Search results for: energy indicators
2821 An Approximation Method for Three Quark Systems in the Hyper-Spherical Approach
Authors: B. Rezaei, G. R. Boroun, M. Abdolmaleki
Abstract:
The bound state energy of three quark systems is studied in the framework of a non- relativistic spin independent phenomenological model. The hyper- spherical coordinates are considered for the solution this system. According to Jacobi coordinate, we determined the bound state energy for (uud) and (ddu) quark systems, as quarks are flavorless mass, and it is restrict that choice potential at low and high range in nucleon bag for a bound state.
Keywords: Adiabatic expansion, grand angular momentum, binding energy, perturbation, baryons.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14322820 Nonlinear Evolution of Electron Density Under High-Energy-Density Conditions
Authors: Shi Chen, Zi Y. Chen, Jian K. Dan, Jian F. Li
Abstract:
Evolution of one-dimensional electron system under high-energy-density (HED) conditions is investigated, using the principle of least-action and variational method. In a single-mode modulation model, the amplitude and spatial wavelength of the modulation are chosen to be general coordinates. Equations of motion are derived by considering energy conservation and force balance. Numerical results show that under HED conditions, electron density modulation could exist. Time dependences of amplitude and wavelength are both positively related to the rate of energy input. Besides, initial loading speed has a significant effect on modulation amplitude, while wavelength relies more on loading duration.Keywords: Electron density modulation, HED, nonlinearevolution, plasmas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14132819 Comparison of MODIS-Based Rice Extent Map and Landsat-Based Rice Classification Map in Determining Biomass Energy Potential of Rice Hull in Nueva Ecija, Philippines
Authors: Klathea Sevilla, Marjorie Remolador, Bryan Baltazar, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion Ang
Abstract:
The underutilization of biomass resources in the Philippines, combined with its growing population and the rise in fossil fuel prices confirms demand for alternative energy sources. The goal of this paper is to provide a comparison of MODIS-based and Landsat-based agricultural land cover maps when used in the estimation of rice hull’s available energy potential. Biomass resource assessment was done using mathematical models and remote sensing techniques employed in a GIS platform.Keywords: Biomass, geographic information system, GIS, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22402818 Ramification of Oil Prices on Renewable Energy Deployment
Authors: Osamah A. Alsayegh
Abstract:
This paper contributes to the literature by updating the analysis of the impact of the recent oil prices fall on the renewable energy (RE) industry and deployment. The research analysis uses the Renewable Energy Industrial Index (RENIXX), which tracks the world’s 30 largest publicly traded companies and oil prices daily data from January 2003 to March 2016. RENIXX represents RE industries developing solar, wind, geothermal, bioenergy, hydropower and fuel cells technologies. This paper tests the hypothesis that claims high oil prices encourage the substitution of alternate energy sources for conventional energy sources. Furthermore, it discusses RENIXX performance behavior with respect to the governments’ policies factor that investors should take into account. Moreover, the paper proposes a theoretical model that relates RE industry progress with oil prices and policies through the fuzzy logic system.
Keywords: Fuzzy logic, investment, policy, stock exchange index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13272817 Low Energy Method for Data Delivery in Ubiquitous Network
Authors: Tae Kyung Kim, Hee Suk Seo
Abstract:
Recent advances in wireless sensor networks have led to many routing methods designed for energy-efficiency in wireless sensor networks. Despite that many routing methods have been proposed in USN, a single routing method cannot be energy-efficient if the environment of the ubiquitous sensor network varies. We present the controlling network access to various hosts and the services they offer, rather than on securing them one by one with a network security model. When ubiquitous sensor networks are deployed in hostile environments, an adversary may compromise some sensor nodes and use them to inject false sensing reports. False reports can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. The interleaved hop-by-hop authentication scheme detects such false reports through interleaved authentication. This paper presents a LMDD (Low energy method for data delivery) algorithm that provides energy-efficiency by dynamically changing protocols installed at the sensor nodes. The algorithm changes protocols based on the output of the fuzzy logic which is the fitness level of the protocols for the environment.Keywords: Data delivery, routing, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13442816 Competitiveness and Value Creation of Tourism Sector: In the Case of 10 ASEAN Economies
Authors: Apirada Chinprateep
Abstract:
The ASEAN Economic Community (AEC) is the goal of regional economic integration by 2015. In the region, tourism is an activity that is important, especially as a source of foreign currency, a source of employment creation and a source of income bringing to the region. Given the complexity of the issues entailing the concept of sustainable tourism, this paper tries to assess tourism sustainability with the ASEAN, based on a number of quantitative indicators for all the ten economies, Thailand, Myanmar, Laos, Vietnam, Malaysia, Singapore, Indonesia, Philippines, Cambodia, and Brunei. The methodological framework will provide a number of benchmarks of tourism activities in these countries. They include identification of the dimensions; for example, economic, socio-ecologic, infrastructure and indicators, method of scaling, chart representation and evaluation on Asian countries. This specification shows that a similar level of tourism activity might introduce different implementation in the tourism activity and might have different consequences for the socioecological environment and sustainability. The heterogeneity of developing countries exposed briefly here would be useful to detect and prepare for coping with the main problems of each country in their tourism activities, as well as competitiveness and value creation of tourism for ASEAN economic community, and will compare with other parts of the world.Keywords: AEC, ASEAN, sustainable, tourism, competitiveness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17612815 Recent Advances in Energy Materials for Hot Sections of Modern Gas-Turbine Engines
