Search results for: Adaptive Gain Equalizer
863 Genetic Algorithm based Optimization approach for MR Dampers Fuzzy Modeling
Authors: Behnam Mehrkian, Arash Bahar, Ali Chaibakhsh
Abstract:
Magneto-rheological (MR) fluid damper is a semiactive control device that has recently received more attention by the vibration control community. But inherent hysteretic and highly nonlinear dynamics of MR fluid damper is one of the challenging aspects to employ its unique characteristics. The combination of artificial neural network (ANN) and fuzzy logic system (FLS) have been used to imitate more precisely the behavior of this device. However, the derivative-based nature of adaptive networks causes some deficiencies. Therefore, in this paper, a novel approach that employ genetic algorithm, as a free-derivative algorithm, to enhance the capability of fuzzy systems, is proposed. The proposed method used to model MR damper. The results will be compared with adaptive neuro-fuzzy inference system (ANFIS) model, which is one of the well-known approaches in soft computing framework, and two best parametric models of MR damper. Data are generated based on benchmark program by applying a number of famous earthquake records.Keywords: Benchmark program, earthquake record filtering, fuzzy logic, genetic algorithm, MR damper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117862 Optimal Design of Two-Channel Recursive Parallelogram Quadrature Mirror Filter Banks
Authors: Ju-Hong Lee, Yi-Lin Shieh
Abstract:
This paper deals with the optimal design of two-channel recursive parallelogram quadrature mirror filter (PQMF) banks. The analysis and synthesis filters of the PQMF bank are composed of two-dimensional (2-D) recursive digital all-pass filters (DAFs) with nonsymmetric half-plane (NSHP) support region. The design problem can be facilitated by using the 2-D doubly complementary half-band (DC-HB) property possessed by the analysis and synthesis filters. For finding the coefficients of the 2-D recursive NSHP DAFs, we appropriately formulate the design problem to result in an optimization problem that can be solved by using a weighted least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The designed 2-D recursive PQMF bank achieves perfect magnitude response and possesses satisfactory phase response without requiring extra phase equalizer. Simulation results are also provided for illustration and comparison.
Keywords: Parallelogram Quadrature Mirror Filter Bank, Doubly Complementary Filter, Nonsymmetric Half-Plane Filter, Weighted Least Squares Algorithm, Digital All-Pass Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543861 Speed -Sensorless Vector Control of Parallel Connected Induction Motor Drive Fed by a Single Inverter using Natural Observer
Authors: R. Gunabalan, V. Subbiah
Abstract:
This paper describes the speed sensorless vector control method of the parallel connected induction motor drive fed by a single inverter. Speed and rotor fluxes of the induction motor are estimated by natural observer with load torque adaptation and adaptive rotor flux observer. The performance parameters speed and rotor fluxes are estimated from the measured terminal voltages and currents. Fourth order induction motor model is used and speed is considered as a parameter. The performance of the natural observer is similar to the conventional observer. The speed of an induction motor is estimated by MATLAB simulation under different speed and load conditions. Estimated values along with other measured states are used for closed loop control. The simulation results show that the natural observer is also effective for parallel connected induction motor drive.
Keywords: natural observer, adaptive observer, sensorless control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543860 Image Adaptive Watermarking with Visual Model in Orthogonal Polynomials based Transformation Domain
Authors: Krishnamoorthi R., Sheba Kezia Malarchelvi P. D.
