Search results for: degree of accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2608

Search results for: degree of accuracy

2128 A Structural and Magnetic Investigation of the Inversion Degree in Spinel NiFe2O4, ZnFe2O4 and Ni0.5Zn0.5Fe2O4 Ferrites Prepared by Soft Mechanochemical Synthesis

Authors: Z. Ž. Lazarević, D. L. Sekulić, V. N. Ivanovski, N. Ž. Romčević

Abstract:

NiFe2O4 (nickel ferrite), ZnFe2O4 (zinc ferrite) and Ni0.5Zn0.5Fe2O4 (nickel-zinc ferrite) were prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2/Fe(OH)3, Zn(OH)2/Fe(OH)3 and Ni(OH)2/Zn(OH)2/Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 25 h, 18 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase ferrite samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra allows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.

Keywords: Ferrites, Raman spectroscopy, IR spectroscopy, Mössbauer measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2991
2127 Investigation of Fire Damaged Concrete Using Nonlinear Resonance Vibration Method

Authors: Kang-Gyu Park, Sun-Jong Park, Hong Jae Yim, Hyo-Gyung Kwak

Abstract:

This paper attempts to evaluate the effect of fire damage on concrete by using nonlinear resonance vibration method, one of the nonlinear nondestructive method. Concrete exhibits not only nonlinear stress-strain relation but also hysteresis and discrete memory effect which are contained in consolidated materials. Hysteretic materials typically show the linear resonance frequency shift. Also, the shift of resonance frequency is changed according to the degree of micro damage. The degree of the shift can be obtained through nonlinear resonance vibration method. Five exposure scenarios were considered in order to make different internal micro damage. Also, the effect of post-fire-curing on fire-damaged concrete was taken into account to conform the change in internal damage. Hysteretic nonlinearity parameter was obtained by amplitudedependent resonance frequency shift after specific curing periods. In addition, splitting tensile strength was measured on each sample to characterize the variation of residual strength. Then, a correlation between the hysteretic nonlinearity parameter and residual strength was proposed from each test result.

Keywords: Fire damaged concrete, nonlinear resonance vibration method, nonlinearity parameter, post-fire-curing, splitting tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
2126 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios

Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong

Abstract:

Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.

Keywords: Decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
2125 The Optimization of an Intelligent Traffic Congestion Level Classification from Motorists- Judgments on Vehicle's Moving Patterns

Authors: Thammasak Thianniwet, Satidchoke Phosaard, Wasan Pattara-Atikom

Abstract:

We proposed a technique to identify road traffic congestion levels from velocity of mobile sensors with high accuracy and consistent with motorists- judgments. The data collection utilized a GPS device, a webcam, and an opinion survey. Human perceptions were used to rate the traffic congestion levels into three levels: light, heavy, and jam. Then the ratings and velocity were fed into a decision tree learning model (J48). We successfully extracted vehicle movement patterns to feed into the learning model using a sliding windows technique. The parameters capturing the vehicle moving patterns and the windows size were heuristically optimized. The model achieved accuracy as high as 99.68%. By implementing the model on the existing traffic report systems, the reports will cover comprehensive areas. The proposed method can be applied to any parts of the world.

Keywords: intelligent transportation system (ITS), traffic congestion level, human judgment, decision tree (J48), geographic positioning system (GPS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
2124 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-Time

Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl

Abstract:

In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method as a Web-App is developed for auto-generated data replication to provide a twin of the targeted data structure. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi", has been developed. A special login form has been developed with a special instance of the data validation; this verification process secures the web application from its early stages. The system has been tested and validated, and up to 99% of SQLi attacks have been prevented.

Keywords: SQL injection, attacks, web application, accuracy, database, WebAppShield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 444
2123 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1240
2122 Iraqi Short Term Electrical Load Forecasting Based On Interval Type-2 Fuzzy Logic

Authors: Firas M. Tuaimah, Huda M. Abdul Abbas

Abstract:

Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.