Authors: Zainul Huda
Abstract:
This presentation reviews recent advances in superalloys and thermal barrier coating (TBC) for application in hot sections of energy-efficient gas-turbine engines. It has been reviewed that in the modern combined-cycle gas turbines (CCGT) applying single-crystal energy materials (SC superalloys) and thermal barrier coatings (TBC), and – in one design – closed-loop steam cooling, thermal efficiency can reach more than 60%. These technological advancements contribute to profitable and clean power generation with reduced emission. Alternatively, the use of advanced superalloys (e.g. GTD-111 superalloy, Allvac 718Plus superalloy) and advanced thermal barrier coatings (TBC) in modern gas-turbines has been shown to yield higher energy-efficiency in power generation.
Keywords: Energy materials, gas turbine engines, superalloy, thermal barrier coating
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27392814 Mapping of Solar Radiation Anomalies Based on Climate Change
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Francisco Pereira, Elton Rossini
Abstract:
The use of alternative energy sources to meet energy demand reduces environmental damage. To diversify an energy matrix and to minimize global warming, a solar energy is gaining space, being an important source of renewable energy, and its potential depends on the climatic conditions of the region. Brazil presents a great solar potential for a generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of energy use. Due to the above reasons, this article aims to verify the climatic variability corresponding to the variations in solar radiation anomalies, in the face of climate change scenarios. The data used in this research are part of the Intercomparison of Interconnected Models, Phase 5 (CMIP5), which contributed to the preparation of the fifth IPCC-AR5 report. The solar radiation data were extracted from The Australian Community Climate and Earth System Simulator (ACCESS) model using the RCP 4.5 and RCP 8.5 scenarios that represent an intermediate structure and a pessimistic framework, the latter being the most worrisome in all cases. In order to allow the use of solar radiation as a source of energy in a given location and/or region, it is important, first, to determine its availability, thus justifying the importance of the study. The results pointed out, for the 75-year period (2026-2100), based on a pessimistic scenario, indicate a drop in solar radiation of the approximately 12% in the eastern region of Rio Grande do Sul. Factors that influence the pessimistic prospects of this scenario should be better observed by the responsible authorities, since they can affect the possibility to produce electricity from solar radiation.
Keywords: Climate change, solar radiation, energy utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9912813 High Energy Dual-Wavelength Mid-Infrared Extracavity KTA Optical Parametric Oscillator
Authors: Hongjun Liu, Qibing Sun, Nan Huang, Shaolan Zhu, Wei Zhao
Abstract:
A high energy dual-wavelength extracavity KTA optical parametric oscillator (OPO) with excellent stability and beam quality, which is pumped by a Q-switched single-longitudinal-mode Nd:YAG laser, has been demonstrated based on a type II noncritical phase matching (NCPM) KTA crystal. The maximum pulse energy of 10.2 mJ with the output stability of better than 4.1% rms at 3.467 μm is obtained at the repetition rate of 10 Hz and pulse width of 2 ns, and the 11.9 mJ of 1.535 μm radiation is obtained simultaneously. This extracavity NCPM KTA OPO is very useful when high energy, high beam quality and smooth time domain are needed.Keywords: mid-infrared laser, OPO, dual-wavelength laser
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20702812 Structural and Optical Characterizations of CIGST Solar Cell Materials
Authors: Abhay Kumar Singh
Abstract:
Structural and UV/Visible optical properties can be useful to describe a material for the CIGS solar cell active layer, therefore, this work demonstrates the properties like surface morphology, X-ray Photoelectron Spectroscopy (XPS) bonding energy (EB) core level spectra, UV/Visible absorption spectra, refractive index (n), optical energy band (Eg), reflection spectra for the Cu25 (In16Ga9) Se40Te10 (CIGST-1) and Cu20 (In14Ga9) Se45Te12 (CIGST-2) chalcogenide compositions. Materials have been exhibited homogenous surface morphologies, broading /-or diffusion of bonding energy peaks relative elemental values and a high UV/Visible absorption tendency in the wave length range 400 nm- 850 nm range with the optical energy band gaps 1.37 and 1.42 respectively. Subsequently, UV/Visible reflectivity property in the wave length range 250 nm to 320 nm for these materials has also been discussed.Keywords: Chalcogen, Optical energy band gap, UV/Visible spectra, XPS spectra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17622811 Long Term Stability of an Experimental Insulated-Model Salinity-Gradient Solar Pond
Authors: N. W. K. Jayatissa, R. Attalage, Prabath Hewageegana, P. A. A. Perera, M. A. Punyasena
Abstract:
Per capita energy usage in any country is exponentially increasing with their development. As a result, the country’s dependence on the fossil fuels for energy generation is also increasing tremendously creating economic and environmental concerns. Tropical countries receive considerable amount of solar radiation throughout the year, use of solar energy with different energy storage and conversion methodologies is a viable solution to minimize the ever increasing demand for the depleting fossil fuels. Salinity gradient solar pond is one such solar energy application. This paper reports the characteristics and performance of a thermally insulated, experimental salinity-gradient solar pond, built at the premises of the University of Kelaniya, Sri Lanka. Particular stress is given to the behavior of the evolution of the three layer structure exist at the stable state of a salinity gradient solar pond over a long period of time, under different environmental conditions. The operational procedures required to maintain the long term thermal stability are also reported in this article.
