Numerical Investigation of Poling Vector Angle on Adaptive Sandwich Plate Deflection
Authors: Alireza Pouladkhan, Mohammad Yavari Foroushani, Ali Mortazavi
Abstract:
This paper presents a finite element model for a Sandwich Plate containing a piezoelectric core. A sandwich plate with a piezoelectric core is constructed using the shear mode of piezoelectric materials. The orientation of poling vector has a significant effect on deflection and stress induced in the piezo-actuated adaptive sandwich plate. In the present study, the influence of this factor for a clamped-clamped-free-free and simple-simple-free-free square sandwich plate is investigated using Finite Element Method. The study uses ABAQUS (v.6.7) software to derive the finite element model of the sandwich plate. By using this model, the study gives the influences of the poling vector angle on the response of the smart structure and determines the maximum transverse displacement and maximum stress induced.
Keywords: Finite element method, Sandwich plate, Poling vector, Piezoelectric materials, Smart structure, Electric enthalpy.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1092297
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960References:
[1] Mitchell, J. A., and Reddy, J. N., (1995) "A refined hybrid plate theory for composite laminates with piezoelectric laminae", Int. J. Solids & Structures, Vol. 32, No. 16, pp. 2345-2367.
[2] Sun, C. T., and Zhang, X. D., (1995) "Use of thickness-shear mode in adaptive sandwich structures", Smart material and structures, Vol. 4, pp. 202-206.
[3] Zhang, X. D., and Sun, C. T., (1996) "Formulation of an adaptive sandwich beam", Smart material and structures, Vol. 5, pp. 814-823.
[4] Benjeddou, A., Trindade, M. A., and Ohayon, R., (1997) "A Unified Beam Finite Element Model for Extension and Shear Piezoelectric Actuation Mechanisms", Journal of Intelligent Material Systems and Structures, Vol. 8, No. 12, pp. 1012-1025.
[5] Reddy, J. N., (1999) "On laminated composite plates with integrated sensors and actuators", Engineering Structures, Vol. 21, pp. 568-593.
[6] Zhang, X. D., and Sun, C. T., (1999) "Analysis of a sandwich plate containing a piezoelectric core", Smart material and structures, Vol. 8, pp. 31-40.
[7] Benjeddou, A., (2000) "Advances in piezoelectric finite element modeling of adaptive structural elements: a survey", Computers and Structures, Vol. 76, pp. 347-363.
[8] Chee, C., Tong, L., and Steven, G.P., (2000) "A mixed model for adaptive composite plates with piezoelectric for anisotropic actuation", Computers and Structures, Vol. 77, pp. 253-268.
[9] Zhou, X., Chattopadhyay, A., and Thornburgh, R., (2000) "Analysis of Piezoelectric Smart Composites Using a Coupled Piezoelectric-Mechanical Model", Journal of Intelligent Material Systems and Structures, Vol. 11, pp. 169-179.
[10] Bisegna, P., and Caruso, G., (2000) "Mindlin-Type Finite Elements for Piezoelectric Sandwich Plates", Journal of Intelligent Material Systems and Structures, Vol. 11, pp. 14-25.
[11] Huang, D., and Sun, B., (2001) "Approximate Analytical Solutions of Smart Composite Mindlin Beams", Journal of Sound and Vibration, Vol. 244, No. 3, pp. 379-394.
[12] Kapuria, S., (2001) "An efficient coupled theory for multilayered beams with embedded piezoelectric sensory and active layers", International Journal of Solids and Structures, Vol. 38, pp. 9179-9199.
[13] Vel, S. S., and Batra R. C., (2001) "Exact Solution for Rectangular Sandwich Plates with Embedded Piezoelectric Shear Actuators", AIAA Journal, Vol. 39, No. 7.
[14] Wang, Q., and Quek, S. T., (2002) "A Model for the Analysis of Beams with Embedded Piezoelectric Layers", Journal of Intelligent Material Systems and Structures, Vol. 13, pp. 61-70.
[15] Aldraihem, O. J., and Khdeir, A. A., (2003) "Exact deflection solutions of beams with shear piezoelectric actuators", International Journal of Solids and Structures, Vol. 40, pp. 1-12.
[16] Lesieutre, G. A., Loverich, J., Koopmann, G. H., and Mockensturm, E. M., (2004) "Increasing the Mechanical Work Output of an Active Material Using a Nonlinear Motion Transmission Mechanism", Journal of Intelligent Material Systems and Structures, Vol. 15, pp. 49-58.
[17] Garcia Lage, R., Mota Soares, C. M., Mota Soares, C. A., Reddy, J. N., (2004) "Modeling of piezolaminated plates using layerwise mixed finite elements", Computers and Structures, Vol. 82, pp. 1849-1863.
[18] Kapuria, S., and Achary, G.G.S., (2005) "A coupled consistent third-order theory for hybrid piezoelectric plates", Composite Structures, Vol. 70, pp. 120-133.
[19] Azulay, L., E., and Abramovich, H., (2005) "Rectangular Composite Plates with Extension and Shear Piezoceramic Layers and Patches", TAE Report, No. 951, Faculty of Aerospace Engineering, Israel Institute of Technology.
[20] Polit, O., and Bruant, I., (2006) "Electric potential approximations for an eight node plate finite element", Computers and Structures, Vol. 84, pp. 1480-1493.
[21] Robaldo, A., Carrera, E., Benjeddou, A., (2006) "A unified formulation for finite element analysis of piezoelectric adaptive plates", Computers and Structures, Vol. 84, pp. 1494-1505.
[22] Balamurugan, V., and Narayanan, S., (2007) "A piezoelectric higher-order plate element for the analysis of multi-layer smart composite laminates", Smart Material and Structure, Vol. 16, pp. 2026-2039.
[23] Sheng, H. Y., Wang, H., and Yea, J. Q., (2007) "State space solution for thick laminated piezoelectric plates with clamped and electric open-circuited boundary conditions", International Journal of Mechanical Sciences, Vol. 49, pp. 806-818.
[24] Ren, L., (2007) "Theoretical study on shape control of thin cross-ply laminates using piezoelectric actuators", Composite Structures, Vol. 80, pp. 451-460.
[25] HKS, (2005) "ABAQUS User's Manual version 6.7", (Providence, RI: Hibbitt, Karlsson, and Sorenson).
[26] Meitzler, A. H., Tiersten, H. F., Warner, A. W., Berlincourt, D., Couqin, G. A., and Welsh, F. S., (1987) III, "IEEE Standard on Piezoelectricity", ANSI/IEEE Std 176-1987, New York.
[27] Tiersten H F (1969) "Linear Piezoelectric Plate Vibrations", (New York: Plenum) pp. 33-9.
[28] Sadd, M. H., (2005) "Elasticity; Theory, Application and Numerics", Elsevier Butterworth-Heinemann.
[29] Mase, G. T., and Mase, G. E., (1999) "Continuum mechanics for engineers", 2nd ed., CRC press, pp. 42-44.
[30] Yang, J. S., (2005) "An Introduction to the Theory of Piezoelectricity", Springer.