Search results for: tablet optimization.
1409 Shape Optimization of Impeller Blades for a Bidirectional Axial Flow Pump using Polynomial Surrogate Model
Authors: I. S. Jung, W. H. Jung, S. H. Baek, S. Kang
Abstract:
This paper describes the shape optimization of impeller blades for a anti-heeling bidirectional axial flow pump used in ships. In general, a bidirectional axial pump has an efficiency much lower than the classical unidirectional pump because of the symmetry of the blade type. In this paper, by focusing on a pump impeller, the shape of blades is redesigned to reach a higher efficiency in a bidirectional axial pump. The commercial code employed in this simulation is CFX v.13. CFD result of pump torque, head, and hydraulic efficiency was compared. The orthogonal array (OA) and analysis of variance (ANOVA) techniques and surrogate model based optimization using orthogonal polynomial, are employed to determine the main effects and their optimal design variables. According to the optimal design, we confirm an effective design variable in impeller blades and explain the optimal solution, the usefulness for satisfying the constraints of pump torque and head.Keywords: Bidirectional axial flow pump, Impeller blade, CFD, Analysis of variance, Polynomial surrogate model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37771408 Hybrid Gravity Gradient Inversion-Ant Colony Optimization Algorithm for Motion Planning of Mobile Robots
Authors: Meng Wu
Abstract:
Motion planning is a common task required to be fulfilled by robots. A strategy combining Ant Colony Optimization (ACO) and gravity gradient inversion algorithm is proposed for motion planning of mobile robots. In this paper, in order to realize optimal motion planning strategy, the cost function in ACO is designed based on gravity gradient inversion algorithm. The obstacles around mobile robot can cause gravity gradient anomalies; the gradiometer is installed on the mobile robot to detect the gravity gradient anomalies. After obtaining the anomalies, gravity gradient inversion algorithm is employed to calculate relative distance and orientation between mobile robot and obstacles. The relative distance and orientation deduced from gravity gradient inversion algorithm is employed as cost function in ACO algorithm to realize motion planning. The proposed strategy is validated by the simulation and experiment results.
Keywords: Motion planning, gravity gradient inversion algorithm, ant colony optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11471407 Minimizing Risk Costs through Optimal Responses in NPD Projects
Authors: Chan-Sik Kim, Jong-Seong Kim, Se Won Lee, Hoo-Gon Choi
Abstract:
In rapidly changing market environment, firms are investing a lot of time and resources into new product development (NPD) projects to make profit and to obtain competitive advantage. However, failure rate of NPD projects is becoming high due to various internal and external risks which hinder successful NPD projects. To reduce the failure rate, it is critical that risks have to be managed effectively and efficiently through good strategy, and treated by optimal responses to minimize risk cost. Four strategies are adopted to handle the risks in this study. The optimal responses are characterized by high reduction of risk costs with high efficiency. This study suggests a framework to decide the optimal responses considering the core risks, risk costs, response efficiency and response costs for successful NPD projects. Both binary particles warm optimization (BPSO) and multi-objective particle swarm optimization (MOPSO) methods are mainly used in the framework. Although several limitations exist in use for real industries, the frame work shows good strength for handling the risks with highly scientific ways through an example.
