Search results for: service development
121 Production of Pig Iron by Smelting of Blended Pre-Reduced Titaniferous Magnetite Ore and Hematite Ore Using Lean Grade Coal
Authors: Bitan Kumar Sarkar, Akashdeep Agarwal, Rajib Dey, Gopes Chandra Das
Abstract:
The rapid depletion of high-grade iron ore (Fe2O3) has gained attention on the use of other sources of iron ore. Titaniferous magnetite ore (TMO) is a special type of magnetite ore having high titania content (23.23% TiO2 present in this case). Due to high TiO2 content and high density, TMO cannot be treated by the conventional smelting reduction. In this present work, the TMO has been collected from high-grade metamorphic terrain of the Precambrian Chotanagpur gneissic complex situated in the eastern part of India (Shaltora area, Bankura district, West Bengal) and the hematite ore has been collected from Visakhapatnam Steel Plant (VSP), Visakhapatnam. At VSP, iron ore is received from Bailadila mines, Chattisgarh of M/s. National Mineral Development Corporation. The preliminary characterization of TMO and hematite ore (HMO) has been investigated by WDXRF, XRD and FESEM analyses. Similarly, good quality of coal (mainly coking coal) is also getting depleted fast. The basic purpose of this work is to find how lean grade coal can be utilised along with TMO for smelting to produce pig iron. Lean grade coal has been characterised by using TG/DTA, proximate and ultimate analyses. The boiler grade coal has been found to contain 28.08% of fixed carbon and 28.31% of volatile matter. TMO fines (below 75 μm) and HMO fines (below 75 μm) have been separately agglomerated with lean grade coal fines (below 75 μm) in the form of briquettes using binders like bentonite and molasses. These green briquettes are dried first in oven at 423 K for 30 min and then reduced isothermally in tube furnace over the temperature range of 1323 K, 1373 K and 1423 K for 30 min & 60 min. After reduction, the reduced briquettes are characterized by XRD and FESEM analyses. The best reduced TMO and HMO samples are taken and blended in three different weight percentage ratios of 1:4, 1:8 and 1:12 of TMO:HMO. The chemical analysis of three blended samples is carried out and degree of metallisation of iron is found to contain 89.38%, 92.12% and 93.12%, respectively. These three blended samples are briquetted using binder like bentonite and lime. Thereafter these blended briquettes are separately smelted in raising hearth furnace at 1773 K for 30 min. The pig iron formed is characterized using XRD, microscopic analysis. It can be concluded that 90% yield of pig iron can be achieved when the blend ratio of TMO:HMO is 1:4.5. This means for 90% yield, the maximum TMO that could be used in the blend is about 18%.
Keywords: Briquetting reduction, lean grade coal, smelting reduction, TMO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921120 Wind Energy Development in the African Great Lakes Region to Supplement the Hydroelectricity in the Locality: A Case Study from Tanzania
Authors: R.M. Kainkwa
Abstract:
The African Great Lakes Region refers to the zone around lakes Victoria, Tanganyika, Albert, Edward, Kivu, and Malawi. The main source of electricity in this region is hydropower whose systems are generally characterized by relatively weak, isolated power schemes, poor maintenance and technical deficiencies with limited electricity infrastructures. Most of the hydro sources are rain fed, and as such there is normally a deficiency of water during the dry seasons and extended droughts. In such calamities fossil fuels sources, in particular petroleum products and natural gas, are normally used to rescue the situation but apart from them being nonrenewable, they also release huge amount of green house gases to our environment which in turn accelerates the global warming that has at present reached an amazing stage. Wind power is ample, renewable, widely distributed, clean, and free energy source that does not consume or pollute water. Wind generated electricity is one of the most practical and commercially viable option for grid quality and utility scale electricity production. However, the main shortcoming associated with electric wind power generation is fluctuation in its output both in space and time. Before making a decision to establish a wind park at a site, the wind speed features there should therefore be known thoroughly as well as local demand or transmission capacity. The main objective of this paper is to utilise monthly average wind speed data collected from one prospective site within the African Great Lakes Region to demonstrate that the available wind power there is high enough to generate electricity. The mean monthly values were calculated from records gathered on hourly basis for a period of 5 years (2001 to 2005) from a site in Tanzania. The documentations that were collected at a height of 2 m were projected to a height of 50 m which is the standard hub height of wind turbines. The overall monthly average wind speed was found to be 12.11 m/s whereas June to November was established to be the windy season as the wind speed during the session is above the overall monthly wind speed. The available wind power density corresponding to the overall mean monthly wind speed was evaluated to be 1072 W/m2, a potential that is worthwhile harvesting for the purpose of electric generation.Keywords: Hydro power, windy season, available wind powerdensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631119 Using Daily Light Integral Concept to Construct the Ecological Plant Design Strategy of Urban Landscape
Authors: Chuang-Hung Lin, Cheng-Yuan Hsu, Jia-Yan Lin
Abstract:
It is an indispensible strategy to adopt greenery approach on architectural bases so as to improve ecological habitats, decrease heat-island effect, purify air quality, and relieve surface runoff as well as noise pollution, all of which are done in an attempt to achieve sustainable environment. How we can do with plant design to attain the best visual quality and ideal carbon dioxide fixation depends on whether or not we can appropriately make use of greenery according to the nature of architectural bases. To achieve the goal, it is a need that architects and landscape architects should be provided with sufficient local references. Current greenery studies focus mainly on the heat-island effect of urban with large scale. Most of the architects still rely on people with years of expertise regarding the adoption and disposition of plantation in connection with microclimate scale. Therefore, environmental design, which integrates science and aesthetics, requires fundamental research on landscape environment technology divided from building environment technology. By doing so, we can create mutual benefits between green building and the environment. This issue is extremely important for the greening design of the bases of green buildings in cities and various open spaces. The purpose of this study is to establish plant selection and allocation strategies under different building sunshade levels. Initially, with the shading of sunshine on the greening bases as the starting point, the effects of the shades produced by different building types on the greening strategies were analyzed. Then, by measuring the PAR (photosynthetic active radiation), the relative DLI (daily light integral) was calculated, while the DLI Map was established in order to evaluate the effects of the building shading on the established environmental greening, thereby serving as a reference for plant selection and allocation. The discussion results were to be applied in the evaluation of environment greening of greening buildings and establish the “right plant, right place” design strategy of multi-level ecological greening for application in urban design and landscape design development, as well as the greening criteria to feedback to the eco-city greening buildings.Keywords: Daily light integral, plant design, urban open space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957118 Eco-Design of Multifunctional System Based on a Shape Memory Polymer and ZnO Nanoparticles for Sportswear
Authors: Inês Boticas, Diana P. Ferreira, Ana Eusébio, Carlos Silva, Pedro Magalhães, Ricardo Silva, Raul Fangueiro
Abstract:
Since the beginning of the 20th century, sportswear has a major contribution to the impact of fashion on our lives. Nowadays, the embracing of sportswear fashion/looks is undoubtedly noticeable, as the modern consumer searches for high comfort and linear aesthetics for its clothes. This compromise lead to the arise of the athleisure trend. Athleisure surges as a new style area that combines both wearability and fashion sense, differentiated from the archetypal sportswear, usually associated to “gym clothes”. Additionally, the possibility to functionalize and implement new technologies have shifted and progressively empowers the connection between the concepts of physical activities practice and well-being, allowing clothing to be more interactive and responsive with its surroundings. In this study, a design inspired in retro and urban lifestyle was envisioned, engineering textile structures that can respond to external stimuli. These structures are enhanced to be responsive to heat, water vapor and humidity, integrating shape memory polymers (SMP) to improve the breathability and heat-responsive behavior of the textiles and zinc oxide nanoparticles (ZnO NPs) to heighten the surface hydrophobic properties. The best results for hydrophobic exhibited superhydrophobic behavior with water contact angle (WAC) of more than 150 degrees. For the breathability and heat-response properties, SMP-coated samples showed an increase in water vapour permeability values of about 50% when compared with non SMP-coated samples. These innovative technological approaches were endorsed to design innovative clothing, in line with circular economy and eco-design principles, by assigning a substantial degree of mutability and versatility to the clothing. The development of a coat and shirt, in which different parts can be purchased separately to create multiple products, aims to combine the technicality of both the fabrics used and the making of the garments. This concept translates itself into a real constructive mechanism through the symbiosis of high-tech functionalities and the timeless design that follows the athleisure aesthetics.
