Search results for: DFT-Discrete Fourier Transform
387 Speaker Identification Using Admissible Wavelet Packet Based Decomposition
Authors: Mangesh S. Deshpande, Raghunath S. Holambe
Abstract:
Mel Frequency Cepstral Coefficient (MFCC) features are widely used as acoustic features for speech recognition as well as speaker recognition. In MFCC feature representation, the Mel frequency scale is used to get a high resolution in low frequency region, and a low resolution in high frequency region. This kind of processing is good for obtaining stable phonetic information, but not suitable for speaker features that are located in high frequency regions. The speaker individual information, which is non-uniformly distributed in the high frequencies, is equally important for speaker recognition. Based on this fact we proposed an admissible wavelet packet based filter structure for speaker identification. Multiresolution capabilities of wavelet packet transform are used to derive the new features. The proposed scheme differs from previous wavelet based works, mainly in designing the filter structure. Unlike others, the proposed filter structure does not follow Mel scale. The closed-set speaker identification experiments performed on the TIMIT database shows improved identification performance compared to other commonly used Mel scale based filter structures using wavelets.Keywords: Speaker identification, Wavelet transform, Feature extraction, MFCC, GMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982386 Preparation and Characterization of Pectin Based Proton Exchange Membranes Derived by Solution Casting Method for Direct Methanol Fuel Cells
Authors: Mohanapriya Subramanian, V. Raj
Abstract:
Direct methanol fuel cells (DMFCs) are considered to be one of the most promising candidates for portable and stationary applications in the view of their advantages such as high energy density, easy manipulation, high efficiency and they operate with liquid fuel which could be used without requiring any fuel-processing units. Electrolyte membrane of DMFC plays a key role as a proton conductor as well as a separator between electrodes. Increasing concern over environmental protection, biopolymers gain tremendous interest owing to their eco-friendly bio-degradable nature. Pectin is a natural anionic polysaccharide which plays an essential part in regulating mechanical behavior of plant cell wall and it is extracted from outer cells of most of the plants. The aim of this study is to develop and demonstrate pectin based polymer composite membranes as methanol impermeable polymer electrolyte membranes for DMFCs. Pectin based nanocomposites membranes are prepared by solution-casting technique wherein pectin is blended with chitosan followed by the addition of optimal amount of sulphonic acid modified Titanium dioxide nanoparticle (S-TiO2). Nanocomposite membranes are characterized by Fourier Transform-Infra Red spectroscopy, Scanning electron microscopy, and Energy dispersive spectroscopy analyses. Proton conductivity and methanol permeability are determined into order to evaluate their suitability for DMFC application. Pectin-chitosan blends endow with a flexible polymeric network which is appropriate to disperse rigid S-TiO2 nanoparticles. Resulting nanocomposite membranes possess adequate thermo-mechanical stabilities as well as high charge-density per unit volume. Pectin-chitosan natural polymeric nanocomposite comprising optimal S-TiO2 exhibits good electrochemical selectivity and therefore desirable for DMFC application.Keywords: Biopolymers, fuel cells, nanocomposite, methanol crossover.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202385 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493384 A Novel Approach to Iris Localization for Iris Biometric Processing
Authors: Somnath Dey, Debasis Samanta
Abstract:
Iris-based biometric system is gaining its importance in several applications. However, processing of iris biometric is a challenging and time consuming task. Detection of iris part in an eye image poses a number of challenges such as, inferior image quality, occlusion of eyelids and eyelashes etc. Due to these problems it is not possible to achieve 100% accuracy rate in any iris-based biometric authentication systems. Further, iris detection is a computationally intensive task in the overall iris biometric processing. In this paper, we address these two problems and propose a technique to localize iris part efficiently and accurately. We propose scaling and color level transform followed by thresholding, finding pupil boundary points for pupil boundary detection and dilation, thresholding, vertical edge detection and removal of unnecessary edges present in the eye images for iris boundary detection. Scaling reduces the search space significantly and intensity level transform is helpful for image thresholding. Experimental results show that our approach is comparable with the existing approaches. Following our approach it is possible to detect iris part with 95-99% accuracy as substantiated by our experiments on CASIA Ver-3.0, ICE 2005, UBIRIS, Bath and MMU iris image databases.