Abstract:
In this paper, an image adaptive, invisible digital watermarking algorithm with Orthogonal Polynomials based Transformation (OPT) is proposed, for copyright protection of digital images. The proposed algorithm utilizes a visual model to determine the watermarking strength necessary to invisibly embed the watermark in the mid frequency AC coefficients of the cover image, chosen with a secret key. The visual model is designed to generate a Just Noticeable Distortion mask (JND) by analyzing the low level image characteristics such as textures, edges and luminance of the cover image in the orthogonal polynomials based transformation domain. Since the secret key is required for both embedding and extraction of watermark, it is not possible for an unauthorized user to extract the embedded watermark. The proposed scheme is robust to common image processing distortions like filtering, JPEG compression and additive noise. Experimental results show that the quality of OPT domain watermarked images is better than its DCT counterpart.Keywords: Orthogonal Polynomials based Transformation, Digital Watermarking, Copyright Protection, Visual model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697859 Attack Detection through Image Adaptive Self Embedding Watermarking
Authors: S. Shefali, S. M. Deshpande, S. G. Tamhankar
Abstract:
Now a days, a significant part of commercial and governmental organisations like museums, cultural organizations, libraries, commercial enterprises, etc. invest intensively in new technologies for image digitization, digital libraries, image archiving and retrieval. Hence image authorization, authentication and security has become prime need. In this paper, we present a semi-fragile watermarking scheme for color images. The method converts the host image into YIQ color space followed by application of orthogonal dual domains of DCT and DWT transforms. The DCT helps to separate relevant from irrelevant image content to generate silent image features. DWT has excellent spatial localisation to help aid in spatial tamper characterisation. Thus image adaptive watermark is generated based of image features which allows the sharp detection of microscopic changes to locate modifications in the image. Further, the scheme utilises the multipurpose watermark consisting of soft authenticator watermark and chrominance watermark. Which has been proved fragile to some predefined processing like intentinal fabrication of the image or forgery and robust to other incidental attacks caused in the communication channel.
Keywords: Cryptography, Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042858 Optimized Data Fusion in an Intelligent Integrated GPS/INS System Using Genetic Algorithm
Authors: Ali Asadian, Behzad Moshiri, Ali Khaki Sedigh, Caro Lucas
Abstract:
Most integrated inertial navigation systems (INS) and global positioning systems (GPS) have been implemented using the Kalman filtering technique with its drawbacks related to the need for predefined INS error model and observability of at least four satellites. Most recently, a method using a hybrid-adaptive network based fuzzy inference system (ANFIS) has been proposed which is trained during the availability of GPS signal to map the error between the GPS and the INS. Then it will be used to predict the error of the INS position components during GPS signal blockage. This paper introduces a genetic optimization algorithm that is used to update the ANFIS parameters with respect to the INS/GPS error function used as the objective function to be minimized. The results demonstrate the advantages of the genetically optimized ANFIS for INS/GPS integration in comparison with conventional ANFIS specially in the cases of satellites- outages. Coping with this problem plays an important role in assessment of the fusion approach in land navigation.Keywords: Adaptive Network based Fuzzy Inference System (ANFIS), Genetic optimization, Global Positioning System (GPS), Inertial Navigation System (INS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909857 Numerical Investigation of Poling Vector Angle on Adaptive Sandwich Plate Deflection
Authors: Alireza Pouladkhan, Mohammad Yavari Foroushani, Ali Mortazavi
Abstract:
This paper presents a finite element model for a Sandwich Plate containing a piezoelectric core. A sandwich plate with a piezoelectric core is constructed using the shear mode of piezoelectric materials. The orientation of poling vector has a significant effect on deflection and stress induced in the piezo-actuated adaptive sandwich plate. In the present study, the influence of this factor for a clamped-clamped-free-free and simple-simple-free-free square sandwich plate is investigated using Finite Element Method. The study uses ABAQUS (v.6.7) software to derive the finite element model of the sandwich plate. By using this model, the study gives the influences of the poling vector angle on the response of the smart structure and determines the maximum transverse displacement and maximum stress induced.
