet film piracy. Scheme is developed as a model of behaviors, influences and relations among the elements pertaining to the Internet film piracy.

Keywords: Box office, Cinema, Film, Internet piracy, Uploading

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
2201 Behavioral Modeling Accuracy for RF Power Amplifier with Memory Effects

Authors: Chokri Jebali, Noureddine Boulejfen, Ali Gharsallah, Fadhel M. Ghannouchi

Abstract:

In this paper, a system level behavioural model for RF power amplifier, which exhibits memory effects, and based on multibranch system is proposed. When higher order terms are included, the memory polynomial model (MPM) exhibits numerical instabilities. A set of memory orthogonal polynomial model (OMPM) is introduced to alleviate the numerical instability problem associated to MPM model. A data scaling and centring algorithm was applied to improve the power amplifier modeling accuracy. Simulation results prove that the numerical instability can be greatly reduced, as well as the model precision improved with nonlinear model.

Keywords: power amplifier, orthogonal model, polynomialmodel , memory effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
2200 Researches on Simulation and Validation of Airborne Enhanced Ground Proximity Warning System

Authors: Ma Shidong, He Yuncheng, Wang Zhong, Yang Guoqing

Abstract:

In this paper, enhanced ground proximity warning simulation and validation system is designed and implemented. First, based on square grid and sub-grid structure, the global digital terrain database is designed and constructed. Terrain data searching is implemented through querying the latitude and longitude bands and separated zones of global terrain database with the current aircraft position. A combination of dynamic scheduling and hierarchical scheduling is adopted to schedule the terrain data, and the terrain data can be read and delete dynamically in the memory. Secondly, according to the scope, distance, approach speed information etc. to the dangerous terrain in front, and using security profiles calculating method, collision threat detection is executed in real-time, and provides caution and warning alarm. According to this scheme, the implementation of the enhanced ground proximity warning simulation system is realized. Simulations are carried out to verify a good real-time in terrain display and alarm trigger, and the results show simulation system is realized correctly, reasonably and stable.

Keywords: enhanced ground proximity warning system, digital terrain, look-ahead terrain alarm, terrain display, simulation and validation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
2199 Numerical Modeling of Various Support Systems to Stabilize Deep Excavations

Authors: M. Abdallah

Abstract:

Urban development requires deep excavations near buildings and other structures. Deep excavation has become more a necessity for better utilization of space as the population of the world has dramatically increased. In Lebanon, some urban areas are very crowded and lack spaces for new buildings and underground projects, which makes the usage of underground space indispensable. In this paper, a numerical modeling is performed using the finite element method to study the deep excavation-diaphragm wall soil-structure interaction in the case of nonlinear soil behavior. The study is focused on a comparison of the results obtained using different support systems. Furthermore, a parametric study is performed according to the remoteness of the structure.

Keywords: Deep excavation, ground anchors, interaction, struts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086
2198 A Hidden Markov Model for Modeling Pavement Deterioration under Incomplete Monitoring Data

Authors: Nam Lethanh, Bryan T. Adey

Abstract:

In this paper, the potential use of an exponential hidden Markov model to model a hidden pavement deterioration process, i.e. one that is not directly measurable, is investigated. It is assumed that the evolution of the physical condition, which is the hidden process, and the evolution of the values of pavement distress indicators, can be adequately described using discrete condition states and modeled as a Markov processes. It is also assumed that condition data can be collected by visual inspections over time and represented continuously using an exponential distribution. The advantage of using such a model in decision making process is illustrated through an empirical study using real world data.

Keywords: Deterioration modeling, Exponential distribution, Hidden Markov model, Pavement management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
2197 Formal Analysis of a Public-Key Algorithm

Authors: Markus Kaiser, Johannes Buchmann

Abstract:

In this article, a formal specification and verification of the Rabin public-key scheme in a formal proof system is presented. The idea is to use the two views of cryptographic verification: the computational approach relying on the vocabulary of probability theory and complexity theory and the formal approach based on ideas and techniques from logic and programming languages. A major objective of this article is the presentation of the first computer-proved implementation of the Rabin public-key scheme in Isabelle/HOL. Moreover, we explicate a (computer-proven) formalization of correctness as well as a computer verification of security properties using a straight-forward computation model in Isabelle/HOL. The analysis uses a given database to prove formal properties of our implemented functions with computer support. The main task in designing a practical formalization of correctness as well as efficient computer proofs of security properties is to cope with the complexity of cryptographic proving. We reduce this complexity by exploring a light-weight formalization that enables both appropriate formal definitions as well as efficient formal proofs. Consequently, we get reliable proofs with a minimal error rate augmenting the used database, what provides a formal basis for more computer proof constructions in this area.

Keywords: public-key encryption, Rabin public-key scheme, formalproof system, higher-order logic, formal verification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
2196 Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices

Authors: Virendra J. Majarikar, Harikrishnan N. Unni

Abstract:

This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.

Keywords: COMSOL, electrokinetic, electroosmotic, microfluidics, zeta potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
2195 The Establishment of Cause-System of Poor Construction Site Safety and Priority Analysis from Different Perspectives

Authors: Shirong Li, Xueping Xiang

Abstract:

Construction site safety in China has aroused comprehensive concern all over the world. It is imperative to investigate the main causes of poor construction site safety. This paper divides all the causes into four aspects, namely the factors of workers, object, environment and management and sets up the accident causes element system based on Delphi Method. This is followed by the application of structural equation modeling to examine the importance of each aspect of causes from the standpoints of different roles related to the construction respectively. The results indicate that all the four aspects of factors are in need of improvement, and different roles have different ideas considering the priority of those factors. The paper has instructive significance for the practitioners to take measures to improve construction site safety in China accordingly.