Keywords: Breathability, sportswear and casual clothing, sustainable design, superhydrophobicity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1081117 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller
Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian
Abstract:
The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.
Keywords: Air flow, biomass combustion, feedback control system, fuel feeding, ladder logic, programmable logic controller, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 585116 Web-Based Tools to Increase Public Understanding of Nuclear Technology and Food Irradiation
Authors: Denise Levy, Anna Lucia C. H. Villavicencio
Abstract:
Food irradiation is a processing and preservation technique to eliminate insects and parasites and reduce disease-causing microorganisms. Moreover, the process helps to inhibit sprouting and delay ripening, extending fresh fruits and vegetables shelf-life. Nevertheless, most Brazilian consumers seem to misunderstand the difference between irradiated food and radioactive food and the general public has major concerns about the negative health effects and environmental contamination. Society´s judgment and decision making are directly linked to perceived benefits and risks. The web-based project entitled ‘Scientific information about food irradiation: Internet as a tool to approach science and society’ was created by the Nuclear and Energetic Research Institute (IPEN), in order to offer an interdisciplinary approach to science education, integrating economic, ethical, social and political aspects of food irradiation. This project takes into account that, misinformation and unfounded preconceived ideas impact heavily on the acceptance of irradiated food and purchase intention by the Brazilian consumer. Taking advantage of the potential value of the Internet to enhance communication and education among general public, a research study was carried out regarding the possibilities and trends of Information and Communication Technologies among the Brazilian population. The content includes concepts, definitions and Frequently Asked Questions (FAQ) about processes, safety, advantages, limitations and the possibilities of food irradiation, including health issues, as well as its impacts on the environment. The project counts on eight self-instructional interactive web courses, situating scientific content in relevant social contexts in order to encourage self-learning and further reflections. Communication is a must to improve public understanding of science. The use of information technology for quality scientific divulgation shall contribute greatly to provide information throughout the country, spreading information to as many people as possible, minimizing geographic distances and stimulating communication and development.
Keywords: Food irradiation, multimedia learning tools, nuclear science, society and education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540115 A Frame Work for the Development of a Suitable Method to Find Shoot Length at Maturity of Mustard Plant Using Soft Computing Model
Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri
Abstract:
The production of a plant can be measured in terms of seeds. The generation of seeds plays a critical role in our social and daily life. The fruit production which generates seeds, depends on the various parameters of the plant, such as shoot length, leaf number, root length, root number, etc When the plant is growing, some leaves may be lost and some new leaves may appear. It is very difficult to use the number of leaves of the tree to calculate the growth of the plant.. It is also cumbersome to measure the number of roots and length of growth of root in several time instances continuously after certain initial period of time, because roots grow deeper and deeper under ground in course of time. On the contrary, the shoot length of the tree grows in course of time which can be measured in different time instances. So the growth of the plant can be measured using the data of shoot length which are measured at different time instances after plantation. The environmental parameters like temperature, rain fall, humidity and pollution are also play some role in production of yield. The soil, crop and distance management are taken care to produce maximum amount of yields of plant. The data of the growth of shoot length of some mustard plant at the initial stage (7,14,21 & 28 days after plantation) is available from the statistical survey by a group of scientists under the supervision of Prof. Dilip De. In this paper, initial shoot length of Ken( one type of mustard plant) has been used as an initial data. The statistical models, the methods of fuzzy logic and neural network have been tested on this mustard plant and based on error analysis (calculation of average error) that model with minimum error has been selected and can be used for the assessment of shoot length at maturity. Finally, all these methods have been tested with other type of mustard plants and the particular soft computing model with the minimum error of all types has been selected for calculating the predicted data of growth of shoot length. The shoot length at the stage of maturity of all types of mustard plants has been calculated using the statistical method on the predicted data of shoot length.Keywords: Fuzzy time series, neural network, forecasting error, average error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590114 Thermal Evaluation of Printed Circuit Board Design Options and Voids in Solder Interface by a Simulation Tool
Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles
Abstract:
Quad Flat No-Lead (QFN) packages have become very popular for turners, converters and audio amplifiers, among others applications, needing efficient power dissipation in small footprints. Since semiconductor junction temperature (TJ) is a critical parameter in the product quality. And to ensure that die temperature does not exceed the maximum allowable TJ, a thermal analysis conducted in an earlier development phase is essential to avoid repeated re-designs process with huge losses in cost and time. A simulation tool capable to estimate die temperature of components with QFN package was developed. Allow establish a non-empirical way to define an acceptance criterion for amount of voids in solder interface between its exposed pad and Printed Circuit Board (PCB) to be applied during industrialization process, and evaluate the impact of PCB designs parameters. Targeting PCB layout designer as an end user for the application, a user-friendly interface (GUI) was implemented allowing user to introduce design parameters in a convenient and secure way and hiding all the complexity of finite element simulation process. This cost effective tool turns transparent a simulating process and provides useful outputs after acceptable time, which can be adopted by PCB designers, preventing potential risks during the design stage and make product economically efficient by not oversizing it. This article gathers relevant information related to the design and implementation of the developed tool, presenting a parametric study conducted with it. The simulation tool was experimentally validated using a Thermal-Test-Chip (TTC) in a QFN open-cavity, in order to measure junction temperature (TJ) directly on the die under controlled and knowing conditions. Providing a short overview about standard thermal solutions and impacts in exposed pad packages (i.e. QFN), accurately describe the methods and techniques that the system designer should use to achieve optimum thermal performance, and demonstrate the effect of system-level constraints on the thermal performance of the design.Keywords: Quad Flat No-Lead packages, exposed pads, junction temperature, thermal management and measurements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926113 Physiological and Psychological Influence on Office Workers during Demand Response
Authors: Megumi Nishida, Naoya Motegi, Takurou Kikuchi, Tomoko Tokumura
Abstract:
In recent years, the power system has been changed and a flexible power pricing system such as demand response has been sought in Japan. The demand response system works simply in the household sector and the owner as the decision-maker, can benefit from power saving. On the other hand, the execution of demand response in the office building is more complex than in the household because various people such as owners, building administrators and occupants are involved in the decision-making process. While the owners benefit from demand saving, the occupants are exposed to restricted benefits of a demand-saved environment. One of the reasons is that building systems are usually under centralized management and each occupant cannot choose freely whether to participate in demand response or not. In addition, it is unclear whether incentives give occupants the motivation to participate. However, the recent development of IT and building systems enables the personalized control of the office environment where each occupant can control the lighting level or temperature individually. Therefore, it can be possible to have a system which each occupant can make a decision of whether or not to participate in demand response in the office building. This study investigates personal responses to demand response requests, under the condition where each occupant can adjust their brightness individually in their workspace. Once workers participate in the demand response, their desk-lights are automatically turned off. The participation rates in the demand response events are compared among four groups, which are divided by different motivation, the presence, or absence of incentives and the method of participation. The result shows that there are significant differences of participation rates in demand response event between four groups. The method of participation has a large effect on the participation rate. The “Opt-out” groups where the occupants are automatically enrolled in a demand response event if they do not express non-participation have the highest participation rate in the four groups. Incentives also have an effect on the participation rate. This study also reports on the impact of low illumination office environment on the occupants, such as stress or fatigue. The electrocardiogram and the questionnaire are used to investigate the autonomic nervous activity and subjective fatigue symptoms of the occupants. There is no big difference between dim workspace during demand response event and bright workspace in autonomic nervous activity and fatigue.
Keywords: Demand response, illumination, questionnaire, electrocardiograph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575112 Design and Development of Graphene Oxide Modified by Chitosan Nanosheets Showing pH-Sensitive Surface as a Smart Drug Delivery System for Controlled Release of Doxorubicin
Authors: Parisa Shirzadeh
Abstract:
Drug delivery systems in which drugs are traditionally used, multi-stage and at specified intervals by patients, do not meet the needs of the world's up-to-date drug delivery. In today's world, we are dealing with a huge number of recombinant peptide and protean drugs and analogues of hormones in the body, most of which are made with genetic engineering techniques. Most of these drugs are used to treat critical diseases such as cancer. Due to the limitations of the traditional method, researchers sought to find ways to solve the problems of the traditional method to a large extent. Following these efforts, controlled drug release systems were introduced, which have many advantages. Using controlled release of the drug in the body, the concentration of the drug is kept at a certain level, and in a short time, it is done at a higher rate. Graphene is a natural material that is biodegradable, non-toxic, natural and wide surfaces of graphene plates makes it more effective to modify graphene than carbon nanotubes. Graphene oxide is often synthesized using concentrated oxidizers such as sulfuric acid, nitric acid, and potassium permanganate based on Hummer method. graphene oxide is very hydrophilic and easily dissolves in water and creates a stable solution. Graphene oxide (GO) has been modified by chitosan (CS) covalently, developed for control release of doxorubicin (DOX). In this study, GO is produced by the hummer method under acidic conditions. Then, it is chlorinated by oxalyl chloride to increase its reactivity against amine. After that, in the presence of CS, the amino reaction was performed to form amide transplantation, and the DOX was connected to the carrier surface by π-π interaction in buffer phosphate. GO, GO-CS, and GO-CS-DOX were characterized by FT-IR and TGA to recognize new functional groups which show the new bonding of CS to GO, RAMA and SEM to recognize size of layers that show changing in size and number of layers. The ability to load and release is determined by UV-Visible spectroscopy. The loading result showed a high capacity of DOX absorption (99%) and pH dependence identified as a result of DOX release from GO-CS nanosheet at pH 5.3 and 7.4, which show a fast release rate in acidic conditions.
Keywords: Graphene oxide, chitosan, nanosheet, controlled drug release, doxorubicin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233111 The Evolution of Traditional Rhythms in Redefining the West African Country of Guinea
Authors: Janice Haworth, Karamoko Camara, Marie-Therèse Dramou, Kokoly Haba, Daniel Léno, Augustin Mara, Adama Noël Oulari, Silafa Tolno, Noël Zoumanigui
Abstract:
The traditional rhythms of the West African country of Guinea have played a centuries-long role in defining the different people groups that make up the country. Throughout their history, before and since colonization by the French, the different ethnicities have used their traditional music as a distinct part of their historical identities. That is starting to change. Guinea is an impoverished nation created in the early twentieth-century with little regard for the history and cultures of the people who were included. The traditional rhythms of the different people groups and their heritages have remained. Fifteen individual traditional Guinean rhythms were chosen to represent popular rhythms from the four geographical regions of Guinea. Each rhythm was traced back to its native village and video recorded on-site by as many different local performing groups as could be located. The cyclical patterns rhythms were transcribed via a circular, spatial design and then copied into a box notation system where sounds happening at the same time could be studied. These rhythms were analyzed for their consistency-overperformance in a Fundamental Rhythm Pattern analysis so rhythms could be compared for how they are changing through different performances. The analysis showed that the traditional rhythm performances of the Middle and Forest Guinea regions were the most cohesive and showed the least evidence of change between performances. The role of music in each of these regions is both limited and focused. The Coastal and High Guinea regions have much in common historically through their ethnic history and modern-day trade connections, but the rhythm performances seem to be less consistent and demonstrate more changes in how they are performed today. In each of these regions the role and usage of music is much freer and wide-spread. In spite of advances being made as a country, different ethnic groups still frequently only respond and participate (dance and sing) to the music of their native ethnicity. There is some evidence that this self-imposed musical barrier is beginning to change and evolve, partially through the development of better roads, more access to electricity and technology, the nationwide Ebola health crisis, and a growing self-identification as a unified nation.Keywords: Cultural identity, Guinea, traditional rhythms, West Africa.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497110 Development of Moving Multifocal Electroretinogram with a Precise Perimetry Apparatus
Authors: Naoto Suzuki
Abstract:
A decline in visual sensitivity at arbitrary points on the retina can be measured using a precise perimetry apparatus along with a fundus camera. However, the retinal layer associated with this decline cannot be identified accurately with current medical technology. To investigate cryptogenic diseases, such as macular dystrophy, acute zonal occult outer retinopathy (AZOOR), and multiple evanescent white dot syndrome (MEWDS), we evaluated an electroretinogram (ERG) function that allows moving the center of the multifocal hexagonal stimulus array to a chosen position. Macular dystrophy is a generalized term used for a variety of functional disorders of the macula lutea, and the ERG shows a diminution of the b-wave in these disorders. AZOOR causes an acute functional disorder to an outer layer of the retina, and the ERG shows a-wave and b-wave amplitude reduction as well as delayed 30 Hz flicker responses. MEWDS causes acute visual loss and the ERG shows a decrease in a-wave amplitude. We combined an electroretinographic optical system and a perimetric optical system into an experimental apparatus that has the same optical system as that of a fundus camera. We also deployed an EO-50231 Edmund infrared camera, a 45-degree cold mirror, a lens with a 25-mm focal length, a halogen lamp, and an 8-inch monitor. Then, we also employed a differential amplifier with gain 10, a 50 Hz notch filter, a high-pass filter with a 21.2 Hz cut-off frequency, and two non-inverting amplifiers with gains 1001 and 11. In addition, we used a USB-6216 National Instruments I/O device, a NE-113A Nihon Kohden plate electrode, a SCB-68A shielded connector block, and LabVIEW 2017 software for data retrieval. The software was used to generate the multifocal hexagonal stimulus array on the computer monitor with C++Builder 10.2 and to move the center of the array toward the left and right and up and down. Cone and bright flash ERG results were observed using the moving ERG function. The a-wave, b-wave, c-wave, and the photopic negative response were identified with cone ERG. The moving ERG function allowed the identification of the retinal layer causing visual alterations.