Keywords: Iris recognition, iris localization, biometrics, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3191383 Synthesis and Fluorescence Spectroscopy of Sulphonic Acid-Doped Polyaniline When Exposed to Oxygen Gas
Authors: S.F.S. Draman, R. Daik, A. Musa
Abstract:
Three sulphonic acid-doped polyanilines were synthesized through chemical oxidation at low temperature (0-5 oC) and potential of these polymers as sensing agent for O2 gas detection in terms of fluorescence quenching was studied. Sulphuric acid, dodecylbenzene sulphonic acid (DBSA) and camphor sulphonic acid (CSA) were used as doping agents. All polymers obtained were dark green powder. Polymers obtained were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, thermogravimetry analysis, elemental analysis, differential scanning calorimeter and gel permeation chromatography. Characterizations carried out showed that polymers were successfully synthesized with mass recovery for sulphuric aciddoped polyaniline (SPAN), DBSA-doped polyaniline (DBSA-doped PANI) and CSA-doped polyaniline (CSA-doped PANI) of 71.40%, 75.00% and 39.96%, respectively. Doping level of SPAN, DBSAdoped PANI and CSA-doped PANI were 32.86%, 33.13% and 53.96%, respectively as determined based on elemental analysis. Sensing test was carried out on polymer sample in the form of solution and film by using fluorescence spectrophotometer. Samples of polymer solution and polymer film showed positive response towards O2 exposure. All polymer solutions and films were fully regenerated by using N2 gas within 1 hour period. Photostability study showed that all samples of polymer solutions and films were stable towards light when continuously exposed to xenon lamp for 9 hours. The relative standard deviation (RSD) values for SPAN solution, DBSA-doped PANI solution and CSA-doped PANI solution for repeatability were 0.23%, 0.64% and 0.76%, respectively. Meanwhile RSD values for reproducibility were 2.36%, 6.98% and 1.27%, respectively. Results for SPAN film, DBSAdoped PANI film and CSA-doped PANI film showed the same pattern with RSD values for repeatability of 0.52%, 4.05% and 0.90%, respectively. Meanwhile RSD values for reproducibility were 2.91%, 10.05% and 7.42%, respectively. The study on effect of the flow rate on response time was carried out using 3 different rates which were 0.25 mL/s, 1.00 mL/s and 2.00 mL/s. Results obtained showed that the higher the flow rate, the shorter the response time.Keywords: conjugated polymer, doping, fluorescence quenching, oxygen gas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399382 A Method for Iris Recognition Based on 1D Coiflet Wavelet
Authors: Agus Harjoko, Sri Hartati, Henry Dwiyasa
Abstract:
There have been numerous implementations of security system using biometric, especially for identification and verification cases. An example of pattern used in biometric is the iris pattern in human eye. The iris pattern is considered unique for each person. The use of iris pattern poses problems in encoding the human iris. In this research, an efficient iris recognition method is proposed. In the proposed method the iris segmentation is based on the observation that the pupil has lower intensity than the iris, and the iris has lower intensity than the sclera. By detecting the boundary between the pupil and the iris and the boundary between the iris and the sclera, the iris area can be separated from pupil and sclera. A step is taken to reduce the effect of eyelashes and specular reflection of pupil. Then the four levels Coiflet wavelet transform is applied to the extracted iris image. The modified Hamming distance is employed to measure the similarity between two irises. This research yields the identification success rate of 84.25% for the CASIA version 1.0 database. The method gives an accuracy of 77.78% for the left eyes of MMU 1 database and 86.67% for the right eyes. The time required for the encoding process, from the segmentation until the iris code is generated, is 0.7096 seconds. These results show that the accuracy and speed of the method is better than many other methods.Keywords: Biometric, iris recognition, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906381 Palmprint Recognition by Wavelet Transform with Competitive Index and PCA
Authors: Deepti Tamrakar, Pritee Khanna
Abstract:
