Search results for: data mining classification rule.
7909 A New Hybrid RMN Image Segmentation Algorithm
Authors: Abdelouahab Moussaoui, Nabila Ferahta, Victor Chen
Abstract:
The development of aid's systems for the medical diagnosis is not easy thing because of presence of inhomogeneities in the MRI, the variability of the data from a sequence to the other as well as of other different source distortions that accentuate this difficulty. A new automatic, contextual, adaptive and robust segmentation procedure by MRI brain tissue classification is described in this article. A first phase consists in estimating the density of probability of the data by the Parzen-Rozenblatt method. The classification procedure is completely automatic and doesn't make any assumptions nor on the clusters number nor on the prototypes of these clusters since these last are detected in an automatic manner by an operator of mathematical morphology called skeleton by influence zones detection (SKIZ). The problem of initialization of the prototypes as well as their number is transformed in an optimization problem; in more the procedure is adaptive since it takes in consideration the contextual information presents in every voxel by an adaptive and robust non parametric model by the Markov fields (MF). The number of bad classifications is reduced by the use of the criteria of MPM minimization (Maximum Posterior Marginal).Keywords: Clustering, Automatic Classification, SKIZ, MarkovFields, Image segmentation, Maximum Posterior Marginal (MPM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14147908 Clustering Methods Applied to the Tracking of user Traces Interacting with an e-Learning System
Authors: Larbi Omar, Elberrichi Zakaria
Abstract:
Many research works are carried out on the analysis of traces in a digital learning environment. These studies produce large volumes of usage tracks from the various actions performed by a user. However, to exploit these data, compare and improve performance, several issues are raised. To remedy this, several works deal with this problem seen recently. This research studied a series of questions about format and description of the data to be shared. Our goal is to share thoughts on these issues by presenting our experience in the analysis of trace-based log files, comparing several approaches used in automatic classification applied to e-learning platforms. Finally, the obtained results are discussed.Keywords: Classification, , e-learning platform, log file, Trace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14797907 Effect of Personality Traits on Classification of Political Orientation
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
Today, there is a large number of political transcripts available on the Web to be mined and used for statistical analysis, and product recommendations. As the online political resources are used for various purposes, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do an automatic classification are based on different features that are classified under categories such as Linguistic, Personality etc. Considering the ideological differences between Liberals and Conservatives, in this paper, the effect of Personality traits on political orientation classification is studied. The experiments in this study were based on the correlation between LIWC features and the BIG Five Personality traits. Several experiments were conducted using Convote U.S. Congressional- Speech dataset with seven benchmark classification algorithms. The different methodologies were applied on several LIWC feature sets that constituted by 8 to 64 varying number of features that are correlated to five personality traits. As results of experiments, Neuroticism trait was obtained to be the most differentiating personality trait for classification of political orientation. At the same time, it was observed that the personality trait based classification methodology gives better and comparable results with the related work.Keywords: Politics, personality traits, LIWC, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21647906 Lipschitz Classifiers Ensembles: Usage for Classification of Target Events in C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev
Abstract:
This paper introduces an original method for guaranteed estimation of the accuracy for an ensemble of Lipschitz classifiers. The solution was obtained as a finite closed set of alternative hypotheses, which contains an object of classification with probability of not less than the specified value. Thus, the classification is represented by a set of hypothetical classes. In this case, the smaller the cardinality of the discrete set of hypothetical classes is, the higher is the classification accuracy. Experiments have shown that if cardinality of the classifiers ensemble is increased then the cardinality of this set of hypothetical classes is reduced. The problem of the guaranteed estimation of the accuracy for an ensemble of Lipschitz classifiers is relevant in multichannel classification of target events in C-OTDR monitoring systems. Results of suggested approach practical usage to accuracy control in C-OTDR monitoring systems are present.