Keywords: Moving ERG, multifocal ERG, precise perimetry, retinal layers, visual sensitivity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 608109 Maize Tolerance to Natural and Artificial Infestation with Diabrotica virgifera virgifera Eggs
Authors: Snežana T. Tanasković, Sonja M. Gvozdenac, Branka D. Popović, Vesna M. Đurović, Matthias Erb
Abstract:
Western corn rootworm – WCR (Diabrotica virgifera sp.virgifera, Coleoptera, Chrysomelidae) is economically the most important pest of maize worldwide. WCR natural population is already very abundant on Serbian fields, and keeps increasing each year. Tolerance is recognized by larger root size and bigger root regrowth. Severe larval injuries cause lack of compensatory regrowth and lead to reduction of plant growth and yield. The aim of this research was to evaluate tolerance of commercial Serbian maize hybrid NS 640, under natural WCR infestation and under conditions of artificial infestation, and to obtain the information about its tolerance to WCR larval feeding in two consecutive years. Field experiments were conducted in 2015 and 2016, in Bečej (Vojvodina province, Serbia). In experimental field, 96 plants were selected, marked and arranged in 48 pairs. Each pair represented two plants. The first plant was artificially infested with 4 mL WCR egg suspension in agar (550 eggs plant-1) in the root zone (D plant). The second plant represented control plant (C plant) with injection of 4 mL distilled water in root zone. The experimental field was inspected weekly. A hybrid tolerance was assessed based on root injury level and root mass. Root injury was rated using the Node-Injury Scale 1-6, during the last field inspection (September – October). Comparing the root injuries on D and C plants in 2015, more severe damages were recorded on D plants (12 plants - rate 5 and 17 plants - rate 6) compared to C plants (2 plants - rate 5 and 8 plants - rate 6). Also, the highest number of plants with healthy roots (rate 1), was registered in the control (25 plants), while only 4 D plants were rated as injury level 1. In 2016, root injuries caused by WCR larvae on D and C plants did not differ significantly. The reason is the difference in climatic conditions between the years. The 2015 was extremely dry and more suitable for WCR larval development and movement in the soil, compared to 2016. Thus, more severe damages appeared on artificially infested plants (D plants). Root mass was in strong correlation with the level of root injury, but did not differ significantly between D and C plants, in both years.Keywords: D. v. virgifera, maize, root injury, tolerance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876108 The Impact of Supply Chain Strategy and Integration on Supply Chain Performance: Supply Chain Vulnerability as a Moderator
Authors: Yi-Chun Kuo, Jo-Chieh Lin
Abstract:
The objective of a supply chain strategy is to reduce waste and increase efficiency to attain cost benefits, and to guarantee supply chain flexibility when facing the ever-changing market environment in order to meet customer requirements. Strategy implementation aims to fulfill common goals and attain benefits by integrating upstream and downstream enterprises, sharing information, conducting common planning, and taking part in decision making, so as to enhance the overall performance of the supply chain. With the rise of outsourcing and globalization, the increasing dependence on suppliers and customers and the rapid development of information technology, the complexity and uncertainty of the supply chain have intensified, and supply chain vulnerability has surged, resulting in adverse effects on supply chain performance. Thus, this study aims to use supply chain vulnerability as a moderating variable and apply structural equation modeling (SEM) to determine the relationships among supply chain strategy, supply chain integration, and supply chain performance, as well as the moderating effect of supply chain vulnerability on supply chain performance. The data investigation of this study was questionnaires which were collected from the management level of enterprises in Taiwan and China, 149 questionnaires were received. The result of confirmatory factor analysis shows that the path coefficients of supply chain strategy on supply chain integration and supply chain performance are positive (0.497, t= 4.914; 0.748, t= 5.919), having a significantly positive effect. Supply chain integration is also significantly positively correlated to supply chain performance (0.192, t = 2.273). The moderating effects of supply chain vulnerability on supply chain strategy and supply chain integration to supply chain performance are significant (7.407; 4.687). In Taiwan, 97.73% of enterprises are small- and medium-sized enterprises (SMEs) focusing on receiving original equipment manufacturer (OEM) and original design manufacturer (ODM) orders. In order to meet the needs of customers and to respond to market changes, these enterprises especially focus on supply chain flexibility and their integration with the upstream and downstream enterprises. According to the observation of this research, the effect of supply chain vulnerability on supply chain performance is significant, and so enterprises need to attach great importance to the management of supply chain risk and conduct risk analysis on their suppliers in order to formulate response strategies when facing emergency situations. At the same time, risk management is incorporated into the supply chain so as to reduce the effect of supply chain vulnerability on the overall supply chain performance.