Keywords: Short term load forecasting, prediction interval, type 2 fuzzy logic systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
2121 Holistic Face Recognition using Multivariate Approximation, Genetic Algorithms and AdaBoost Classifier: Preliminary Results

Authors: C. Villegas-Quezada, J. Climent

Abstract:

Several works regarding facial recognition have dealt with methods which identify isolated characteristics of the face or with templates which encompass several regions of it. In this paper a new technique which approaches the problem holistically dispensing with the need to identify geometrical characteristics or regions of the face is introduced. The characterization of a face is achieved by randomly sampling selected attributes of the pixels of its image. From this information we construct a set of data, which correspond to the values of low frequencies, gradient, entropy and another several characteristics of pixel of the image. Generating a set of “p" variables. The multivariate data set with different polynomials minimizing the data fitness error in the minimax sense (L∞ - Norm) is approximated. With the use of a Genetic Algorithm (GA) it is able to circumvent the problem of dimensionality inherent to higher degree polynomial approximations. The GA yields the degree and values of a set of coefficients of the polynomials approximating of the image of a face. By finding a family of characteristic polynomials from several variables (pixel characteristics) for each face (say Fi ) in the data base through a resampling process the system in use, is trained. A face (say F ) is recognized by finding its characteristic polynomials and using an AdaBoost Classifier from F -s polynomials to each of the Fi -s polynomials. The winner is the polynomial family closer to F -s corresponding to target face in data base.

Keywords: AdaBoost Classifier, Holistic Face Recognition, Minimax Multivariate Approximation, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
2120 Mathematical Modeling to Predict Surface Roughness in CNC Milling

Authors: Ab. Rashid M.F.F., Gan S.Y., Muhammad N.Y.

Abstract:

Surface roughness (Ra) is one of the most important requirements in machining process. In order to obtain better surface roughness, the proper setting of cutting parameters is crucial before the process take place. This research presents the development of mathematical model for surface roughness prediction before milling process in order to evaluate the fitness of machining parameters; spindle speed, feed rate and depth of cut. 84 samples were run in this study by using FANUC CNC Milling α-Τ14ιE. Those samples were randomly divided into two data sets- the training sets (m=60) and testing sets(m=24). ANOVA analysis showed that at least one of the population regression coefficients was not zero. Multiple Regression Method was used to determine the correlation between a criterion variable and a combination of predictor variables. It was established that the surface roughness is most influenced by the feed rate. By using Multiple Regression Method equation, the average percentage deviation of the testing set was 9.8% and 9.7% for training data set. This showed that the statistical model could predict the surface roughness with about 90.2% accuracy of the testing data set and 90.3% accuracy of the training data set.

Keywords: Surface roughness, regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
2119 Neural Network Control of a Biped Robot Model with Composite Adaptation Low

Authors: Ahmad Forouzantabar

Abstract:

this paper presents a novel neural network controller with composite adaptation low to improve the trajectory tracking problems of biped robots comparing with classical controller. The biped model has 5_link and 6 degrees of freedom and actuated by Plated Pneumatic Artificial Muscle, which have a very high power to weight ratio and it has large stoke compared to similar actuators. The proposed controller employ a stable neural network in to approximate unknown nonlinear functions in the robot dynamics, thereby overcoming some limitation of conventional controllers such as PD or adaptive controllers and guarantee good performance. This NN controller significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, therefore improving tracking accuracy. Simulation results plus graphical simulation in virtual reality show that NN controller tracking performance is considerably better than PD controller tracking performance.

Keywords: Biped robot, Neural network, Plated Pneumatic Artificial Muscle, Composite adaptation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
2118 Prediction of Dissolved Oxygen in Rivers Using a Wang-Mendel Method – Case Study of Au Sable River

Authors: Mahmoud R. Shaghaghian

Abstract:

Amount of dissolve oxygen in a river has a great direct affect on aquatic macroinvertebrates and this would influence on the region ecosystem indirectly. In this paper it is tried to predict dissolved oxygen in rivers by employing an easy Fuzzy Logic Modeling, Wang Mendel method. This model just uses previous records to estimate upcoming values. For this purpose daily and hourly records of eight stations in Au Sable watershed in Michigan, United States are employed for 12 years and 50 days period respectively. Calculations indicate that for long period prediction it is better to increase input intervals. But for filling missed data it is advisable to decrease the interval. Increasing partitioning of input and output features influence a little on accuracy but make the model too time consuming. Increment in number of input data also act like number of partitioning. Large amount of train data does not modify accuracy essentially, so, an optimum training length should be selected.