This manuscript presents, palmprint recognition by combining different texture extraction approaches with high accuracy. The Region of Interest (ROI) is decomposed into different frequencytime sub-bands by wavelet transform up-to two levels and only the approximate image of two levels is selected, which is known as Approximate Image ROI (AIROI). This AIROI has information of principal lines of the palm. The Competitive Index is used as the features of the palmprint, in which six Gabor filters of different orientations convolve with the palmprint image to extract the orientation information from the image. The winner-take-all strategy is used to select dominant orientation for each pixel, which is known as Competitive Index. Further, PCA is applied to select highly uncorrelated Competitive Index features, to reduce the dimensions of the feature vector, and to project the features on Eigen space. The similarity of two palmprints is measured by the Euclidean distance metrics. The algorithm is tested on Hong Kong PolyU palmprint database. Different AIROI of different wavelet filter families are also tested with the Competitive Index and PCA. AIROI of db7 wavelet filter achievs Equal Error Rate (EER) of 0.0152% and Genuine Acceptance Rate (GAR) of 99.67% on the palm database of Hong Kong PolyU.Keywords: DWT, EER, Euclidean Distance, Gabor filter, PCA, ROI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740380 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm
Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim
Abstract:
All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.
Keywords: Currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864379 Optimized and Secured Digital Watermarking Using Entropy, Chaotic Grid Map and Its Performance Analysis
Authors: R. Rama Kishore, Sunesh
Abstract:
This paper presents an optimized, robust, and secured watermarking technique. The methodology used in this work is the combination of entropy and chaotic grid map. The proposed methodology incorporates Discrete Cosine Transform (DCT) on the host image. To improve the imperceptibility of the method, the host image DCT blocks, where the watermark is to be embedded, are further optimized by considering the entropy of the blocks. Chaotic grid is used as a key to reorder the DCT blocks so that it will further increase security while selecting the watermark embedding locations and its sequence. Without a key, one cannot reveal the exact watermark from the watermarked image. The proposed method is implemented on four different images. It is concluded that the proposed method is giving better results in terms of imperceptibility measured through PSNR and found to be above 50. In order to prove the effectiveness of the method, the performance analysis is done after implementing different attacks on the watermarked images. It is found that the methodology is very strong against JPEG compression attack even with the quality parameter up to 15. The experimental results are confirming that the combination of entropy and chaotic grid map method is strong and secured to different image processing attacks.
Keywords: Digital watermarking, discrete cosine transform, chaotic grid map, entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718378 Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation
Authors: Seda Yavuz, Anıl Çelebi, Aysun Taşyapı Çelebi, Oğuzhan Urhan
Abstract:
Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption.
Keywords: Binarization, hardware architecture, local binary pattern, motion estimation, two-bit transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374377 Optic Disc Detection by Earth Mover's Distance Template Matching
Authors: Fernando C. Monteiro, Vasco Cadavez
Abstract:
This paper presents a method for the detection of OD in the retina which takes advantage of the powerful preprocessing techniques such as the contrast enhancement, Gabor wavelet transform for vessel segmentation, mathematical morphology and Earth Mover-s distance (EMD) as the matching process. The OD detection algorithm is based on matching the expected directional pattern of the retinal blood vessels. Vessel segmentation method produces segmentations by classifying each image pixel as vessel or nonvessel, based on the pixel-s feature vector. Feature vectors are composed of the pixel-s intensity and 2D Gabor wavelet transform responses taken at multiple scales. A simple matched filter is proposed to roughly match the direction of the vessels at the OD vicinity using the EMD. The minimum distance provides an estimate of the OD center coordinates. The method-s performance is evaluated on publicly available DRIVE and STARE databases. On the DRIVE database the OD center was detected correctly in all of the 40 images (100%) and on the STARE database the OD was detected correctly in 76 out of the 81 images, even in rather difficult pathological situations.