Keywords: Finite element method, Sandwich plate, Poling vector, Piezoelectric materials, Smart structure, Electric enthalpy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957856 Deterministic Method to Assess Kalman Filter Passive Ranging Solution Reliability
Authors: Ronald M. Yannone
Abstract:
For decades, the defense business has been plagued by not having a reliable, deterministic method to know when the Kalman filter solution for passive ranging application is reliable for use by the fighter pilot. This has made it hard to accurately assess when the ranging solution can be used for situation awareness and weapons use. To date, we have used ad hoc rules-of-thumb to assess when we think the estimate of the Kalman filter standard deviation on range is reliable. A reliable algorithm has been developed at BAE Systems Electronics & Integrated Solutions that monitors the Kalman gain matrix elements – and a patent is pending. The “settling" of the gain matrix elements relates directly to when we can assess the time when the passive ranging solution is within the 10 percent-of-truth value. The focus of the paper is on surface-based passive ranging – but the method is applicable to airborne targets as well.Keywords: Electronic warfare, extended Kalman filter (EKF), fighter aircraft, passive ranging, track convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065855 Neural Network Control of a Biped Robot Model with Composite Adaptation Low
Authors: Ahmad Forouzantabar
Abstract:
this paper presents a novel neural network controller with composite adaptation low to improve the trajectory tracking problems of biped robots comparing with classical controller. The biped model has 5_link and 6 degrees of freedom and actuated by Plated Pneumatic Artificial Muscle, which have a very high power to weight ratio and it has large stoke compared to similar actuators. The proposed controller employ a stable neural network in to approximate unknown nonlinear functions in the robot dynamics, thereby overcoming some limitation of conventional controllers such as PD or adaptive controllers and guarantee good performance. This NN controller significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, therefore improving tracking accuracy. Simulation results plus graphical simulation in virtual reality show that NN controller tracking performance is considerably better than PD controller tracking performance.Keywords: Biped robot, Neural network, Plated Pneumatic Artificial Muscle, Composite adaptation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846854 Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems
Authors: Rajamani Doraiswami, Lahouari Cheded
Abstract:
Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system.Keywords: Keywords—Identification, linear parameter-varying systems, least-squares estimation, fault diagnosis, Kalman filter, emulators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301853 A Wavelet Based Object Watermarking System for Image and Video
Authors: Abdessamad Essaouabi, Ibnelhaj Elhassane
Abstract:
Efficient storage, transmission and use of video information are key requirements in many multimedia applications currently being addressed by MPEG-4. To fulfill these requirements, a new approach for representing video information which relies on an object-based representation, has been adopted. Therefore, objectbased watermarking schemes are needed for copyright protection. This paper proposes a novel blind object watermarking scheme for images and video using the in place lifting shape adaptive-discrete wavelet transform (SA-DWT). In order to make the watermark robust and transparent, the watermark is embedded in the average of wavelet blocks using the visual model based on the human visual system. Wavelet coefficients n least significant bits (LSBs) are adjusted in concert with the average. Simulation results shows that the proposed watermarking scheme is perceptually invisible and robust against many attacks such as lossy image/video compression (e.g. JPEG, JPEG2000 and MPEG-4), scaling, adding noise, filtering, etc.
Keywords: Watermark, visual model, robustness, in place lifting shape adaptive-discrete wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899852 Determining of Threshold Levels of Burst by Burst AQAM/CDMA in Slow Rayleigh Fading Environments
Authors: F. Nejadebrahimi, M. ArdebiliPour
Abstract:
In this paper, we are going to determine the threshold levels of adaptive modulation in a burst by burst CDMA system by a suboptimum method so that the above method attempts to increase the average bit per symbol (BPS) rate of transceiver system by switching between the different modulation modes in variable channel condition. In this method, we choose the minimum values of average bit error rate (BER) and maximum values of average BPS on different values of average channel signal to noise ratio (SNR) and then calculate the relative threshold levels of them, so that when the instantaneous SNR increases, a higher order modulation be employed for increasing throughput and vise-versa when the instantaneous SNR decreases, a lower order modulation be employed for improvement of BER. In transmission step, by this adaptive modulation method, in according to comparison between obtained estimation of pilot symbols and a set of above suboptimum threshold levels, above system chooses one of states no transmission, BPSK, 4QAM and square 16QAM for modulation of data. The expected channel in this paper is a slow Rayleigh fading.