Keywords: Supply chain integration, supply chain performance, supply chain vulnerability, structural equation modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900107 A Concept Study to Assist Non-Profit Organizations to Better Target Developing Countries
Authors: Malek Makki
Abstract:
The main purpose of this research study is to assist non-profit organizations (NPOs) to better segment a group of least developing countries and to optimally target the most needier areas, so that the provided aids make positive and lasting differences. We applied international marketing and strategy approaches to segment a sub-group of candidates among a group of 151 countries identified by the UN-G77 list, and furthermore, we point out the areas of priorities. We use reliable and well known criteria on the basis of economics, geography, demography and behavioral. These criteria can be objectively estimated and updated so that a follow-up can be performed to measure the outcomes of any program. We selected 12 socio-economic criteria that complement each other: GDP per capita, GDP growth, industry value added, export per capita, fragile state index, corruption perceived index, environment protection index, ease of doing business index, global competitiveness index, Internet use, public spending on education, and employment rate. A weight was attributed to each variable to highlight the relative importance of each criterion within the country. Care was taken to collect the most recent available data from trusted well-known international organizations (IMF, WB, WEF, and WTO). Construct of equivalence was carried out to compare the same variables across countries. The combination of all these weighted estimated criteria provides us with a global index that represents the level of development per country. An absolute index that combines wars and risks was introduced to exclude or include a country on the basis of conflicts and a collapsing state. The final step applied to the included countries consists of a benchmarking method to select the segment of countries and the percentile of each criterion. The results of this study allowed us to exclude 16 countries for risks and security. We also excluded four countries because they lack reliable and complete data. The other countries were classified per percentile thru their global index, and we identified the needier and the areas where aids are highly required to help any NPO to prioritize the area of implementation. This new concept is based on defined, actionable, accessible and accurate variables by which NPO can implement their program and it can be extended to profit companies to perform their corporate social responsibility acts.
Keywords: Developing countries, International marketing, non-profit organization, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990106 Achieving Implementable Nature-Based Solutions While Reshaping Architectural Education: A Case Study of URBiNAT and BUILD Solutions
Authors: C. Farinea, A. Conserva, F. Demeur
Abstract:
Nature has often been something humans have fought against. However, with the changing climate and urban challenges such as air pollution and food shortages, to name but a few, it has never been more crucial to work with nature to find solutions that can help us to adapt to the current planetary situation and mitigate the challenges that we will continue to face in the future. Nature-based solutions (NBS) have been gaining ground as one strategy that can help to create more sustainable solutions for our planet and simultaneously, provide several ecosystem services. As designers, there are a lot of insights that can be extracted and gained from nature. However, nature is a complex and sometimes difficult to predict system and its implementation in cities requires a multidisciplinary knowledge. To keep up with the solutions and prepare the future generations of architects and designers with the skills to be able to implement NBS, educational systems also have to adapt with the times. Architecture is no longer solely about drawing buildings with beautiful forms. It is no longer discipline bound. With the input from different disciplines, the implementation of NBS can be significantly more successful. Transdisciplinary strategies can encourage architects and designers to think beyond their discipline, and ensure the success and realization of the NBS. The paper will demonstrate how transdisciplinary teaching methodologies, including also taking part in participatory processes with experts intended as gathering local knowledge, can be implemented with architectural master students to achieve implementable NBS. Through two projects co-funded by the European Union, strategies such as participatory co-design and transdisciplinary start-ups were implemented into seminars that focused on the development of NBS with a transdisciplinary approach. Within the “Design with Living Systems” seminar, students took part in participatory co-design strategies with experts to design solutions that will be implemented in Porto as part of a healthy corridor, and that respond to the needs of the users and site. On the other hand, within the “Design for Living Systems” seminar, the transdisciplinary start-up approach created start-ups with students of architecture, business and biology focusing on identifying a problem and designing a NBS as a product. Both seminars proved to be successful in achieving implementable NBS through strategies of transdisciplinary education and gave the students the skill sets to be able to work with nature in their future careers.
Keywords: Architectural higher education, digital fabrication, nature-based solutions, transdisciplinary approaches.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145105 Kinetic Energy Recovery System Using Spring
Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe
Abstract:
New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion.
The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.
Keywords: Electric control unit, Energy, Mechanical KERS, Planetary Gear system, Power, Smart braking, Spiral Spring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8789104 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus
Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo
Abstract:
The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.
Keywords: Anomaly detection, digital twin, Generalised Additive Model, Power Consumption Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 501103 Complexity of Operation and Maintenance in Irrigation Network Management-A Case of the Dez Scheme in the Greater Dezful, Iran
Authors: Najaf Hedayat
Abstract:
Food and fibre production in arid and semi-arid regions has emerged as one of the major challenges for various socio-economic and political reasons such as the food security and self-sufficiency. Productive use of the renewable water resources has risen on top ofthe decision-making agenda. For this reason, efficient operation and maintenance of modern irrigation and drainage schemes become part and parcel and indispensible reality in agricultural policy making arena. The aim of this paper is to investigate the complexity of operating and maintaining such schemes, mainly focussing on challenges which enhance and opportunities that impedsustainable food and fibre production. The methodology involved using secondary data complemented byroutine observations and stakeholders views on issues that influence the O&M in the Dez command area. The SPSS program was used as an analytical framework for data analysis and interpretation.Results indicate poor application efficiency in most croplands, much of which is attributed to deficient operation of conveyance and distribution canals. These in turn, are reportedly linked to inadequate maintenance of the pumping stations and hydraulic structures like turnouts,flumes and other control systems particularly in the secondary and tertiary canals. Results show that the aforementioned deficiencies have been the major impediment to establishing regular flow toward the farm gates which subsequently undermine application efficiency and tillage operationsat farm level. Results further show that accumulative impact of such deficiencies has been the major causes of poorcrop yield and quality that deem production system in these croplands uneconomic. Results further show that the present state might undermine the sustainability of agricultural system in the command area. The overall conclusion being that present water management is unlikely to be responsive to challenges that the sector faces. And in the absence of coherent measures to shift the status quo situation in favour of more productive resource use, it would be hard to fulfil the objectives of the National Economic and Socio-cultural Development Plans.