Keywords: Diabetic retinopathy, Earth Mover's distance, Gabor wavelets, optic disc detection, retinal images
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006376 Statistical Texture Analysis
Authors: G. N. Srinivasan, G. Shobha
Abstract:
This paper presents an overview of the methodologies and algorithms for statistical texture analysis of 2D images. Methods for digital-image texture analysis are reviewed based on available literature and research work either carried out or supervised by the authors.Keywords: Image Texture, Texture Analysis, Statistical Approaches, Structural approaches, spectral approaches, Morphological approaches, Fractals, Fourier Transforms, Gabor Filters, Wavelet transforms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938375 Highly Scalable, Reversible and Embedded Image Compression System
Authors: Federico Pérez González, Iñaki Goiricelaia Ordorika, Pedro Iriondo Bengoa
Abstract:
A new method for low complexity image coding is presented, that permits different settings and great scalability in the generation of the final bit stream. This coding presents a continuoustone still image compression system that groups loss and lossless compression making use of finite arithmetic reversible transforms. Both transformation in the space of color and wavelet transformation are reversible. The transformed coefficients are coded by means of a coding system in depending on a subdivision into smaller components (CFDS) similar to the bit importance codification. The subcomponents so obtained are reordered by means of a highly configure alignment system depending on the application that makes possible the re-configure of the elements of the image and obtaining different levels of importance from which the bit stream will be generated. The subcomponents of each level of importance are coded using a variable length entropy coding system (VBLm) that permits the generation of an embedded bit stream. This bit stream supposes itself a bit stream that codes a compressed still image. However, the use of a packing system on the bit stream after the VBLm allows the realization of a final highly scalable bit stream from a basic image level and one or several enhance levels.
Keywords: Image compression, wavelet transform, highlyscalable, reversible transform, embedded, subcomponents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413374 SLM Using Riemann Sequence Combined with DCT Transform for PAPR Reduction in OFDM Communication Systems
Authors: Pepin Magnangana Zoko Goyoro, Ibrahim James Moumouni, Sroy Abouty
Abstract:
Orthogonal Frequency Division Multiplexing (OFDM) is an efficient method of data transmission for high speed communication systems. However, the main drawback of OFDM systems is that, it suffers from the problem of high Peak-to-Average Power Ratio (PAPR) which causes inefficient use of the High Power Amplifier and could limit transmission efficiency. OFDM consist of large number of independent subcarriers, as a result of which the amplitude of such a signal can have high peak values. In this paper, we propose an effective reduction scheme that combines DCT and SLM techniques. The scheme is composed of the DCT followed by the SLM using the Riemann matrix to obtain phase sequences for the SLM technique. The simulation results show PAPR can be greatly reduced by applying the proposed scheme. In comparison with OFDM, while OFDM had high values of PAPR –about 10.4dB our proposed method achieved about 4.7dB reduction of the PAPR with low complexities computation. This approach also avoids randomness in phase sequence selection, which makes it simpler to decode at the receiver. As an added benefit, the matrices can be generated at the receiver end to obtain the data signal and hence it is not required to transmit side information (SI).Keywords: DCT transform, OFDM, PAPR, Riemann matrix, SLM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639373 Effects of the Coagulation Bath and Reduction Process on SO2 Adsorption Capacity of Graphene Oxide Fiber
Authors: Özge Alptoğa, Nuray Uçar, Nilgün Karatepe Yavuz, Ayşen Önen
Abstract:
Sulfur dioxide (SO2) is a very toxic air pollutant gas and it causes the greenhouse effect, photochemical smog, and acid rain, which threaten human health severely. Thus, the capture of SO2 gas is very important for the environment. Graphene which is two-dimensional material has excellent mechanical, chemical, thermal properties, and many application areas such as energy storage devices, gas adsorption, sensing devices, and optical electronics. Further, graphene oxide (GO) is examined as a good adsorbent because of its important features such as functional groups (epoxy, carboxyl and hydroxyl) on the surface and layered structure. The SO2 adsorption properties of the fibers are usually investigated on carbon fibers. In this study, potential adsorption capacity of GO fibers was researched. GO dispersion was first obtained with Hummers’ method from graphite, and then GO fibers were obtained via wet spinning process. These fibers were converted into a disc shape, dried, and then subjected to SO2 gas adsorption test. The SO2 gas adsorption capacity of GO fiber discs was investigated in the fields of utilization of different coagulation baths and reduction by hydrazine hydrate. As coagulation baths, single and triple baths were used. In single bath, only ethanol and CaCl2 (calcium chloride) salt were added. In triple bath, each bath has a different concentration of water/ethanol and CaCl2 salt, and the disc obtained from triple bath has been called as reference disk. The fibers which were produced with single bath were flexible and rough, and the analyses show that they had higher SO2 adsorption capacity than triple bath fibers (reference disk). However, the reduction process did not increase the adsorption capacity, because the SEM images showed that the layers and uniform structure in the fiber form were damaged, and reduction decreased the functional groups which SO2 will be attached. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analyzes were performed on the fibers and discs, and the effects on the results were interpreted. In the future applications of the study, it is aimed that subjects such as pH and additives will be examined.