Keywords: AQAM, burst, BER, BPS, CDMA, threshold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533851 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates
Authors: Qiong He, S. Thomas Ng
Abstract:
Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.Keywords: Overhang, energy analysis, computer-based simulation, high-rise residential building, mutual shading, climate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448850 Design and Performance Comparison of Metamaterial Based Antenna for 4G/5G Mobile Devices
Authors: Jalal Khan, Daniyal Ali Sehrai, Shakeel Ahmad
Abstract:
This paper presents the design and performance evaluation of multiband metamaterial based antenna operating in the 3.6 GHz (4G), 14.33 GHz, and 28.86 GHz (5G) frequency bands, for future mobile and handheld devices. The radiating element of the proposed design is made up of a conductive material supported by a 1.524 mm thicker Rogers-4003 substrate, having a relative dielectric constant and loss tangent of 3.55 and 0.0027, respectively. The substrate is backed by truncated ground plane. The future mobile communication system is based on higher frequencies, which are highly affected by the atmospheric conditions. Therefore, to overcome the path loss problem, essential enhancements and improvements must be made in the overall performance of the antenna. The traditional ground plane does not provide the in-phase reflection and surface wave suppression due to which side and back lobes are produced. This will affect the antenna performance in terms of gain and efficiency. To enhance the overall performance of the antenna, a metamaterial acting as a high impedance surface (HIS) is used as a reflector in the proposed design. The simulated gain of the metamaterial based antenna is enhanced from {2.76-6.47, 4.83-6.71 and 7.52-7.73} dB at 3.6, 14.33 and 28.89 GHz, respectively relative to the gain of the antenna backed by a traditional ground plane. The proposed antenna radiated efficiently with a radiated efficiency (>85 %) in all the three frequency bands with and without metamaterial surface. The total volume of the antenna is (L x W x h=45 x 40 x 1.524) mm3. The antenna can be potentially used for wireless handheld devices and mobile terminal. All the simulations have been performed using the Computer Simulation Technology (CST) software.
Keywords: Multiband, fourth generation (4G), fifth generation (5G), metamaterial, CST MWS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889849 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array
Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang
Abstract:
Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.
Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656848 Growth Performance and Economy of Production of Pullets Fed on Different Energy Based Sources
Authors: O. A. Anjola, M. A. Adejobi, A. Ogunbameru, F. P. Agbaye, R. O. Odunukan
Abstract:
This experiment was conducted for 8 weeks to evaluate the growth performance and economics of pullets fed on different dietary energy sources. A total of 300 Harco black was used for this experiment. The birds were completely randomized and divided into four diet treatment groups. Each treatment group had three replicates of twenty-five birds per replicate. Four diets containing maize, spaghetti, noodles, and biscuit was formulated to represent diet 1, 2, 3 and 4 respectively. Diet 1 containing maize is the control, while diet 2, 3, and 4 contains spaghetti, noodles, and biscuit waste meal at 100% replacement for maize on weight for weight basis. Performance indices on Feed intake, body weight, weight gain, feed conversion ratio (FCR) and economy of production were measured. Blood samples were also collected for heamatology and serum biochemistry assessment. The result of the experiment indicated that different dietary energy source fed to birds significantly (P < 0.05) affect feed intake, body weight, weight gain, and feed conversion ratio (FCR). The best cost of feed per kilogram of body weight gain was obtained in Spaghetti based diet (₦559.30). However, the best performance were obtained from diet 1(maize), it can be concluded that spaghetti as a replacement for maize in diet of pullet is most economical and profitable for production without any deleterious effects attached. Blood parameters of birds were not significantly (p > 0.05) influenced by the use of the dietary energy sources used in this experiment.