Keywords: Dissolved oxygen, Au Sable, fuzzy logic modeling, Wang Mendel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
2117 Age–Related Changes of the Sella Turcica Morphometry in Adults Older Than 20-25 Years

Authors: Yu. I. Pigolkin, M. A. Garcia Corro

Abstract:

Age determination of unknown dead bodies in forensic personal identification is a complicated process which involves the application of numerous methods and techniques. Skeletal remains are less exposed to influences of environmental factors. In order to enhance the accuracy of forensic age estimation additional properties of bones correlating with age are required to be revealed. Material and Methods: Dimensional examination of the sella turcica was carried out on cadavers with the cranium opened by a circular vibrating saw. The sample consisted of a total of 90 Russian subjects, ranging in age from two months and 87 years. Results: The tendency of dimensional variations throughout life was detected. There were no observed gender differences in the morphometry of the sella turcica. The shared use of the sella turcica depth and length values revealed the possibility to categorize an examined sample in a certain age period. Conclusions: Based on the results of existing methods of age determination, the morphometry of the sella turcica can be an additional characteristic, amplifying the received values, and accordingly, increasing the accuracy of forensic biological age diagnosis.

Keywords: Age–related changes in bone structures, forensic personal identification, Sella turcica morphometry, body identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
2116 Performances Comparison of Neural Architectures for On-Line Speed Estimation in Sensorless IM Drives

Authors: K.Sedhuraman, S.Himavathi, A.Muthuramalingam

Abstract:

The performance of sensor-less controlled induction motor drive depends on the accuracy of the estimated speed. Conventional estimation techniques being mathematically complex require more execution time resulting in poor dynamic response. The nonlinear mapping capability and powerful learning algorithms of neural network provides a promising alternative for on-line speed estimation. The on-line speed estimator requires the NN model to be accurate, simpler in design, structurally compact and computationally less complex to ensure faster execution and effective control in real time implementation. This in turn to a large extent depends on the type of Neural Architecture. This paper investigates three types of neural architectures for on-line speed estimation and their performance is compared in terms of accuracy, structural compactness, computational complexity and execution time. The suitable neural architecture for on-line speed estimation is identified and the promising results obtained are presented.

Keywords: Sensorless IM drives, rotor speed estimators, artificial neural network, feed- forward architecture, single neuron cascaded architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
2115 A Force-directed Graph Drawing based on the Hierarchical Individual Timestep Method

Authors: T. Matsubayashi, T. Yamada

Abstract:

In this paper, we propose a fast and efficient method for drawing very large-scale graph data. The conventional force-directed method proposed by Fruchterman and Rheingold (FR method) is well-known. It defines repulsive forces between every pair of nodes and attractive forces between connected nodes on a edge and calculates corresponding potential energy. An optimal layout is obtained by iteratively updating node positions to minimize the potential energy. Here, the positions of the nodes are updated every global timestep at the same time. In the proposed method, each node has its own individual time and time step, and nodes are updated at different frequencies depending on the local situation. The proposed method is inspired by the hierarchical individual time step method used for the high accuracy calculations for dense particle fields such as star clusters in astrophysical dynamics. Experiments show that the proposed method outperforms the original FR method in both speed and accuracy. We implement the proposed method on the MDGRAPE-3 PCI-X special purpose parallel computer and realize a speed enhancement of several hundred times.