Keywords: construction site safety, Delphi Method, structuralequation modeling, different perspective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
2194 Determination and Assessment of Ground Motion and Spectral Parameters for Iran

Authors: G. Ghodrati Amiri, M. Khorasani, Razavian Ameri, M.Mohamadi Dehcheshmeh, S.Fathi

Abstract:

Many studies have been conducted for derivation of attenuation relationships worldwide, however few relationships have been developed to use for the seismic region of Iranian plateau and only few of these studies have been conducted for derivation of attenuation relationships for parameters such as uniform duration. Uniform duration is the total time during which the acceleration is larger than a given threshold value (default is 5% of PGA). In this study, the database was same as that used previously by Ghodrati Amiri et al. (2007) with same correction methods for earthquake records in Iran. However in this study, records from earthquakes with MS< 4.0 were excluded from this database, each record has individually filtered afterward, and therefore the dataset has been expanded. These new set of attenuation relationships for Iran are derived based on tectonic conditions with soil classification into rock and soil. Earthquake parameters were chosen to be hypocentral distance and magnitude in order to make it easier to use the relationships for seismic hazard analysis. Tehran is the capital city of Iran wit ha large number of important structures. In this study, a probabilistic approach has been utilized for seismic hazard assessment of this city. The resulting uniform duration against return period diagrams are suggested to be used in any projects in the area.

Keywords: Attenuation Relationships, Iran, Probabilistic Seismic Hazard Analysis, Tehran, Uniform Duration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
2193 Simulation Modeling of Manufacturing Systems for the Serial Route and the Parallel One

Authors: Tadeusz Witkowski, Paweł Antczak, Arkadiusz Antczak

Abstract:

In the paper we discuss the influence of the route flexibility degree, the open rate of operations and the production type coefficient on makespan. The flexible job-open shop scheduling problem FJOSP (an extension of the classical job shop scheduling) is analyzed. For the analysis of the production process we used a hybrid heuristic of the GRASP (greedy randomized adaptive search procedure) with simulated annealing algorithm. Experiments with different levels of factors have been considered and compared. The GRASP+SA algorithm has been tested and illustrated with results for the serial route and the parallel one.

Keywords: Makespan, open shop, route flexibility, serial and parallel route, simulation modeling, type of production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
2192 A Novel Approach for Protein Classification Using Fourier Transform

Authors: A. F. Ali, D. M. Shawky

Abstract:

Discovering new biological knowledge from the highthroughput biological data is a major challenge to bioinformatics today. To address this challenge, we developed a new approach for protein classification. Proteins that are evolutionarily- and thereby functionally- related are said to belong to the same classification. Identifying protein classification is of fundamental importance to document the diversity of the known protein universe. It also provides a means to determine the functional roles of newly discovered protein sequences. Our goal is to predict the functional classification of novel protein sequences based on a set of features extracted from each protein sequence. The proposed technique used datasets extracted from the Structural Classification of Proteins (SCOP) database. A set of spectral domain features based on Fast Fourier Transform (FFT) is used. The proposed classifier uses multilayer back propagation (MLBP) neural network for protein classification. The maximum classification accuracy is about 91% when applying the classifier to the full four levels of the SCOP database. However, it reaches a maximum of 96% when limiting the classification to the family level. The classification results reveal that spectral domain contains information that can be used for classification with high accuracy. In addition, the results emphasize that sequence similarity measures are of great importance especially at the family level.

Keywords: Bioinformatics, Artificial Neural Networks, Protein Sequence Analysis, Feature Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359
2191 Attribute Based Comparison and Selection of Modular Self-Reconfigurable Robot Using Multiple Attribute Decision Making Approach

Authors: Manpreet Singh, V. P. Agrawal, Gurmanjot Singh Bhatti

Abstract:

From the last decades, there is a significant technological advancement in the field of robotics, and a number of modular self-reconfigurable robots were introduced that can help in space exploration, bucket to stuff, search, and rescue operation during earthquake, etc. As there are numbers of self-reconfigurable robots, choosing the optimum one is always a concern for robot user since there is an increase in available features, facilities, complexity, etc. The objective of this research work is to present a multiple attribute decision making based methodology for coding, evaluation, comparison ranking and selection of modular self-reconfigurable robots using a technique for order preferences by similarity to ideal solution approach. However, 86 attributes that affect the structure and performance are identified. A database for modular self-reconfigurable robot on the basis of different pertinent attribute is generated. This database is very useful for the user, for selecting a robot that suits their operational needs. Two visual methods namely linear graph and spider chart are proposed for ranking of modular self-reconfigurable robots. Using five robots (Atron, Smores, Polybot, M-Tran 3, Superbot), an example is illustrated, and raking of the robots is successfully done, which shows that Smores is the best robot for the operational need illustrated, and this methodology is found to be very effective and simple to use.

Keywords: Self-reconfigurable robots, MADM, TOPSIS, morphogenesis, scalability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
2190 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco

Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui

Abstract:

The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).

Keywords: Landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate, Morocco.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988