Keywords: NPD projects, risk cost, strategy, optimal responses, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19571406 Design Parameters Selection and Optimization of Weld Zone Development in Resistance Spot Welding
Authors: Norasiah Muhammad, Yupiter HP Manurung
Abstract:
This paper investigates the development of weld zone in Resistance Spot Welding (RSW) which focuses on weld nugget and Heat Affected Zone (HAZ). The effects of four factors namely weld current, weld time, electrode force and hold time were studied using a general 24 factorial design augmented by five centre points. The results of the analysis showed that all selected factors except hold time exhibit significant effect on weld nugget radius and HAZ size. Optimization of the welding parameters (weld current, weld time and electrode force) to normalize weld nugget and to minimize HAZ size was then conducted using Central Composite Design (CCD) in Response Surface Methodology (RSM) and the optimum parameters were determined. A regression model for radius of weld nugget and HAZ size was developed and its adequacy was evaluated. The experimental results obtained under optimum operating conditions were then compared with the predicted values and were found to agree satisfactorily with each otherKeywords: Factorial design, Optimization, Resistance Spot Welding (RSW), Response Surface Methodology (RSM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34131405 Optimization of Soybean Oil by Modified Supercritical Carbon Dioxide
Authors: N. R. Putra, A. H. Abdul Aziz, A. S. Zaini, Z. Idham, F. Idrus, M. Z. Bin Zullyadini, M. A. Che Yunus
Abstract:
The content of omega-3 in soybean oil is important in the development of infants and is an alternative for the omega-3 in fish oils. The investigation of extraction of soybean oil is needed to obtain the bioactive compound in the extract. Supercritical carbon dioxide extraction is modern and green technology to extract herbs and plants to obtain high quality extract due to high diffusivity and solubility of the solvent. The aim of this study was to obtain the optimum condition of soybean oil extraction by modified supercritical carbon dioxide. The soybean oil was extracted by using modified supercritical carbon dioxide (SC-CO2) under the temperatures of 40, 60, 80 °C, pressures of 150, 250, 350 Bar, and constant flow-rate of 10 g/min as the parameters of extraction processes. An experimental design was performed in order to optimize three important parameters of SC-CO2 extraction which are pressure (X1), temperature (X2) to achieve optimum yields of soybean oil. Box Behnken Design was applied for experimental design. From the optimization process, the optimum condition of extraction of soybean oil was obtained at pressure 338 Bar and temperature 80 °C with oil yield of 2.713 g. Effect of pressure is significant on the extraction of soybean oil by modified supercritical carbon dioxide. Increasing of pressure will increase the oil yield of soybean oil.
Keywords: Soybean oil, SC-CO2 extraction, yield, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9451404 Impact of Loading Conditions on the Emission- Economic Dispatch
Authors: M. R. Alrashidi, M. E. El-Hawary
Abstract:
Environmental awareness and the recent environmental policies have forced many electric utilities to restructure their operational practices to account for their emission impacts. One way to accomplish this is by reformulating the traditional economic dispatch problem such that emission effects are included in the mathematical model. This paper presents a Particle Swarm Optimization (PSO) algorithm to solve the Economic- Emission Dispatch problem (EED) which gained recent attention due to the deregulation of the power industry and strict environmental regulations. The problem is formulated as a multi-objective one with two competing functions, namely economic cost and emission functions, subject to different constraints. The inequality constraints considered are the generating unit capacity limits while the equality constraint is generation-demand balance. A novel equality constraint handling mechanism is proposed in this paper. PSO algorithm is tested on a 30-bus standard test system. Results obtained show that PSO algorithm has a great potential in handling multi-objective optimization problems and is capable of capturing Pareto optimal solution set under different loading conditions.Keywords: Economic emission dispatch, economic cost dispatch, particle swarm, multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18971403 A Study on the Assessment of Prosthetic Infection after Total Knee Replacement Surgery
Authors: Chang, Chun-Lang, Liu, Chun-Kai
Abstract:
This study, for its research subjects, uses patients who had undergone total knee replacement surgery from the database of the National Health Insurance Administration. Through the review of literatures and the interviews with physicians, important factors are selected after careful screening. Then using Cross Entropy Method, Genetic Algorithm Logistic Regression, and Particle Swarm Optimization, the weight of each factor is calculated and obtained. In the meantime, Excel VBA and Case Based Reasoning are combined and adopted to evaluate the system. Results show no significant difference found through Genetic Algorithm Logistic Regression and Particle Swarm Optimization with over 97% accuracy in both methods. Both ROC areas are above 0.87. This study can provide critical reference to medical personnel as clinical assessment to effectively enhance medical care quality and efficiency, prevent unnecessary waste, and provide practical advantages to resource allocation to medical institutes.Keywords: Total knee replacement, Case Based Reasoning, Cross Entropy Method, Genetic Algorithm Logistic Regression, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20331402 Meteorological Data Study and Forecasting Using Particle Swarm Optimization Algorithm