Keywords: Growth performance, spaghetti, noodles, biscuit, profit, hematology and serum biochemistry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1148847 Co-Administration Effects of Conjugated Linoleic Acid and L-Carnitine on Weight Gain and Biochemical Profile in Diet Induced Obese Rats
Authors: Maryam Nazari, Majid Karandish, Alihossein Saberi
Abstract:
Obesity as a global health challenge motivates pharmaceutical industries to produce anti-obesity drugs. However, effectiveness of these agents is remained unclear. Because of popularity of dietary supplements, the aim of this study was tp investigate the effects of Conjugated Linoleic Acid (CLA) and L-carnitine (LC) on serum glucose, triglyceride, cholesterol and weight changes in diet induced obese rats. 48 male Wistar rats were randomly divided into two groups: Normal fat diet (n=8), and High fat diet (HFD) (n=32). After eight weeks, the second group which was maintained on HFD until the end of study, was subdivided into four categories: a) 500 mg Corn Oil (as control group), b) 500 mg CLA, c) 200 mg LC, d) 500 mg CLA+ 200 mg LC.All doses are planned per kg body weights, which were administered by oral gavage for four weeks. Body weights were measured and recorded weekly by means of a digital scale. At the end of the study, blood samples were collected for biochemical markers measurement. SPSS Version 16 was used for statistical analysis. At the end of 8th week, a significant difference in weight was observed between HFD and NFD group. After 12 weeks, LC significantly reduced weight gain by 4.2%. Trend of weight gain in CLA and CLA+LC groups was insignificantly decelerated. CLA+LC reduced triglyceride level significantly, but just CLA had significant influence on total cholesterol and insignificant decreasing effect on FBS. Our results showed that an obesogenic diet in a relative short time led to obesity and dyslipidemia which can be modified by LC and CLA to some extent.
Keywords: Conjugated linoleic acid, high fat diet, L-carnitine, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942846 A Study of Panel Logit Model and Adaptive Neuro-Fuzzy Inference System in the Prediction of Financial Distress Periods
Authors: Ε. Giovanis
Abstract:
The purpose of this paper is to present two different approaches of financial distress pre-warning models appropriate for risk supervisors, investors and policy makers. We examine a sample of the financial institutions and electronic companies of Taiwan Security Exchange (TSE) market from 2002 through 2008. We present a binary logistic regression with paned data analysis. With the pooled binary logistic regression we build a model including more variables in the regression than with random effects, while the in-sample and out-sample forecasting performance is higher in random effects estimation than in pooled regression. On the other hand we estimate an Adaptive Neuro-Fuzzy Inference System (ANFIS) with Gaussian and Generalized Bell (Gbell) functions and we find that ANFIS outperforms significant Logit regressions in both in-sample and out-of-sample periods, indicating that ANFIS is a more appropriate tool for financial risk managers and for the economic policy makers in central banks and national statistical services.Keywords: ANFIS, Binary logistic regression, Financialdistress, Panel data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343845 An Adaptive Virtual Desktop Service in Cloud Computing Platform
Authors: Shuen-Tai Wang, Hsi-Ya Chang
Abstract:
Cloud computing is becoming more and more matured over the last few years and consequently the demands for better cloud services is increasing rapidly. One of the research topics to improve cloud services is the desktop computing in virtualized environment. This paper aims at the development of an adaptive virtual desktop service in cloud computing platform based on our previous research on the virtualization technology. We implement cloud virtual desktop and application software streaming technology that make it possible for providing Virtual Desktop as a Service (VDaaS). Given the development of remote desktop virtualization, it allows shifting the user’s desktop from the traditional PC environment to the cloud-enabled environment, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the platform maintenances and drastically reduces the overall cost of hardware and software licenses. Moreover, this flexible remote desktop service represents the next significant step to the mobile workplace, and it lets users access their desktop environments from virtually anywhere.
Keywords: Cloud Computing, Virtualization, Virtual Desktop, VDaaS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487844 An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array
Authors: Yanping Liao, Zenan Wu, Ruigang Zhao
Abstract:
Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues of the noise subspace, improve the divergence of small eigenvalues in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.