Keywords: renewable water resources, Dez scheme, irrigationand drainage, sustainable crop production, O&M
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617102 Automated, Objective Assessment of Pilot Performance in Simulated Environment
Authors: Maciej Zasuwa, Grzegorz Ptasinski, Antoni Kopyt
Abstract:
Nowadays flight simulators offer tremendous possibilities for safe and cost-effective pilot training, by utilization of powerful, computational tools. Due to technology outpacing methodology, vast majority of training related work is done by human instructors. It makes assessment not efficient, and vulnerable to instructors’ subjectivity. The research presents an Objective Assessment Tool (gOAT) developed at the Warsaw University of Technology, and tested on SW-4 helicopter flight simulator. The tool uses database of the predefined manoeuvres, defined and integrated to the virtual environment. These were implemented, basing on Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft (ADS-33), with predefined Mission-Task-Elements (MTEs). The core element of the gOAT enhanced algorithm that provides instructor a new set of information. In details, a set of objective flight parameters fused with report about psychophysical state of the pilot. While the pilot performs the task, the gOAT system automatically calculates performance using the embedded algorithms, data registered by the simulator software (position, orientation, velocity, etc.), as well as measurements of physiological changes of pilot’s psychophysiological state (temperature, sweating, heart rate). Complete set of measurements is presented on-line to instructor’s station and shown in dedicated graphical interface. The presented tool is based on open source solutions, and flexible for editing. Additional manoeuvres can be easily added using guide developed by authors, and MTEs can be changed by instructor even during an exercise. Algorithm and measurements used allow not only to implement basic stress level measurements, but also to reduce instructor’s workload significantly. Tool developed can be used for training purpose, as well as periodical checks of the aircrew. Flexibility and ease of modifications allow the further development to be wide ranged, and the tool to be customized. Depending on simulation purpose, gOAT can be adjusted to support simulator of aircraft, helicopter, or unmanned aerial vehicle (UAV).
Keywords: Automated assessment, flight simulator, human factors, pilot training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 808101 Educational Path for Pedagogical Skills: A Football School Experience
Authors: A. Giani
Abstract:
The current pedagogical culture recognizes an educational scope within the sports practices. It is widely accepted, in the pedagogical culture, that thanks to the acquisition and development of motor skills, it is also possible to exercise abilities that concern the way of facing and managing the difficulties of everyday life. Sport is a peculiar educational environment: the children have the opportunity to discover the possibilities of their body, to correlate with their peers, and to learn how to manage the rules and the relationship with authorities, such as coaches. Educational aspects of the sport concern both non-formal and formal educational environments. Coaches play a critical role in an agonistic sphere: exactly like the competencies developed by the children, coaches have to work on their skills to properly set up the educational scene. Facing these new educational tasks - which are not new per se, but new because they are brought back to awareness - a few questions arise: does the coach have adequate preparation? Is the training of the coach in this specific area appropriate? This contribution aims to explore the issue in depth by focusing on the reality of the Football School. Starting from a possible sense of pedagogical inadequacy detected during a series of meetings with several football clubs in Piedmont (Italy), there have been highlighted some important educational needs within the professional training of sports coaches. It is indeed necessary for the coach to know the processes underlying the educational relationship in order to better understand the centrality of the assessment during the educational intervention and to be able to manage the asymmetry in the coach-athlete relationship. In order to provide a response to these pedagogical needs, a formative plan has been designed to allow both an in-depth study of educational issues and a correct self-evaluation of certain pedagogical skills’ control levels, led by the coach. This plan has been based on particular practices, the Educational Practices of Pre-test (EPP), a specific version of community practices designed for the extracurricular activities. The above-mentioned practices realized through the use of texts meant as pre-tests, promoted a reflection within the group of coaches: they set up real and plausible sports experiences - in particular football, triggering a reflection about the relationship’s object, spaces, and methods. The characteristic aspect of pre-tests is that it is impossible to anticipate the reflection as it is necessarily connected to the personal experience and sensitivity, requiring a strong interest and involvement by participants: situations must be considered by the coaches as possible settings in which they could be found on the field.
Keywords: Relational needs, responsibility, self-evaluation, values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423100 Urban Accessibility of Historical Cities: The Venetian Case Study
Authors: Valeria Tatano, Francesca Guidolin, Francesca Peltrera
Abstract:
The preservation of historical Italian heritage, at the urban and architectural scale, has to consider restrictions and requirements connected with conservation issues and usability needs, which are often at odds with historical heritage preservation. Recent decades have been marked by the search for increased accessibility not only of public and private buildings, but to the whole historical city, also for people with disability. Moreover, in the last years the concepts of Smart City and Healthy City seek to improve accessibility both in terms of mobility (independent or assisted) and fruition of goods and services, also for historical cities. The principles of Inclusive Design have introduced new criteria for the improvement of public urban space, between current regulations and best practices. Moreover, they have contributed to transforming “special needs” into an opportunity of social innovation. These considerations find a field of research and analysis in the historical city of Venice, which is at the same time a site of UNESCO world heritage, a mass tourism destination bringing in visitors from all over the world and a city inhabited by an aging population. Due to its conformation, Venetian urban fabric is only partially accessible: about four thousand bridges divide thousands of islands, making it almost impossible to move independently. These urban characteristics and difficulties were the base, in the last 20 years, for several researches, experimentations and solutions with the aim of eliminating architectural barriers, in particular for the usability of bridges. The Venetian Municipality with the EBA Office and some external consultants realized several devices (e.g. the “stepped ramp” and the new accessible ramps for the Venice Marathon) that should determine an innovation for the city, passing from the use of mechanical replicable devices to specific architectural projects in order to guarantee autonomy in use. This paper intends to present the state-of-the-art in bridges accessibility, through an analysis based on Inclusive Design principles and on the current national and regional regulation. The purpose is to evaluate some possible strategies that could improve performances, between limits and possibilities of interventions. The aim of the research is to lay the foundations for the development of a strategic program for the City of Venice that could successfully bring together both conservation and improvement requirements.