Keywords: Lipschitz classifiers, confidence set, C-OTDR monitoring, classifiers accuracy, classifiers ensemble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19547905 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11497904 Classification and Analysis of Risks in Software Engineering
Authors: Hooman Hoodat, Hassan Rashidi
Abstract:
Despite various methods that exist in software risk management, software projects have a high rate of failure. When complexity and size of the projects are increased, managing software development becomes more difficult. In these projects the need for more analysis and risk assessment is vital. In this paper, a classification for software risks is specified. Then relations between these risks using risk tree structure are presented. Analysis and assessment of these risks are done using probabilistic calculations. This analysis helps qualitative and quantitative assessment of risk of failure. Moreover it can help software risk management process. This classification and risk tree structure can apply to some software tools.
Keywords: Risk analysis, risk assessment, risk classification, risk tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90347903 Exons and Introns Classification in Human and Other Organisms
Authors: Benjamin Y. M. Kwan, Jennifer Y. Y. Kwan, Hon Keung Kwan
Abstract:
In the paper, the relative performances on spectral classification of short exon and intron sequences of the human and eleven model organisms is studied. In the simulations, all combinations of sixteen one-sequence numerical representations, four threshold values, and four window lengths are considered. Sequences of 150-base length are chosen and for each organism, a total of 16,000 sequences are used for training and testing. Results indicate that an appropriate combination of one-sequence numerical representation, threshold value, and window length is essential for arriving at top spectral classification results. For fixed-length sequences, the precisions on exon and intron classification obtained for different organisms are not the same because of their genomic differences. In general, precision increases as sequence length increases.Keywords: Exons and introns classification, Human genome, Model organism genome, Spectral analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20637902 Musical Instrument Classification Using Embedded Hidden Markov Models
Authors: Ehsan Amid, Sina Rezaei Aghdam
Abstract:
In this paper, a novel method for recognition of musical instruments in a polyphonic music is presented by using an embedded hidden Markov model (EHMM). EHMM is a doubly embedded HMM structure where each state of the external HMM is an independent HMM. The classification is accomplished for two different internal HMM structures where GMMs are used as likelihood estimators for the internal HMMs. The results are compared to those achieved by an artificial neural network with two hidden layers. Appropriate classification accuracies were achieved both for solo instrument performance and instrument combinations which demonstrates that the new approach outperforms the similar classification methods by means of the dynamic of the signal.Keywords: hidden Markov model (HMM), embedded hidden Markov models (EHMM), MFCC, musical instrument.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18927901 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline which ensures that data mirrors real-world settings by incorporating gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification and explainability in a single pipeline called DeClEx.
Keywords: Machine learning, healthcare, classification, explainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757900 Fast and Accuracy Control Chart Pattern Recognition using a New cluster-k-Nearest Neighbor
Authors: Samir Brahim Belhaouari
Abstract:
By taking advantage of both k-NN which is highly accurate and K-means cluster which is able to reduce the time of classification, we can introduce Cluster-k-Nearest Neighbor as "variable k"-NN dealing with the centroid or mean point of all subclasses generated by clustering algorithm. In general the algorithm of K-means cluster is not stable, in term of accuracy, for that reason we develop another algorithm for clustering our space which gives a higher accuracy than K-means cluster, less subclass number, stability and bounded time of classification with respect to the variable data size. We find between 96% and 99.7 % of accuracy in the lassification of 6 different types of Time series by using K-means cluster algorithm and we find 99.7% by using the new clustering algorithm.Keywords: Pattern recognition, Time series, k-Nearest Neighbor, k-means cluster, Gaussian Mixture Model, Classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19677899 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches
Authors: Aya Salama
Abstract:
Digital Twin has emerged as a compelling research area, capturing the attention of scholars over the past decade. It finds applications across diverse fields, including smart manufacturing and healthcare, offering significant time and cost savings. Notably, it often intersects with other cutting-edge technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, the concept of a Human Digital Twin (HDT) is still in its infancy and requires further demonstration of its practicality. HDT takes the notion of Digital Twin a step further by extending it to living entities, notably humans, who are vastly different from inanimate physical objects. The primary objective of this research was to create an HDT capable of automating real-time human responses by simulating human behavior. To achieve this, the study delved into various areas, including clustering, supervised classification, topic extraction, and sentiment analysis. The paper successfully demonstrated the feasibility of HDT for generating personalized responses in social messaging applications. Notably, the proposed approach achieved an overall accuracy of 63%, a highly promising result that could pave the way for further exploration of the HDT concept. The methodology employed Random Forest for clustering the question database and matching new questions, while K-nearest neighbor was utilized for sentiment analysis.