Authors: S. Esfandeh, M. Sedighizadeh
Abstract:
Weather systems use enormously complex combinations of numerical tools for study and forecasting. Unfortunately, due to phenomena in the world climate, such as the greenhouse effect, classical models may become insufficient mostly because they lack adaptation. Therefore, the weather forecast problem is matched for heuristic approaches, such as Evolutionary Algorithms. Experimentation with heuristic methods like Particle Swarm Optimization (PSO) algorithm can lead to the development of new insights or promising models that can be fine tuned with more focused techniques. This paper describes a PSO approach for analysis and prediction of data and provides experimental results of the aforementioned method on realworld meteorological time series.Keywords: Weather, Climate, PSO, Prediction, Meteorological
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20761401 Improved Multi-Objective Particle Swarm Optimization Applied to Design Problem
Authors: Kapse Swapnil, K. Shankar
Abstract:
Aiming at optimizing the weight and deflection of cantilever beam subjected to maximum stress and maximum deflection, Multi-objective Particle Swarm Optimization (MOPSO) with Utopia Point based local search is implemented. Utopia point is used to govern the search towards the Pareto Optimal set. The elite candidates obtained during the iterations are stored in an archive according to non-dominated sorting and also the archive is truncated based on least crowding distance. Local search is also performed on elite candidates and the most diverse particle is selected as the global best. This method is implemented on standard test functions and it is observed that the improved algorithm gives better convergence and diversity as compared to NSGA-II in fewer iterations. Implementation on practical structural problem shows that in 5 to 6 iterations, the improved algorithm converges with better diversity as evident by the improvement of cantilever beam on an average of 0.78% and 9.28% in the weight and deflection respectively compared to NSGA-II.Keywords: Utopia point, multi-objective particle swarm optimization, local search, cantilever beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9841400 Bioprocessing of Proximally Analyzed Wheat Straw for Enhanced Cellulase Production through Process Optimization with Trichodermaviride under SSF
Authors: Ishtiaq Ahmed, Muhammad Anjum Zia, Hafiz Muhammad Nasir Iqbal
Abstract:
The purpose of the present work was to study the production and process parameters optimization for the synthesis of cellulase from Trichoderma viride in solid state fermentation (SSF) using an agricultural wheat straw as substrates; as fungal conversion of lignocellulosic biomass for cellulase production is one among the major increasing demand for various biotechnological applications. An optimization of process parameters is a necessary step to get higher yield of product. Several kinetic parameters like pretreatment, extraction solvent, substrate concentration, initial moisture content, pH, incubation temperature and inoculum size were optimized for enhanced production of third most demanded industrially important cellulase. The maximum cellulase enzyme activity 398.10±2.43 μM/mL/min was achieved when proximally analyzed lignocellulosic substrate wheat straw inocubated at 2% HCl as pretreatment tool along with distilled water as extraction solvent, 3% substrate concentration 40% moisture content with optimum pH 5.5 at 45°C incubation temperature and 10% inoculum size.Keywords: Cellulase, Lignocellulosic residue, Processoptimization, Proximal analysis, SSF, Trichoderma viride.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25381399 Multiobjective Optimization Solution for Shortest Path Routing Problem
Authors: C. Chitra, P. Subbaraj
Abstract:
The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.Keywords: Multiobjective optimization, Non-dominated SortingGenetic Algorithm, Routing, Weighted sum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32651398 Design and Operation of a Multicarrier Energy System Based On Multi Objective Optimization Approach
Authors: Azadeh Maroufmashat, Sourena Sattari Khavas, Halle Bakhteeyar
Abstract:
Multi-energy systems will enhance the system reliability and power quality. This paper presents an integrated approach for the design and operation of distributed energy resources (DER) systems, based on energy hub modeling. A multi-objective optimization model is developed by considering an integrated view of electricity and natural gas network to analyze the optimal design and operating condition of DER systems, by considering two conflicting objectives, namely, minimization of total cost and the minimization of environmental impact which is assessed in terms of CO2 emissions. The mathematical model considers energy demands of the site, local climate data, and utility tariff structure, as well as technical and financial characteristics of the candidate DER technologies. To provide energy demands, energy systems including photovoltaic, and co-generation systems, boiler, central power grid are considered. As an illustrative example, a hotel in Iran demonstrates potential applications of the proposed method. The results prove that increasing the satisfaction degree of environmental objective leads to increased total cost.