Keywords: Coagulation bath, graphene oxide fiber, reduction, SO2 gas adsorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180372 Reversible, Embedded and Highly Scalable Image Compression System
Authors: Federico Pérez González, Iñaki Goirizelaia Ordorika, Pedro Iriondo Bengoa
Abstract:
In this work a new method for low complexity image coding is presented, that permits different settings and great scalability in the generation of the final bit stream. This coding presents a continuous-tone still image compression system that groups loss and lossless compression making use of finite arithmetic reversible transforms. Both transformation in the space of color and wavelet transformation are reversible. The transformed coefficients are coded by means of a coding system in depending on a subdivision into smaller components (CFDS) similar to the bit importance codification. The subcomponents so obtained are reordered by means of a highly configure alignment system depending on the application that makes possible the re-configure of the elements of the image and obtaining different importance levels from which the bit stream will be generated. The subcomponents of each importance level are coded using a variable length entropy coding system (VBLm) that permits the generation of an embedded bit stream. This bit stream supposes itself a bit stream that codes a compressed still image. However, the use of a packing system on the bit stream after the VBLm allows the realization of a final highly scalable bit stream from a basic image level and one or several improvement levels.Keywords: Image compression, wavelet transform, highly scalable, reversible transform, embedded, subcomponents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301371 Application of a Similarity Measure for Graphs to Web-based Document Structures
Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian, Max Mühlhauser
Abstract:
Due to the tremendous amount of information provided by the World Wide Web (WWW) developing methods for mining the structure of web-based documents is of considerable interest. In this paper we present a similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as linear integer strings, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments for solving a novel and challenging problem: Measuring the structural similarity of generalized trees. In other words: We first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem for developing a efficient graph similarity measure. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based document structures.Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892370 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals
Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer
Abstract:
Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).
Keywords: Diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346369 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach
Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh
Abstract:
This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.Keywords: River stage-discharge process, LSSVM, discrete wavelet transform (DWT), ensemble empirical decomposition mode (EEMD), multi-station modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 664368 A Trainable Neural Network Ensemble for ECG Beat Classification
Authors: Atena Sajedin, Shokoufeh Zakernejad, Soheil Faridi, Mehrdad Javadi, Reza Ebrahimpour
Abstract:
This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216367 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features
Authors: Rabab M. Ramadan, Elaraby A. Elgallad
Abstract:
With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.