Keywords: Accessibility and inclusive design, historical heritage preservation, technological and social innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138299 Ultrasonic System for Diagnosis of Functional Gastrointestinal Disorders: Development, Verification and Clinical Trials
Authors: Eun-Geun Kim, Won-Pil Park, Dae-Gon Woo, Chang-Yong Ko, Yong-Heum Lee, Dohyung Lim, Tae-Min Shin, Han-Sung Kim, Gyoun-Jung Lee
Abstract:
Functional gastrointestinal disorders affect millions of people spread all age regardless of race and sex. There are, however, rare diagnostic methods for the functional gastrointestinal disorders because functional disorders show no evidence of organic and physical causes. Our research group identified recently that the gastrointestinal tract well in the patients with the functional gastrointestinal disorders becomes more rigid than healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. Aim of this study is, therefore, to develop a diagnostic system for the functional gastrointestinal disorders based on ultrasound technique, which can quantify the characteristic above related to the rigidity of the gastrointestinal tract well. Ultrasound system was designed. The system consisted of transmitter, ultrasonic transducer, receiver, TGC, and CPLD, and verified via a phantom test. For the phantom test, ten soft-tissue specimens were harvested from porcine. Five of them were then treated chemically to mimic a rigid condition of gastrointestinal tract well, which was induced by functional gastrointestinal disorders. Additionally, the specimens were tested mechanically to identify if the mimic was reasonable. The customized ultrasound system was finally verified through application to human subjects with/without functional gastrointestinal disorders (Normal and Patient Groups). It was identified from the mechanical test that the chemically treated specimens were more rigid than normal specimen. This finding was favorably compared with the result obtained from the phantom test. The phantom test also showed that ultrasound system well described the specimen geometric characteristics and detected an alteration in the specimens. The maximum amplitude of the ultrasonic reflective signal in the rigid specimens (0.2±0.1Vp-p) at the interface between the fat and muscle layers was explicitly higher than that in the normal specimens (0.1±0.0Vp-p). Clinical tests using our customized ultrasound system for human subject showed that the maximum amplitudes of the ultrasonic reflective signals near to the gastrointestinal tract well for the patient group (2.6±0.3Vp-p) were generally higher than those in normal group (0.1±0.2Vp-p). Here, maximum reflective signals was appeared at 20mm depth approximately from abdominal skin for all human subjects, corresponding to the location of the boundary layer close to gastrointestinal tract well. These results suggest that newly designed diagnostic system based on ultrasound technique may diagnose enough the functional gastrointestinal disorders.Keywords: Functional Gastrointestinal Disorders, DiagnosticSystem, Phantom Test, Ultrasound System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178998 Association of Zinc with New Generation Cardiovascular Risk Markers in Childhood Obesity
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Zinc (Zn) is a vital element required for growth and development particularly in children. It exhibits some protective effects against cardiovascular diseases (CVDs). Zn may be a potential biomarker of cardiovascular health. High sensitive cardiac troponin T (hs-cTnT) and cardiac myosin binding protein C (cMyBP-C) are new generation markers used for prediagnosis, diagnosis and prognosis of CVDs. The aim of this study is to determine Zn as well as new generation cardiac markers’ profiles in children with normal body mass index (N-BMI), obese (OB), morbid obese (MO) children and children with metabolic syndrome (MetS) findings. The association among them will also be investigated. Four study groups were constituted. The study protocol was approved by the institutional Ethics Committee of Tekirdag Namik Kemal University. Parents of the participants filled informed consent forms to participate in the study. Group 1 is composed of 44 children with N-BMI. Group 2 and Group 3 comprised 43 OB and 45 MO children, respectively. 45 MO children with MetS findings were included in Group 4. World Health Organization age- and sex-adjusted BMI percentile tables were used to constitute groups. These values were 15-85, 95-99 and above 99 for N-BMI, OB and MO, respectively. Criteria for MetS findings were determined. Routine biochemical analyses including Zn were performed. hs-cTnT and cMyBP-C concentrations were measured by enzyme-linked immunosorbent assay. Data were analyzed by using SPSS software. p < 0.05 was accepted as significant. Four groups were matched for age and gender. Decreased Zn concentrations were measured in Groups 2, 3 and 4 compared to Group 1. Groups did not differ from one another in terms of hs-cTnT. There were statistically significant differences between cMyBP-C levels of MetS group and N-BMI as well as OB groups. There was an increasing trend going from N-BMI group to MetS group. There were statistically significant negative correlations between Zn and hs-cTnT as well as cMyBP-C concentrations in MetS group. In conclusion, inverse correlations detected between Zn and new generation cardiac markers (hs-TnT and cMyBP-C) have pointed out that decreased levels of Zn accompany increased levels of hs-cTnT as well as cMyBP-C in children with MetS. This finding emphasizes that both Zn and these new generation cardiac markers may be evaluated as biomarkers of cardiovascular health during severe childhood obesity precipitated with MetS findings and also suggested as the messengers of the future risk in the adulthood periods of children with MetS.
Keywords: Cardiac myosin binding protein-C, cardiovascular diseases, children, high sensitive cardiac troponin T, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52397 Experimental Analysis of the Influence of Water Mass Flow Rate on the Performance of a CO2 Direct-Expansion Solar Assisted Heat Pump
Authors: Sabrina N. Rabelo, Tiago de F. Paulino, Willian M. Duarte, Samer Sawalha, Luiz Machado
Abstract:
Energy use is one of the main indicators for the economic and social development of a country, reflecting directly in the quality of life of the population. The expansion of energy use together with the depletion of fossil resources and the poor efficiency of energy systems have led many countries in recent years to invest in renewable energy sources. In this context, solar-assisted heat pump has become very important in energy industry, since it can transfer heat energy from the sun to water or another absorbing source. The direct-expansion solar assisted heat pump (DX-SAHP) water heater system operates by receiving solar energy incident in a solar collector, which serves as an evaporator in a refrigeration cycle, and the energy reject by the condenser is used for water heating. In this paper, a DX-SAHP using carbon dioxide as refrigerant (R744) was assembled, and the influence of the variation of the water mass flow rate in the system was analyzed. The parameters such as high pressure, water outlet temperature, gas cooler outlet temperature, evaporator temperature, and the coefficient of performance were studied. The mainly components used to assemble the heat pump were a reciprocating compressor, a gas cooler which is a countercurrent concentric tube heat exchanger, a needle-valve, and an evaporator that is a copper bare flat plate solar collector designed to capture direct and diffuse radiation. Routines were developed in the LabVIEW and CoolProp through MATLAB software’s, respectively, to collect data and calculate the thermodynamics properties. The range of coefficient of performance measured was from 3.2 to 5.34. It was noticed that, with the higher water mass flow rate, the water outlet temperature decreased, and consequently, the coefficient of performance of the system increases since the heat transfer in the gas cooler is higher. In addition, the high pressure of the system and the CO2 gas cooler outlet temperature decreased. The heat pump using carbon dioxide as a refrigerant, especially operating with solar radiation has been proven to be a renewable source in an efficient system for heating residential water compared to electrical heaters reaching temperatures between 40 °C and 80 °C.