Keywords: Multi-carrier frequency diverse array, adaptive beamforming, correction index, limited snapshot, robust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 678843 Soft-Sensor for Estimation of Gasoline Octane Number in Platforming Processes with Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
Authors: Hamed.Vezvaei, Sepideh.Ordibeheshti, Mehdi.Ardjmand
Abstract:
Gasoline Octane Number is the standard measure of the anti-knock properties of a motor in platforming processes, that is one of the important unit operations for oil refineries and can be determined with online measurement or use CFR (Cooperative Fuel Research) engines. Online measurements of the Octane number can be done using direct octane number analyzers, that it is too expensive, so we have to find feasible analyzer, like ANFIS estimators. ANFIS is the systems that neural network incorporated in fuzzy systems, using data automatically by learning algorithms of NNs. ANFIS constructs an input-output mapping based both on human knowledge and on generated input-output data pairs. In this research, 31 industrial data sets are used (21 data for training and the rest of the data used for generalization). Results show that, according to this simulation, hybrid method training algorithm in ANFIS has good agreements between industrial data and simulated results.Keywords: Adaptive Neuro-Fuzzy Inference Systems, GasolineOctane Number, Soft-sensor, Catalytic Naphtha Reforming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194842 Dynamic Visualization on Student's Performance, Retention and Transfer of Procedural Learning
Authors: Fauzy M. Wan, Reem S.A. Baragash
Abstract:
This study examined the effects of two dynamic visualizations on 60 Malaysian primary school student-s performance (time on task), retention and transference. The independent variables in this study were the two dynamic visualizations, the video and the animated instructions. The dependent variables were the gain score of performance, retention and transference. The results showed that the students in the animation group significantly outperformed the students in the video group in retention. There were no significant differences in terms of gain scores in the performance and transference among the animation and the video groups, although the scores were slightly higher in the animation group compared to the video group. The conclusion of this study is that the animation visualization is superior compared to the video in the retention for a procedural task.Keywords: Dynamic visualization, Procedural Task, Retention, Transference
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429841 Unsupervised Outlier Detection in Streaming Data Using Weighted Clustering
Authors: Yogita, Durga Toshniwal
Abstract:
Outlier detection in streaming data is very challenging because streaming data cannot be scanned multiple times and also new concepts may keep evolving. Irrelevant attributes can be termed as noisy attributes and such attributes further magnify the challenge of working with data streams. In this paper, we propose an unsupervised outlier detection scheme for streaming data. This scheme is based on clustering as clustering is an unsupervised data mining task and it does not require labeled data, both density based and partitioning clustering are combined for outlier detection. In this scheme partitioning clustering is also used to assign weights to attributes depending upon their respective relevance and weights are adaptive. Weighted attributes are helpful to reduce or remove the effect of noisy attributes. Keeping in view the challenges of streaming data, the proposed scheme is incremental and adaptive to concept evolution. Experimental results on synthetic and real world data sets show that our proposed approach outperforms other existing approach (CORM) in terms of outlier detection rate, false alarm rate, and increasing percentages of outliers.
Keywords: Concept Evolution, Irrelevant Attributes, Streaming Data, Unsupervised Outlier Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637840 Genetic-Based Multi Resolution Noisy Color Image Segmentation
Authors: Raghad Jawad Ahmed
Abstract:
Segmentation of a color image composed of different kinds of regions can be a hard problem, namely to compute for an exact texture fields. The decision of the optimum number of segmentation areas in an image when it contains similar and/or un stationary texture fields. A novel neighborhood-based segmentation approach is proposed. A genetic algorithm is used in the proposed segment-pass optimization process. In this pass, an energy function, which is defined based on Markov Random Fields, is minimized. In this paper we use an adaptive threshold estimation method for image thresholding in the wavelet domain based on the generalized Gaussian distribution (GGD) modeling of sub band coefficients. This method called Normal Shrink is computationally more efficient and adaptive because the parameters required for estimating the threshold depend on sub band data energy that used in the pre-stage of segmentation. A quad tree is employed to implement the multi resolution framework, which enables the use of different strategies at different resolution levels, and hence, the computation can be accelerated. The experimental results using the proposed segmentation approach are very encouraging.Keywords: Color image segmentation, Genetic algorithm, Markov random field, Scale space filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577839 Phenotypic and Genetic Parameters of Pre-Weaning Growth Traits in Gentile di Puglia Lambs
Authors: M. Selvaggi, F. Pinto, A. R. Pesce Delfino, A. Vicenti, C. Dario
Abstract:
Data from 1731 Gentile di Puglia lambs, sired by 65 rams over a 5-year period were analyzed by a mixed model to estimate the variance components for heritability. The considered growth traits were: birth weight (BW), weight at 30 days of age (W30) and average daily gain from birth to 30 days of age (DG). Year of birth, sex of lamb, type of birth (single or twin), dam age at lambing and farm were significant sources of variation for all the considered growth traits. The average lamb weights were 3.85±0.16 kg at birth, 9.57±0.91 kg at 30 days of age and the average daily gain was 191±14 g. Estimates of heritability were 0.33±0.05, 0.41±0.06 and 0.16±0.05 respectively for the same traits. These values suggest there is a good opportunity to improve Gentile di Puglia lambs by selecting animals for growth traits.