Keywords: Multi objective optimization, DER systems, Energy hub, Cost, CO2 emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24661397 The Multi-scenario Knapsack Problem: An Adaptive Search Algorithm
Authors: Mhand Hifi, Hedi Mhalla, Mustapha Michaphy
Abstract:
In this paper, we study the multi-scenario knapsack problem, a variant of the well-known NP-Hard single knapsack problem. We investigate the use of an adaptive algorithm for solving heuristically the problem. The used method combines two complementary phases: a size reduction phase and a dynamic 2- opt procedure one. First, the reduction phase applies a polynomial reduction strategy; that is used for reducing the size problem. Second, the adaptive search procedure is applied in order to attain a feasible solution Finally, the performances of two versions of the proposed algorithm are evaluated on a set of randomly generated instances.
Keywords: combinatorial optimization, max-min optimization, knapsack, heuristics, problem reduction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16181396 Multiple Peaks Tracking Algorithm using Particle Swarm Optimization Incorporated with Artificial Neural Network
Authors: Mei Shan Ngan, Chee Wei Tan
Abstract:
Due to the non-linear characteristics of photovoltaic (PV) array, PV systems typically are equipped with the capability of maximum power point tracking (MPPT) feature. Moreover, in the case of PV array under partially shaded conditions, hotspot problem will occur which could damage the PV cells. Partial shading causes multiple peaks in the P-V characteristic curves. This paper presents a hybrid algorithm of Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN) MPPT algorithm for the detection of global peak among the multiple peaks in order to extract the true maximum energy from PV panel. The PV system consists of PV array, dc-dc boost converter controlled by the proposed MPPT algorithm and a resistive load. The system was simulated using MATLAB/Simulink package. The simulation results show that the proposed algorithm performs well to detect the true global peak power. The results of the simulations are analyzed and discussed.Keywords: Photovoltaic (PV), Partial Shading, Maximum Power Point Tracking (MPPT), Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37561395 A New Evolutionary Algorithm for Cluster Analysis
Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour
Abstract:
Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.
Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22771394 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems
Authors: Li Shoutao, Gordon Lee
Abstract:
Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.Keywords: adaptive fuzzy neural inference, evolutionary tuning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15101393 Capacity Optimization in Cooperative Cognitive Radio Networks
Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis
Abstract:
Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.Keywords: Cooperative networks, normalized capacity, sensing time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18791392 Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems
Authors: Konstantinos Metaxiotis, Konstantinos Liagkouras
Abstract:
The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics.
Keywords: MOEAs, Multiobjective optimization, ZDT test functions, performance metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9511391 Fixture Layout Optimization Using Element Strain Energy and Genetic Algorithm
Authors: Zeshan Ahmad, Matteo Zoppi, Rezia Molfino
Abstract:
The stiffness of the workpiece is very important to reduce the errors in manufacturing process. The high stiffness of the workpiece can be achieved by optimal positioning of fixture elements in the fixture. The minimization of the sum of the nodal deflection normal to the surface is used as objective function in previous research. The deflection in other direction has been neglected. The 3-2-1 fixturing principle is not valid for metal sheets due to its flexible nature. We propose a new fixture layout optimization method N-3-2-1 for metal sheets that uses the strain energy of the finite elements. This method combines the genetic algorithm and finite element analysis. The objective function in this method is to minimize the sum of all the element strain energy. By using the concept of element strain energy, the deformations in all the directions have been considered. Strain energy and stiffness are inversely proportional to each other. So, lower the value of strain energy, higher will be the stiffness. Two different kinds of case studies are presented. The case studies are solved for both objective functions; element strain energy and nodal deflection. The result are compared to verify the propose method.