Keywords: Water mass flow rate, R-744, heat pump, solar evaporator, water heater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 111296 Nutrition Program Planning Based on Local Resources in Urban Fringe Areas of a Developing Country
Authors: Oktia Woro Kasmini Handayani, Bambang Budi Raharjo, Efa Nugroho, Bertakalswa Hermawati
Abstract:
Obesity prevalence and severe malnutrition in Indonesia has increased from 2007 to 2013. The utilization of local resources in nutritional program planning can be used to program efficiency and to reach the goal. The aim of this research is to plan a nutrition program based on local resources for urban fringe areas in a developing country. This research used a qualitative approach, with a focus on local resources including social capital, social system, cultural system. The study was conducted in Mijen, Central Java, as one of the urban fringe areas in Indonesia. Purposive and snowball sampling techniques are used to determine participants. A total of 16 participants took part in the study. Observation, interviews, focus group discussion, SWOT analysis, brainstorming and Miles and Huberman models were used to analyze the data. We have identified several local resources, such as the contributions from nutrition cadres, social organizations, social financial resources, as well as the cultural system and social system. The outstanding contribution of nutrition cadres is the participation and creativity to improve nutritional status. In addition, social organizations, like the role of the integrated health center for children (Pos Pelayanan Terpadu), can be engaged in the nutrition program planning. This center is supported by House of Nutrition to assist in nutrition program planning, and provide social support to families, neighbors and communities as social capitals. The study also reported that cultural systems that show appreciation for well-nourished children are a better way to improve the problem of balanced nutrition. Social systems such as teamwork and mutual cooperation can also be a potential resource to support nutritional programs and overcome associated problems. The impact of development in urban areas such as the introduction of more green areas which improve the perceived status of local people, as well as new health services facilitated by people and companies, can also be resources to support nutrition programs. Local resources in urban fringe areas can be used in the planning of nutrition programs. The expansion of partnership with all stakeholders, empowering the community through optimizing the roles of nutrition care centers for children as our recommendation with regard to nutrition program planning.Keywords: Developing country, local resources, nutrition program, urban fringe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103695 Development of a Miniature and Low-Cost IoT-Based Remote Health Monitoring Device
Authors: Sreejith Jayachandran, Mojtaba Ghodsi, Morteza Mohammadzaheri
Abstract:
The modern busy world is running behind new embedded technologies based on computers and software meanwhile some people are unable to monitor their health condition and regular medical check-ups. Some of them postpone medical check-ups due to a lack of time and convenience while others skip these regular evaluations and medical examinations due to huge medical bills and hospital expenses. In this research, we present a device in the telemonitoring system capable of monitoring, checking, and evaluating the health status of the human body remotely through the internet for the needs of all kinds of people. The remote health monitoring device is a microcontroller-based embedded unit. The various types of sensors in this device are connected to the human body, and with the help of an Arduino UNO board, the required analogue data are collected from the sensors. The microcontroller on the Arduino board processes the analogue data collected in this way into digital data and transfers that information to the cloud and stores it there; the processed digital data are then instantly displayed through the LCD attached to the machine. By accessing the cloud storage with a username and password, the concerned person’s health care teams/doctors, and other health staff can collect these data for the assessment and follow-up of that patient. Besides that, the family members/guardians can use and evaluate these data for awareness of the patient's current health status. Moreover, the system is connected to a GPS module. In emergencies, the concerned team can be positioning the patient or the person with this device. The setup continuously evaluates and transfers the data to the cloud and also the user can prefix a normal value range for the evaluation. For example, the blood pressure normal value is universally prefixed between 80/120 mmHg. Similarly, the Remote Health Monitoring System (RHMS) is also allowed to fix the range of values referred to as normal coefficients. This IoT-based miniature system 11×10×10 cm3 with a low weight of 500 gr only consumes 10 mW. This smart monitoring system is manufactured for 100 GBP (British Pound Sterling), and can facilitate the communication between patients and health systems, but also it can be employed for numerous other uses including communication sectors in the aerospace and transportation systems.
Keywords: Embedded Technology, Telemonitoring system, Microcontroller, Arduino UNO, Cloud storage, GPS, RHMS, Remote Health Monitoring System, Alert system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26094 The Advancement of Smart Cushion Product and System Design Enhancing Public Health and Well-Being at Workplace
Authors: Dosun Shin, Assegid Kidane, Pavan Turaga
Abstract:
This research project brings together experts in multiple disciplines to bring product design, sensor design, algorithms, and health intervention studies to develop a product and system that helps reduce the amount of time sitting at the workplace. This paper illustrates ongoing improvements to prototypes the research team developed in initial research; including working prototypes with a software application, which were developed and demonstrated for users. Additional modifications were made to improve functionality, aesthetics, and ease of use, which will be discussed in this paper. Extending on the foundations created in the initial phase, our approach sought to further improve the product by conducting additional human factor research, studying deficiencies in competitive products, testing various materials/forms, developing working prototypes, and obtaining feedback from additional potential users. The solution consisted of an aesthetically pleasing seat cover cushion that easily attaches to common office chairs found in most workplaces, ensuring that a wide variety of people can use the product. The product discreetly contains sensors that track when the user sits on their chair, sending information to a phone app that triggers reminders for users to stand up and move around after sitting for a set amount of time. This paper also presents the analyzed typical office aesthetics and selected materials, colors, and forms that complimented the working environment. Comfort and ease of use remained a high priority as the design team sought to provide a product and system that integrated into the workplace. As the research team continues to test, improve, and implement this solution for the sedentary workplace, the team seeks to create a viable product that acts as an impetus for a more active workday and lifestyle, further decreasing the proliferation of chronic disease and health issues for sedentary working people. This paper illustrates in detail the processes of engineering, product design, methodology, and testing results.
Keywords: Anti-sedentary work behavior, new product development, sensor design, health intervention studies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45093 A Novel and Green Approach to Produce Nano- Porous Materials Zeolite A and MCM-41 from Coal Fly Ash and their Applications in Environmental Protection
Authors: K. S. Hui, K. N. Hui, Seong Kon Lee
Abstract:
Zeolite A and MCM-41 have extensive applications in basic science, petrochemical science, energy conservation/storage, medicine, chemical sensor, air purification, environmentally benign composite structure and waste remediation. However, the use of zeolite A and MCM-41 in these areas, especially environmental remediation, are restricted due to prohibitive production cost. Efficient recycling of and resource recovery from coal fly ash has been a major topic of current international research interest, aimed at achieving sustainable development of human society from the viewpoints of energy, economy, and environmental strategy. This project reported an original, novel, green and fast methods to produce nano-porous zeolite A and MCM-41 materials from coal fly ash. For zeolite A, this novel production method allows a reduction by half of the total production time while maintaining a high degree of crystallinity of zeolite A which exists in a narrower particle size distribution. For MCM-41, this remarkably green approach, being an environmentally friendly process and reducing generation of toxic waste, can produce pure and long-range ordered MCM-41 materials from coal fly ash. This approach took 24 h at 25 oC to produce 9 g of MCM-41 materials from 30 g of the coal fly ash, which is the shortest time and lowest reaction temperature required to produce pure and ordered MCM-41 materials (having the largest internal surface area) compared to the values reported in the literature. Performance evaluation of the produced zeolite A and MCM-41 materials in wastewater treatment and air pollution control were reported. The residual fly ash was also converted to zeolite Na-P1 which showed good performance in removal of multi-metal ions in wastewater. In wastewater treatment, compared to commercial-grade zeolite A, adsorbents produced from coal fly ash were effective in removing multi heavy metal ions in water and could be an alternative material for treatment of wastewater. In methane emission abatement, the zeolite A (produced from coal fly ash) achieved similar methane removal efficiency compared to the zeolite A prepared from pure chemicals. This report provides the guidance for production of zeolite A and MCM-41 from coal fly ash by a cost-effective approach which opens potential applications of these materials in environmental industry. Finally, environmental and economic aspects of production of zeolite A and MCM-41 from coal fly ash were discussed.
Keywords: Metal ions, waste water, methane, volatile organic compounds
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225492 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.
Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593