Keywords: visualization, graph drawing, Internet Map

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
2114 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: Data fusion, Dempster-Shafer theory, data mining, event detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
2113 Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles

Authors: Omer Nebil Yaveroglu, Tolga Can

Abstract:

In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%

Keywords: Protein Interaction Prediction, Phylogenetic Profile, SVM , ReliefF, Decision Trees, Random Forest Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
2112 Appraisal of Relativistic Effects on GNSS Receiver Positioning

Authors: I. Yakubu, Y. Y. Ziggah, E. A. Gyamera

Abstract:

The Global Navigation Satellite System (GNSS) started with the launch of the United State Department of Defense Global Positioning System (GPS). GNSS systems has grown over the years to include: GLONASS (Russia); Galileo (European Union); BeiDou (China). Any GNSS architecture consists of three major segments: Space, Control and User Segments. Errors such as; multipath, ionospheric and tropospheric effects, satellite clocks, receiver noise and orbit errors (relativity effect) have significant effects on GNSS positioning. To obtain centimeter level accuracy, the impacts of the relative motion of the satellites and earth need to be taken into account. This paper discusses the relevance of the theory of relativity as a source of error for GNSS receivers for position fix based on available relevant literature. Review of relevant literature reveals that due to relativity; Time dilation, Gravitational frequency shift and Sagnac effect cause significant influence on the use of GNSS receivers for positioning by an error range of ± 2.5 m based on pseudo-range computation.

Keywords: GNSS, relativistic effects, pseudo-range, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 388
2111 Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal

Authors: Israa Sh. Tawfic, Sema Koc Kayhan

Abstract:

Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.

Keywords: Compressed sensing, Lest Support Orthogonal Matching Pursuit, Partial Knowing Support, Restricted isometry property, signal reconstruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
2110 Mathematical Analysis of Stock Prices Prediction in a Financial Market Using Geometric Brownian Motion Model

Authors: Edikan E. Akpanibah, Ogunmodimu Dupe Catherine

Abstract:

The relevance of geometric Brownian motion (GBM) in modelling the behaviour of stock market prices (SMP) cannot be over emphasized taking into consideration the volatility of the SMP. Consequently, there is need to investigate how GBM models are being estimated and used in financial market to predict SMP. To achieve this, the GBM estimation and its application to the SMP of some selected companies are studied. The normal and log-normal distributions were used to determine the expected value, variance and co-variance. Furthermore, the GBM model was used to predict the SMP of some selected companies over a period of time and the mean absolute percentage error (MAPE) were calculated and used to determine the accuracy of the GBM model in predicting the SMP of the four companies under consideration. It was observed that for all the four companies, their MAPE values were within the region of acceptance. Also, the MAPE values of our data were compared to an existing literature to test the accuracy of our prediction with respect to time of investment. Finally, some numerical simulations of the graphs of the SMP, expectations and variance of the four companies over a period of time were presented using MATLAB programming software.

Keywords: Stock Market, Geometric Brownian Motion, normal and log-normal distribution, mean absolute percentage error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 268
2109 Roller Guide Design and Manufacturing for Spatial Cylindrical Cams

Authors: Yuan L. Lai, Jui P. Hung, Jian H. Chen

Abstract:

This paper was aimed at developing a computer aided design and manufacturing system for spatial cylindrical cams. In the proposed system, a milling tool with a diameter smaller than that of the roller, instead of the standard cutter for traditional machining process, was used to generate the tool path for spatial cams. To verify the feasibility of the proposed method, a multi-axis machining simulation software was further used to simulate the practical milling operation of spatial cams. It was observed from computer simulation that the tool path of small-sized cutter were within the motion range of a standard cutter, no occurrence of overcutting. Examination of a finished cam component clearly verifies the accuracy of the tool path generated for small-sized milling tool. It is believed that the use of small-sized cutter for the machining of the spatial cylindrical cams can generate a better surface morphology with higher accuracy. The improvement in efficiency and cost for the manufacturing of the spatial cylindrical cam can be expected through the proposed method.

Keywords: Cylindrical cams, Computer-aided manufacturing, Tool path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3451
2108 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array

Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang

Abstract:

Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.

Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656
2107 Investigation of the Surface Features of the Jupiter’s Galilean Moons

Authors: Revaz Chigladze

Abstract:

The purpose of the research is to investigate the surfaces of Jupiter's Galilean moons (satellites), namely to identify which moon has the most uniform surface among them, what is the difference between the front (in the direction of motion) and the back sides of each moon's surface, as well as the temporal variations of the moons. Since 1981, the E. Kharadze Georgian National Astrophysical Observatory has been conducting polarimetric (P) and photometric (M) observations of Jupiter's Galilean moons with telescopes of different diameters (40-cm and 125-cm), as well as polarimeter Automatic Scanning Electron Polarimeter (ASEP)-78, the latest generation photometer with polarimeter and modern light receiver Santana Barbara Instrument Group (SBIG). As it turns out from the analysis of the observed material, parameters P and M depend on: α, the phase angle of the moon (satellite); L, the orbital latitude of the moon (satellite); λ, the wavelength, and t, the period of observation, i.e., P = P (α, L, λ, t), and similarly: M = M (α, L, λ, t). Based on the analysis of the obtained results, we get: The magnitude of the degree of polarization of Jupiter's Galilean moons near the opposition significantly differs from zero. Europa appears to have the most uniform surface, and Callisto has the least. Time variations are most characteristic of Io, which confirms the presence of volcanic activity on its surface. Based on the observed materials, it can be seen that the intensity of light reflected from the front hemisphere of the first three moons: Io, Europa, and Ganymede, is less than the intensity of light reflected from the rear hemisphere, while the picture with Callisto is opposite. The paper provides an explanation of this fact.

Keywords: Galilean moons, polarization, degree of polarization, photometry, front and rear hemispheres.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148
2106 Digital Control Algorithm Based on Delta-Operator for High-Frequency DC-DC Switching Converters

Authors: Renkai Wang, Tingcun Wei

Abstract:

In this paper, a digital control algorithm based on delta-operator is presented for high-frequency digitally-controlled DC-DC switching converters. The stability and the controlling accuracy of the DC-DC switching converters are improved by using the digital control algorithm based on delta-operator without increasing the hardware circuit scale. The design method of voltage compensator in delta-domain using PID (Proportion-Integration- Differentiation) control is given in this paper, and the simulation results based on Simulink platform are provided, which have verified the theoretical analysis results very well. It can be concluded that, the presented control algorithm based on delta-operator has better stability and controlling accuracy, and easier hardware implementation than the existed control algorithms based on z-operator, therefore it can be used for the voltage compensator design in high-frequency digitally- controlled DC-DC switching converters.

Keywords: Digitally-controlled DC-DC switching converter, finite word length, control algorithm based on delta-operator, high-frequency, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
2105 A Local Invariant Generalized Hough Transform Method for Integrated Circuit Visual Positioning

Authors: Fei Long Wei, Hua Yang, Hai Tao Zhang, Zhou Ping Yin

Abstract:

In this study, an local invariant generalized Houghtransform (LI-GHT) method is proposed for integrated circuit (IC) visual positioning. The original generalized Hough transform (GHT) is robust to external noise; however, it is not suitable for visual positioning of IC chips due to the four-dimensionality (4D) of parameter space which leads to the substantial storage requirement and high computational complexity. The proposed LI-GHT method can reduce the dimensionality of parameter space to 2D thanks to the rotational invariance of local invariant geometric feature and it can estimate the accuracy position and rotation angle of IC chips in real-time under noise and blur influence. The experiment results show that the proposed LI-GHT can estimate position and rotation angle of IC chips with high accuracy and fast speed. The proposed LI-GHT algorithm was implemented in IC visual positioning system of radio frequency identification (RFID) packaging equipment.

Keywords: Integrated Circuit Visual Positioning, Generalized Hough Transform, Local invariant Generalized Hough Transform, ICpacking equipment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
2104 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: Cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993
2103 Object Negotiation Mechanism for an Intelligent Environment Using Event Agents

Authors: Chiung-Hui Chen

Abstract:

With advancements in science and technology, the concept of the Internet of Things (IoT) has gradually developed. The development of the intelligent environment adds intelligence to objects in the living space by using the IoT. In the smart environment, when multiple users share the living space, if different service requirements from different users arise, then the context-aware system will have conflicting situations for making decisions about providing services. Therefore, the purpose of establishing a communication and negotiation mechanism among objects in the intelligent environment is to resolve those service conflicts among users. This study proposes developing a decision-making methodology that uses “Event Agents” as its core. When the sensor system receives information, it evaluates a user’s current events and conditions; analyses object, location, time, and environmental information; calculates the priority of the object; and provides the user services based on the event. Moreover, when the event is not single but overlaps with another, conflicts arise. This study adopts the “Multiple Events Correlation Matrix” in order to calculate the degree values of incidents and support values for each object. The matrix uses these values as the basis for making inferences for system service, and to further determine appropriate services when there is a conflict.