Keywords: heritability estimate, growth traits, lambs, Gentile diPuglia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541838 A Grid Synchronization Method Based on Adaptive Notch Filter for SPV System with Modified MPPT
Authors: Priyanka Chaudhary, M. Rizwan
Abstract:
This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.
Keywords: Solar photovoltaic systems, MPPT, voltage source converter, grid synchronization technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970837 A 4-Element Corporate Series Feed Millimeter-Wave Microstrip Antenna Array for 5G Applications
Authors: G. Viswanadh Raviteja
Abstract:
In this paper, a microstrip antenna array is designed for 5G applications. A corporate series feed is considered to operate with a center frequency between 27 to 28 GHz to be able to cover the 5G frequency bands 24.25-27.5 GHz, 26.5-29.5 GHz and 27.5-28.35 GHz. The substrate is taken to be Rogers RT/Duroid 6002. The corporate series 5G antenna array is designed stage by stage by taking into consideration a conventional antenna designed at 28 GHz, thereby constructing the 2X1 antenna array before arriving at the final design structure of 4-element corporate series feed antenna array. The discussions concerning S11 parameter, gain and voltage standing wave ratio (VSWR) for the design structures are considered and all the important findings are tabulated. The proposed antenna array’s S11 parameter was found to be -29.00 dB at a frequency of 27.39 GHz with a good directional gain of 12.12 dB.
Keywords: Corporate series feed, millimeter wave antenna array, 5G applications, millimeter-wave (mm-wave) applications
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 634836 A Robust Adaptive Congestion Control Strategy for Large Scale Networks with Differentiated Services Traffic
Authors: R. R. Chen, K. Khorasani
Abstract:
In this paper, a robust decentralized congestion control strategy is developed for a large scale network with Differentiated Services (Diff-Serv) traffic. The network is modeled by a nonlinear fluid flow model corresponding to two classes of traffic, namely the premium traffic and the ordinary traffic. The proposed congestion controller does take into account the associated physical network resource limitations and is shown to be robust to the unknown and time-varying delays. Our proposed decentralized congestion control strategy is developed on the basis of Diff-Serv architecture by utilizing a robust adaptive technique. A Linear Matrix Inequality (LMI) condition is obtained to guarantee the ultimate boundedness of the closed-loop system. Numerical simulation implementations are presented by utilizing the QualNet and Matlab software tools to illustrate the effectiveness and capabilities of our proposed decentralized congestion control strategy.
Keywords: Congestion control, Large scale networks, Decentralized control, Differentiated services traffic, Time-delay systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989835 Cloud Computing Cryptography "State-of-the-Art"
Authors: Omer K. Jasim, Safia Abbas, El-Sayed M. El-Horbaty, Abdel-Badeeh M. Salem
Abstract:
Cloud computing technology is very useful in present day to day life, it uses the internet and the central remote servers to provide and maintain data as well as applications. Such applications in turn can be used by the end users via the cloud communications without any installation. Moreover, the end users’ data files can be accessed and manipulated from any other computer using the internet services. Despite the flexibility of data and application accessing and usage that cloud computing environments provide, there are many questions still coming up on how to gain a trusted environment that protect data and applications in clouds from hackers and intruders. This paper surveys the “keys generation and management” mechanism and encryption/decryption algorithms used in cloud computing environments, we proposed new security architecture for cloud computing environment that considers the various security gaps as much as possible. A new cryptographic environment that implements quantum mechanics in order to gain more trusted with less computation cloud communications is given.
Keywords: Cloud Computing, Cloud Encryption Model, Quantum Key Distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4094834 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems
Authors: Li Shoutao, Gordon Lee
Abstract:
Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.Keywords: adaptive fuzzy neural inference, evolutionary tuning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510