Keywords: Human Digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification and clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887898 The Fallacy around Inserting Brackets to Evaluate Expressions Involving Multiplication and Division
Authors: Manduth Ramchander
Abstract:
Evaluating expressions involving multiplication and division can give rise to the fallacy that brackets can be arbitrarily inserted into expressions involving multiplication and division. The aim of this article was to draw upon mathematical theory to prove that brackets cannot be arbitrarily inserted into expressions involving multiplication and division and in particular in expressions where division precedes multiplication. In doing so, it demonstrates that the notion that two different answers are possible, when evaluating expressions involving multiplication and division, is indeed a false one. Searches conducted in a number of scholarly databases unearthed the rules to be applied when removing brackets from expressions, which revealed that consideration needs to be given to sign changes when brackets are removed. The rule pertaining to expressions involving multiplication and division was then extended upon, in its reverse format, to prove that brackets cannot be arbitrarily inserted into expressions involving multiplication and division. The application of the rule demonstrates that an expression involving multiplication and division can have only one correct answer. It is recommended that both the rule and its reverse be included in the curriculum, preferably at the juncture when manipulation with brackets is introduced.
Keywords: Brackets, multiplication, division, operations, order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5747897 A Comprehensive Review on Different Mixed Data Clustering Ensemble Methods
Authors: S. Sarumathi, N. Shanthi, S. Vidhya, M. Sharmila
Abstract:
An extensive amount of work has been done in data clustering research under the unsupervised learning technique in Data Mining during the past two decades. Moreover, several approaches and methods have been emerged focusing on clustering diverse data types, features of cluster models and similarity rates of clusters. However, none of the single clustering algorithm exemplifies its best nature in extracting efficient clusters. Consequently, in order to rectify this issue, a new challenging technique called Cluster Ensemble method was bloomed. This new approach tends to be the alternative method for the cluster analysis problem. The main objective of the Cluster Ensemble is to aggregate the diverse clustering solutions in such a way to attain accuracy and also to improve the eminence the individual clustering algorithms. Due to the massive and rapid development of new methods in the globe of data mining, it is highly mandatory to scrutinize a vital analysis of existing techniques and the future novelty. This paper shows the comparative analysis of different cluster ensemble methods along with their methodologies and salient features. Henceforth this unambiguous analysis will be very useful for the society of clustering experts and also helps in deciding the most appropriate one to resolve the problem in hand.
Keywords: Clustering, Cluster Ensemble Methods, Coassociation matrix, Consensus Function, Median Partition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21077896 Anomaly Based On Frequent-Outlier for Outbreak Detection in Public Health Surveillance
Authors: Zalizah Awang Long, Abdul Razak Hamdan, Azuraliza Abu Bakar
Abstract:
Public health surveillance system focuses on outbreak detection and data sources used. Variation or aberration in the frequency distribution of health data, compared to historical data is often used to detect outbreaks. It is important that new techniques be developed to improve the detection rate, thereby reducing wastage of resources in public health. Thus, the objective is to developed technique by applying frequent mining and outlier mining techniques in outbreak detection. 14 datasets from the UCI were tested on the proposed technique. The performance of the effectiveness for each technique was measured by t-test. The overall performance shows that DTK can be used to detect outlier within frequent dataset. In conclusion the outbreak detection technique using anomaly-based on frequent-outlier technique can be used to identify the outlier within frequent dataset.