Keywords: Internet of things, intelligent object, event agents, negotiation mechanism, degree of similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190
2102 Artificial Intelligence Support for Interferon Treatment Decision in Chronic Hepatitis B

Authors: Alexandru George Floares

Abstract:

Chronic hepatitis B can evolve to cirrhosis and liver cancer. Interferon is the only effective treatment, for carefully selected patients, but it is very expensive. Some of the selection criteria are based on liver biopsy, an invasive, costly and painful medical procedure. Therefore, developing efficient non-invasive selection systems, could be in the patients benefit and also save money. We investigated the possibility to create intelligent systems to assist the Interferon therapeutical decision, mainly by predicting with acceptable accuracy the results of the biopsy. We used a knowledge discovery in integrated medical data - imaging, clinical, and laboratory data. The resulted intelligent systems, tested on 500 patients with chronic hepatitis B, based on C5.0 decision trees and boosting, predict with 100% accuracy the results of the liver biopsy. Also, by integrating the other patients selection criteria, they offer a non-invasive support for the correct Interferon therapeutic decision. To our best knowledge, these decision systems outperformed all similar systems published in the literature, and offer a realistic opportunity to replace liver biopsy in this medical context.

Keywords: Interferon, chronic hepatitis B, intelligent virtualbiopsy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
2101 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies

Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi

Abstract:

Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.

Keywords: Bag of Visual Words, classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
2100 A Comparative Study of PV Models in Matlab/Simulink

Authors: Mohammad Seifi, Azura Bt. Che Soh, Noor Izzrib. Abd. Wahab, Mohd Khair B. Hassan

Abstract:

Solar energy has a major role in renewable energy resources. Solar Cell as a basement of solar system has attracted lots of research. To conduct a study about solar energy system, an authenticated model is required. Diode base PV models are widely used by researchers. These models are classified based on the number of diodes used in them. Single and two-diode models are well studied. Single-diode models may have two, three or four elements. In this study, these solar cell models are examined and the simulation results are compared to each other. All PV models are re-designed in the Matlab/Simulink software and they examined by certain test conditions and parameters. This paper provides comparative studies of these models and it tries to compare the simulation results with manufacturer-s data sheet to investigate model validity and accuracy. The results show a four- element single-diode model is accurate and has moderate complexity in contrast to the two-diode model with higher complexity and accuracy

Keywords: Fill Factor (FF), Matlab/Simulink, Maximum PowerPoint (MPP), Maximum Power Point Tracker (MPPT), Photo Voltaic(PV), Solar cell, Standard Test Condition (STC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5806
2099 Effect of Atmospheric Pressure on the Flow at the Outlet of a Propellant Nozzle

Authors: R. Haoui

Abstract:

The purpose of this work is to simulate the flow at the exit of Vulcan 1 engine of European launcher Ariane 5. The geometry of the propellant nozzle is already determined using the characteristics method. The pressure in the outlet section of the nozzle is less than atmospheric pressure on the ground, causing the existence of oblique and normal shock waves at the exit. During the rise of the launcher, the atmospheric pressure decreases and the shock wave disappears. The code allows the capture of shock wave at exit of nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer to ensure convergence and avoid the calculation instabilities. The Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level are selected to ensure the numerical convergence. The nonlinear partial derivative equations system which governs this flow is solved by an explicit unsteady numerical scheme by the finite volume method. The accuracy of the solution depends on the size of the mesh and also the step of time used in the discretized equations. We have chosen in this study the mesh that gives us a stationary solution with good accuracy.

Keywords: Launchers, supersonic flow, finite volume, nozzles, shock wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877