Keywords: Iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, scale invariant feature transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884366 Quality Evaluation of Compressed MRI Medical Images for Telemedicine Applications
Authors: Seddeq E. Ghrare, Salahaddin M. Shreef
Abstract:
Medical image modalities such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), X-ray are adapted to diagnose disease. These modalities provide flexible means of reviewing anatomical cross-sections and physiological state in different parts of the human body. The raw medical images have a huge file size and need large storage requirements. So it should be such a way to reduce the size of those image files to be valid for telemedicine applications. Thus the image compression is a key factor to reduce the bit rate for transmission or storage while maintaining an acceptable reproduction quality, but it is natural to rise the question of how much an image can be compressed and still preserve sufficient information for a given clinical application. Many techniques for achieving data compression have been introduced. In this study, three different MRI modalities which are Brain, Spine and Knee have been compressed and reconstructed using wavelet transform. Subjective and objective evaluation has been done to investigate the clinical information quality of the compressed images. For the objective evaluation, the results show that the PSNR which indicates the quality of the reconstructed image is ranging from (21.95 dB to 30.80 dB, 27.25 dB to 35.75 dB, and 26.93 dB to 34.93 dB) for Brain, Spine, and Knee respectively. For the subjective evaluation test, the results show that the compression ratio of 40:1 was acceptable for brain image, whereas for spine and knee images 50:1 was acceptable.Keywords: Medical Image, Magnetic Resonance Imaging, Image Compression, Discrete Wavelet Transform, Telemedicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2977365 Probabilistic Wavelet Neural Network Based Vibration Analysis of Induction Motor Drive
Authors: K. Jayakumar, S. Thangavel
Abstract:
In this paper proposed the effective fault detection of industrial drives by using Biorthogonal Posterior Vibration Signal-Data Probabilistic Wavelet Neural Network (BPPVS-WNN) system. This system was focused to reducing the current flow and to identify faults with lesser execution time with harmonic values obtained through fifth derivative. Initially, the construction of Biorthogonal vibration signal-data based wavelet transform in BPPVS-WNN system localizes the time and frequency domain. The Biorthogonal wavelet approximates the broken bearing using double scaling and factor, identifies the transient disturbance due to fault on induction motor through approximate coefficients and detailed coefficient. Posterior Probabilistic Neural Network detects the final level of faults using the detailed coefficient till fifth derivative and the results obtained through it at a faster rate at constant frequency signal on the industrial drive. Experiment through the Simulink tool detects the healthy and unhealthy motor on measuring parametric factors such as fault detection rate based on time, current flow rate, and execution time.Keywords: Biorthogonal Wavelet Transform, Posterior Probabilistic Neural Network, Induction Motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018364 Sparse Frequencies Extracting from Partial Phase-Only Measurements
Authors: R. Fan, Q. Wan, H. Chen, Y.L. Liu, Y.P. Liu
Abstract:
This paper considers a robust recovery of sparse frequencies from partial phase-only measurements. With the proposed method, sparse frequencies can be reconstructed, which makes full use of the sparse distribution in the Fourier representation of the complex-valued time signal. Simulation experiments illustrate the proposed method-s advantages over conventional methods in both noiseless and additive white Gaussian noise cases.Keywords: Sparse signal recovery, phase-only measurements, Compressive sensing, convex relaxation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466363 Measuring the Structural Similarity of Web-based Documents: A Novel Approach
Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian
Abstract:
Most known methods for measuring the structural similarity of document structures are based on, e.g., tag measures, path metrics and tree measures in terms of their DOM-Trees. Other methods measures the similarity in the framework of the well known vector space model. In contrast to these we present a new approach to measuring the structural similarity of web-based documents represented by so called generalized trees which are more general than DOM-Trees which represent only directed rooted trees.We will design a new similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as strings of linear integers, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments to solve a novel and challenging problem: Measuring the structural similarity of generalized trees. More precisely, we first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based documents.
Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557362 Determination of Optimum Length of Framesand Number of Vectors to Compress ECG Signals
Authors: Rafet Akdeniz, Pınar Tüfekçi, B.Sıddık Yarman
Abstract:
In this study, to compress ECG signals, KLT (Karhunen- Loeve Transform) method has been used. The purpose of this method is to perform effective ECG coding by a correlation between the length of frames and the number of vectors of ECG signals.Keywords: ECG Compression, EKG Compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485361 EZW Coding System with Artificial Neural Networks
Authors: Saudagar Abdul Khader Jilani, Syed Abdul Sattar
Abstract:
Image compression plays a vital role in today-s communication. The limitation in allocated bandwidth leads to slower communication. To exchange the rate of transmission in the limited bandwidth the Image data must be compressed before transmission. Basically there are two types of compressions, 1) LOSSY compression and 2) LOSSLESS compression. Lossy compression though gives more compression compared to lossless compression; the accuracy in retrievation is less in case of lossy compression as compared to lossless compression. JPEG, JPEG2000 image compression system follows huffman coding for image compression. JPEG 2000 coding system use wavelet transform, which decompose the image into different levels, where the coefficient in each sub band are uncorrelated from coefficient of other sub bands. Embedded Zero tree wavelet (EZW) coding exploits the multi-resolution properties of the wavelet transform to give a computationally simple algorithm with better performance compared to existing wavelet transforms. For further improvement of compression applications other coding methods were recently been suggested. An ANN base approach is one such method. Artificial Neural Network has been applied to many problems in image processing and has demonstrated their superiority over classical methods when dealing with noisy or incomplete data for image compression applications. The performance analysis of different images is proposed with an analysis of EZW coding system with Error Backpropagation algorithm. The implementation and analysis shows approximately 30% more accuracy in retrieved image compare to the existing EZW coding system.Keywords: Accuracy, Compression, EZW, JPEG2000, Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933360 Diagnosis of Induction Machine Faults by DWT
Authors: Hamidreza Akbari
Abstract:
In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.
Keywords: Induction machine, Fault, DWT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130359 Green Synthesis of Nanosilver-Loaded Hydrogel Nanocomposites for Antibacterial Application
Authors: D. Berdous, H. Ferfera-Harrar
Abstract:
Superabsorbent polymers (SAPs) or hydrogels with three-dimensional hydrophilic network structure are high-performance water absorbent and retention materials. The in situ synthesis of metal nanoparticles within polymeric network as antibacterial agents for bio-applications is an approach that takes advantage of the existing free-space into networks, which not only acts as a template for nucleation of nanoparticles, but also provides long term stability and reduces their toxicity by delaying their oxidation and release. In this work, SAP/nanosilver nanocomposites were successfully developed by a unique green process at room temperature, which involves in situ formation of silver nanoparticles (AgNPs) within hydrogels as a template. The aim of this study is to investigate whether these AgNPs-loaded hydrogels are potential candidates for antimicrobial applications. Firstly, the superabsorbents were prepared through radical copolymerization via grafting and crosslinking of acrylamide (AAm) onto chitosan backbone (Cs) using potassium persulfate as initiator and N,N’-methylenebisacrylamide as the crosslinker. Then, they were hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. Lastly, the AgNPs were biosynthesized and entrapped into hydrogels through a simple, eco-friendly and cost-effective method using aqueous silver nitrate as a silver precursor and curcuma longa tuber-powder extracts as both reducing and stabilizing agent. The formed superabsorbents nanocomposites (Cs-g-PAAm)/AgNPs were characterized by X-ray Diffraction (XRD), UV-visible Spectroscopy, Attenuated Total reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Inductively Coupled Plasma (ICP), and Thermogravimetric Analysis (TGA). Microscopic surface structure analyzed by Transmission Electron Microscopy (TEM) has showed spherical shapes of AgNPs with size in the range of 3-15 nm. The extent of nanosilver loading was decreased by increasing Cs content into network. The silver-loaded hydrogel was thermally more stable than the unloaded dry hydrogel counterpart. The swelling equilibrium degree (Q) and centrifuge retention capacity (CRC) in deionized water were affected by both contents of Cs and the entrapped AgNPs. The nanosilver-embedded hydrogels exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. These comprehensive results suggest that the elaborated AgNPs-loaded nanomaterials could be used to produce valuable wound dressing.
Keywords: Antibacterial activity, nanocomposites, silver nanoparticles, superabsorbent hydrogel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705358 DWT-SATS Based Detection of Image Region Cloning
Authors: Michael Zimba
Abstract:
A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency subband of the DWT of the suspicious image thereby leaving valuable information in the other three subbands, the proposed algorithm simultaneously extracts features from all the four subbands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates.
Keywords: Affine Transformation, Discrete Wavelet Transform, Radix Sort, SATS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910