Keywords: Fixture layout, optimization, fixturing element, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25641390 Data Mining Using Learning Automata
Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri
Abstract:
In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).Keywords: Data mining, Learning automata, Classification rules, Knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19351389 Comparative Evaluation of the Biopharmaceutical and Chemical Equivalence of the Some Commercial Brands of Paracetamol Tablets
Authors: Raniah Al-Shalabi, Omaima Al- Gohary, Samar Afify, Eram Eltahir
Abstract:
Acetaminophen (Paracetamol) tablets are popular OTC products among patients as analgesics and antipyretics. Paracetamol is marketed by a lot of suppliers around the world. The aim of the present investigation was to compare between many types of paracetamol tablets obtained from different suppliers (six brands produced by different pharmaceutical companies in middle east countries, and Panadol® manufactured in Ireland), by different quality control tests according to USP pharmacopeia.Using Non official tests-hardness and friability; official tests- disintegration, dissolution, and drug content. Additionally, evaluate the influence of temperatures 4°C, 25°C and 40°C at 75% relative humidity on the stability of the same brands in their original packaging has been conducted for two months. The results revealed that all paracetamol tablet brands complied with the official USP specifications. In conclusion, paracetamol tablets preferred to be stored at 25°C. All the tested brands being biopharmaceutically and chemically equivalent.
Keywords: Non official tests-hardness and friability, official tests –disintegration, dissolution, and drug content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32491388 Optimization of Deglet-Nour Date (Phoenix dactylifera L.) Phenol Extraction Conditions
Authors: Lekbir Adel, Alloui-Lombarkia Ourida, Mekentichi Sihem, Noui Yassine, Baississe Salima
Abstract:
The objective of this study was to optimize the extraction conditions for phenolic compounds, total flavonoids, and antioxidant activity from Deglet-Nour variety. The extraction of active components from natural sources depends on different factors. The knowledge of the effects of different extraction parameters is useful for the optimization of the process, as well for the ability to predict the extraction yield. The effects of extraction variables, namely types of solvent (methanol, ethanol and acetone) and extraction time (1h, 6h, 12h and 24h) on phenolics extraction yield were evaluated. It has been shown that the time of extraction and types of solvent have a statistically significant influence on the extraction of phenolic compounds from Deglet-Nour variety. The optimised conditions yielded values of 80.19 ± 6.37 mg GAE/100 g FW for TPC, 2.34 ± 0.27 mg QE/100 g FW for TFC and 90.20 ± 1.29% for antioxidant activity were methanol solvent and 6 hours of time. According to the results obtained in this study, Deglet-Nour variety can be considered as a natural source of phenolic compounds with good antioxidant capacity.
Keywords: Deglet-Nour variety, Date palm Fruit, Phenolic compounds, Total flavonoids, Antioxidant activity, Extraction, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26771387 A New Approach for Predicting and Optimizing Weld Bead Geometry in GMAW
Authors: Farhad Kolahan, Mehdi Heidari
Abstract:
Gas Metal Arc Welding (GMAW) processes is an important joining process widely used in metal fabrication industries. This paper addresses modeling and optimization of this technique using a set of experimental data and regression analysis. The set of experimental data has been used to assess the influence of GMAW process parameters in weld bead geometry. The process variables considered here include voltage (V); wire feed rate (F); torch Angle (A); welding speed (S) and nozzle-to-plate distance (D). The process output characteristics include weld bead height, width and penetration. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the GMAW process parameters. The objective is to determine a suitable set of process parameters that can produce desired bead geometry, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.Keywords: Weld Bead Geometry, GMAW welding, Processparameters Optimization, Modeling, SA algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21871386 Mechanical Modeling Issues in Optimization of Dynamic Behavior of RF MEMS Switches
Authors: Suhas K, Sripadaraja K
Abstract:
This paper details few mechanical modeling and design issues of RF MEMS switches. We concentrate on an electrostatically actuated broad side series switch; surface micromachined with a crab leg membrane. The same results are extended to any complex structure. With available experimental data and fabrication results, we present the variation in dynamic performance and compliance of the switch with reference to few design issues, which we find are critical in deciding the dynamic behavior of the switch, without compromise on the RF characteristics. The optimization of pull in voltage, transient time and resonant frequency with regard to these critical design parameters are also presented.Keywords: Microelectromechanical Systems (MEMS), RadioFrequency MEMS, Modeling, Actuators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17591385 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials
Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic
Abstract:
The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.