Keywords: Outlier detection, frequent-outlier, outbreak, anomaly, surveillance, public health
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22757895 Characterisation and Classification of Natural Transients
Authors: Ernst D. Schmitter
Abstract:
Monitoring lightning electromagnetic pulses (sferics) and other terrestrial as well as extraterrestrial transient radiation signals is of considerable interest for practical and theoretical purposes in astro- and geophysics as well as meteorology. Managing a continuous flow of data, automisation of the detection and classification process is important. Features based on a combination of wavelet and statistical methods proved efficient for analysis and characterisation of transients and as input into a radial basis function network that is trained to discriminate transients from pulse like to wave like.Keywords: transient signals, statistics, wavelets, neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14517894 An Efficient Technique for Extracting Fuzzy Rulesfrom Neural Networks
Authors: Besa Muslimi, Miriam A. M. Capretz, Jagath Samarabandu
Abstract:
Artificial neural networks (ANN) have the ability to model input-output relationships from processing raw data. This characteristic makes them invaluable in industry domains where such knowledge is scarce at best. In the recent decades, in order to overcome the black-box characteristic of ANNs, researchers have attempted to extract the knowledge embedded within ANNs in the form of rules that can be used in inference systems. This paper presents a new technique that is able to extract a small set of rules from a two-layer ANN. The extracted rules yield high classification accuracy when implemented within a fuzzy inference system. The technique targets industry domains that possess less complex problems for which no expert knowledge exists and for which a simpler solution is preferred to a complex one. The proposed technique is more efficient, simple, and applicable than most of the previously proposed techniques.
Keywords: fuzzy rule extraction, fuzzy systems, knowledgeacquisition, pattern recognition, artificial neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15837893 Platform-as-a-Service Sticky Policies for Privacy Classification in the Cloud
Authors: Maha Shamseddine, Amjad Nusayr, Wassim Itani
Abstract:
In this paper, we present a Platform-as-a-Service (PaaS) model for controlling the privacy enforcement mechanisms applied on user data when stored and processed in Cloud data centers. The proposed architecture consists of establishing user configurable ‘sticky’ policies on the Graphical User Interface (GUI) data-bound components during the application development phase to specify the details of privacy enforcement on the contents of these components. Various privacy classification classes on the data components are formally defined to give the user full control on the degree and scope of privacy enforcement including the type of execution containers to process the data in the Cloud. This not only enhances the privacy-awareness of the developed Cloud services, but also results in major savings in performance and energy efficiency due to the fact that the privacy mechanisms are solely applied on sensitive data units and not on all the user content. The proposed design is implemented in a real PaaS cloud computing environment on the Microsoft Azure platform.Keywords: Privacy enforcement, Platform-as-a-Service privacy awareness, cloud computing privacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7607892 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example
Authors: Wang Yang
Abstract:
Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.
Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9317891 A Novel Approach to Fault Classification and Fault Location for Medium Voltage Cables Based on Artificial Neural Network
Authors: H. Khorashadi-Zadeh, M. R. Aghaebrahimi
Abstract:
A novel application of neural network approach to fault classification and fault location of Medium voltage cables is demonstrated in this paper. Different faults on a protected cable should be classified and located correctly. This paper presents the use of neural networks as a pattern classifier algorithm to perform these tasks. The proposed scheme is insensitive to variation of different parameters such as fault type, fault resistance, and fault inception angle. Studies show that the proposed technique is able to offer high accuracy in both of the fault classification and fault location tasks.Keywords: Artificial neural networks, cable, fault location andfault classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18517890 2D Numerical Analysis of Sao Paulo Tunnel
Authors: A.H. Akhaveissy
Abstract:
Nonlinear finite element method and Serendipity eight nodes element are used for determining of ground surface settlement due to tunneling. Linear element with elastic behavior is used for modeling of lining. Modified Generalized plasticity model with nonassociated flow rule is applied for analysis of a tunnel in Sao Paulo – Brazil. The tunnel had analyzed by Lades- model with 16 parameters. In this work modified Generalized Plasticity is used with 10 parameters, also Mohr-Coulomb model is used to analysis the tunnel. The results show good agreement with observed results of field data by modified Generalized Plasticity model than other models. The obtained result by Mohr-Coulomb model shows less settlement than other model due to excavation.Keywords: Non-associated flow rule, Generalized plasticity, tunnel excavation, Excavation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26277889 A Novel Approach to Optimal Cutting Tool Replacement
Authors: Cem Karacal, Sohyung Cho, William Yu
Abstract:
In metal cutting industries, mathematical/statistical models are typically used to predict tool replacement time. These off-line methods usually result in less than optimum replacement time thereby either wasting resources or causing quality problems. The few online real-time methods proposed use indirect measurement techniques and are prone to similar errors. Our idea is based on identifying the optimal replacement time using an electronic nose to detect the airborne compounds released when the tool wear reaches to a chemical substrate doped into tool material during the fabrication. The study investigates the feasibility of the idea, possible doping materials and methods along with data stream mining techniques for detection and monitoring different phases of tool wear.Keywords: Tool condition monitoring, cutting tool replacement, data stream mining, e-Nose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18827888 A Simplified and Effective Algorithm Used to Mine Similar Processes: An Illustrated Example
Authors: Min-Hsun Kuo, Yun-Shiow Chen
Abstract:
The running logs of a process hold valuable information about its executed activity behavior and generated activity logic structure. Theses informative logs can be extracted, analyzed and utilized to improve the efficiencies of the process's execution and conduction. One of the techniques used to accomplish the process improvement is called as process mining. To mine similar processes is such an improvement mission in process mining. Rather than directly mining similar processes using a single comparing coefficient or a complicate fitness function, this paper presents a simplified heuristic process mining algorithm with two similarity comparisons that are able to relatively conform the activity logic sequences (traces) of mining processes with those of a normalized (regularized) one. The relative process conformance is to find which of the mining processes match the required activity sequences and relationships, further for necessary and sufficient applications of the mined processes to process improvements. One similarity presented is defined by the relationships in terms of the number of similar activity sequences existing in different processes; another similarity expresses the degree of the similar (identical) activity sequences among the conforming processes. Since these two similarities are with respect to certain typical behavior (activity sequences) occurred in an entire process, the common problems, such as the inappropriateness of an absolute comparison and the incapability of an intrinsic information elicitation, which are often appeared in other process conforming techniques, can be solved by the relative process comparison presented in this paper. To demonstrate the potentiality of the proposed algorithm, a numerical example is illustrated.Keywords: process mining, process similarity, artificial intelligence, process conformance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14457887 Mine Production Index (MPI): New Method to Evaluate Effectiveness of Mining Machinery
Authors: Amol Lanke, Hadi Hoseinie, Behzad Ghodrati
Abstract:
OEE has been used in many industries as measure of performance. However due to limitations of original OEE, it has been modified by various researchers. OEE for mining application is special version of classic equation, carries these limitation over. In this paper it has been aimed to modify the OEE for mining application by introducing the weights to the elements of it and termed as Mine Production index (MPi). As a special application of new index MPishovel has been developed by authors. This can be used for evaluating the shovel effectiveness. Based on analysis, utilization followed by performance and availability were ranked in this order. To check the applicability of this index, a case study was done on four electrical and one hydraulic shovel in a Swedish mine. The results shows that MPishovel can evaluate production effectiveness of shovels and can determine effectiveness values in optimistic view compared to OEE. MPi with calculation not only give the effectiveness but also can predict which elements should be focused for improving the productivity.