Keywords: Laser welding-brazing, finite element, response surface methodology, multi-response optimization, cross-beam laser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9611384 Optimization Model for Identification of Assembly Alternatives of Large-Scale, Make-to-Order Products
Authors: Henrik Prinzhorn, Peter Nyhuis, Johannes Wagner, Peter Burggräf, Torben Schmitz, Christina Reuter
Abstract:
Assembling large-scale products, such as airplanes, locomotives, or wind turbines, involves frequent process interruptions induced by e.g. delayed material deliveries or missing availability of resources. This leads to a negative impact on the logistical performance of a producer of xxl-products. In industrial practice, in case of interruptions, the identification, evaluation and eventually the selection of an alternative order of assembly activities (‘assembly alternative’) leads to an enormous challenge, especially if an optimized logistical decision should be reached. Therefore, in this paper, an innovative, optimization model for the identification of assembly alternatives that addresses the given problem is presented. It describes make-to-order, large-scale product assembly processes as a resource constrained project scheduling (RCPS) problem which follows given restrictions in practice. For the evaluation of the assembly alternative, a cost-based definition of the logistical objectives (delivery reliability, inventory, make-span and workload) is presented.Keywords: Assembly scheduling, large-scale products, make-to-order, rescheduling, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14371383 Optimizing PID Parameters Using Harmony Search
Authors: N. Arulanand, P. Dhara
Abstract:
Optimizing the parameters in the controller plays a vital role in the control theory and its applications. Optimizing the PID parameters is finding out the best value from the feasible solutions. Finding the optimal value is an optimization problem. Inverted Pendulum is a very good platform for control engineers to verify and apply different logics in the field of control theory. It is necessary to find an optimization technique for the controller to tune the values automatically in order to minimize the error within the given bounds. In this paper, the algorithmic concepts of Harmony search (HS) and Genetic Algorithm (GA) have been analyzed for the given range of values. The experimental results show that HS performs well than GA.Keywords: Genetic Algorithm, Harmony Search Algorithm, Inverted Pendulum, PID Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18081382 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community
Authors: Mohamed Ghorab
Abstract:
Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.
Keywords: Distributed energy resources, network energy system, optimization, microgeneration system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9401381 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance
Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian
Abstract:
Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.Keywords: Identification, Hammerstein-Wiener, optimization, quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7991380 Multi-objective Optimization with Fuzzy Based Ranking for TCSC Supplementary Controller to Improve Rotor Angle and Voltage Stability
Authors: S. Panda, S. C. Swain, A. K. Baliarsingh, A. K. Mohanty, C. Ardil
Abstract:
Many real-world optimization problems involve multiple conflicting objectives and the use of evolutionary algorithms to solve the problems has attracted much attention recently. This paper investigates the application of multi-objective optimization technique for the design of a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the performance of a power system. The design objective is to improve both rotor angle stability and system voltage profile. A Genetic Algorithm (GA) based solution technique is applied to generate a Pareto set of global optimal solutions to the given multi-objective optimisation problem. Further, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set. Simulation results are presented to show the effectiveness and robustness of the proposed approach.
Keywords: Multi-objective optimisation, thyristor controlled series compensator, power system stability, genetic algorithm, pareto solution set, fuzzy ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937