Keywords: Mining, Overall equipment efficiency (OEE), Mine Production index, Shovels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47467886 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing
Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor
Abstract:
This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.Keywords: Intelligent transportation systems, object detection, video processing, road traffic, vehicle counting, vehicle classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16267885 Terrain Classification for Ground Robots Based on Acoustic Features
Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow
Abstract:
The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.Keywords: Terrain classification, acoustic features, autonomous robots, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11347884 Extending E-learning systems based on Clause-Rule model
Authors: Keisuke Nakamura, Kiyoshi Akama, Hiroshi Mabuchi
Abstract:
E-Learning systems are used by many learners and teachers. The developer is developing the e-Learning system. However, the developer cannot do system construction to satisfy all of users- demands. We discuss a method of constructing e-Learning systems where learners and teachers can design, try to use, and share extending system functions that they want to use; which may be nally added to the system by system managers.Keywords: Clause-Rule-Model, database-access, e-Learning, Web-Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16797883 Clustering Multivariate Empiric Characteristic Functions for Multi-Class SVM Classification
Authors: María-Dolores Cubiles-de-la-Vega, Rafael Pino-Mejías, Esther-Lydia Silva-Ramírez
Abstract:
A dissimilarity measure between the empiric characteristic functions of the subsamples associated to the different classes in a multivariate data set is proposed. This measure can be efficiently computed, and it depends on all the cases of each class. It may be used to find groups of similar classes, which could be joined for further analysis, or it could be employed to perform an agglomerative hierarchical cluster analysis of the set of classes. The final tree can serve to build a family of binary classification models, offering an alternative approach to the multi-class SVM problem. We have tested this dendrogram based SVM approach with the oneagainst- one SVM approach over four publicly available data sets, three of them being microarray data. Both performances have been found equivalent, but the first solution requires a smaller number of binary SVM models.Keywords: Cluster Analysis, Empiric Characteristic Function, Multi-class SVM, R.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18817882 Hybrid Neural Network Methods for Lithology Identification in the Algerian Sahara
Authors: S. Chikhi, M. Batouche, H. Shout
Abstract:
In this paper, we combine a probabilistic neural method with radial-bias functions in order to construct the lithofacies of the wells DF01, DF02 and DF03 situated in the Triassic province of Algeria (Sahara). Lithofacies is a crucial problem in reservoir characterization. Our objective is to facilitate the experts' work in geological domain and to allow them to obtain quickly the structure and the nature of lands around the drilling. This study intends to design a tool that helps automatic deduction from numerical data. We used a probabilistic formalism to enhance the classification process initiated by a Self-Organized Map procedure. Our system gives lithofacies, from well-log data, of the concerned reservoir wells in an aspect easy to read by a geology expert who identifies the potential for oil production at a given source and so forms the basis for estimating the financial returns and economic benefits.
Keywords: Classification, Lithofacies, Probabilistic formalism, Reservoir characterization, Well-log data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18987881 Design of Personal Job Recommendation Framework on Smartphone Platform
Authors: Chayaporn Kaensar
Abstract:
Recently, Job Recommender Systems have gained much attention in industries since they solve the problem of information overload on the recruiting website. Therefore, we proposed Extended Personalized Job System that has the capability of providing the appropriate jobs for job seeker and recommending some suitable information for them using Data Mining Techniques and Dynamic User Profile. On the other hands, company can also interact to the system for publishing and updating job information. This system have emerged and supported various platforms such as web application and android mobile application. In this paper, User profiles, Implicit User Action, User Feedback, and Clustering Techniques in WEKA libraries were applied and implemented. In additions, open source tools like Yii Web Application Framework, Bootstrap Front End Framework and Android Mobile Technology were also applied.Keywords: Recommendation, user profile, data mining, web technology, mobile technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21527880 A Review: Comparative Analysis of Different Categorical Data Clustering Ensemble Methods
Authors: S. Sarumathi, N. Shanthi, M. Sharmila
Abstract:
Over the past epoch a rampant amount of work has been done in the data clustering research under the unsupervised learning technique in Data mining. Furthermore several algorithms and methods have been proposed focusing on clustering different data types, representation of cluster models, and accuracy rates of the clusters. However no single clustering algorithm proves to be the most efficient in providing best results. Accordingly in order to find the solution to this issue a new technique, called Cluster ensemble method was bloomed. This cluster ensemble is a good alternative approach for facing the cluster analysis problem. The main hope of the cluster ensemble is to merge different clustering solutions in such a way to achieve accuracy and to improve the quality of individual data clustering. Due to the substantial and unremitting development of new methods in the sphere of data mining and also the incessant interest in inventing new algorithms, makes obligatory to scrutinize a critical analysis of the existing techniques and the future novelty. This paper exposes the comparative study of different cluster ensemble methods along with their features, systematic working process and the average accuracy and error rates of each ensemble methods. Consequently this speculative and comprehensive analysis will be very useful for the community of clustering practitioners and also helps in deciding the most suitable one to rectify the problem in hand.
Keywords: Clustering, Cluster Ensemble methods, Co-association matrix, Consensus function, Median partition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606