Keywords: Salt-gradient, solar pond, solar radiation, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16052810 The e-DELPHI Method to Test the Importance Competence and Skills: Case of the Lifelong Learning Spanish Trainers
Authors: Xhevrie Mamaqi, Jesus Miguel, Pilar Olave
Abstract:
The lifelong learning is a crucial element in the modernization of European education and training systems. The most important actors in the development process of the lifelong learning are the trainers, whose professional characteristics need new competences and skills in the current labour market. The main objective of this paper is to establish an importance ranking of the new competences, capabilities and skills that the lifelong learning Spanish trainers must possess nowadays. A wide study of secondary sources has allowed the design of a questionnaire that organizes the trainer-s skills and competences. The e-Delphi method is used for realizing a creative, individual and anonymous evaluation by experts on the importance ranking that presents the criteria, sub-criteria and indicators of the e-Delphi questionnaire. Twenty Spanish experts in the lifelong learning have participated in two rounds of the e- DELPHI method. In the first round, the analysis of the experts- evaluation has allowed to establish the ranking of the most importance criteria, sub-criteria and indicators and to eliminate the least valued. The minimum level necessary to reach the consensus among experts has been achieved in the second round.Keywords: competences and skills, lifelong learningtrainers, Spain, e-DELHI method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16792809 Minimizing Energy Consumption in Wireless Sensor Networks using Binary Integer Linear Programming
Authors: Chompunut Jantarasorn, Chutima Prommak
Abstract:
The important issue considered in the widespread deployment of Wireless Sensor Networks (WSNs) is an efficiency of the energy consumption. In this paper, we present a study of the optimal relay station planning problems using Binary Integer Linear Programming (BILP) model to minimize the energy consumption in WSNs. Our key contribution is that the proposed model not only ensures the required network lifetime but also guarantees the radio connectivity at high level of communication quality. Specially, we take into account effects of noise, signal quality limitation and bit error rate characteristics. Numerical experiments were conducted in various network scenarios. We analyzed the effects of different sensor node densities and distribution on the energy consumption.
Keywords: Binary Integer Linear Programming, BILP, Energy consumption, Optimal node placement and Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22022808 Location Based Clustering in Wireless Sensor Networks
Authors: Ashok Kumar, Narottam Chand, Vinod Kumar
Abstract:
Due to the limited energy resources, energy efficient operation of sensor node is a key issue in wireless sensor networks. Clustering is an effective method to prolong the lifetime of energy constrained wireless sensor network. However, clustering in wireless sensor network faces several challenges such as selection of an optimal group of sensor nodes as cluster, optimum selection of cluster head, energy balanced optimal strategy for rotating the role of cluster head in a cluster, maintaining intra and inter cluster connectivity and optimal data routing in the network. In this paper, we propose a protocol supporting an energy efficient clustering, cluster head selection/rotation and data routing method to prolong the lifetime of sensor network. Simulation results demonstrate that the proposed protocol prolongs network lifetime due to the use of efficient clustering, cluster head selection/rotation and data routing.
Keywords: Wireless sensor networks, clustering, energy efficient, localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26842807 DC Bus Voltage Regulator for Renewable Energy Based Microgrid Application
Authors: Bakari M. M. Mwinyiwiwa
Abstract:
Renewable Energy based microgrids are being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. The technical challenges associated with the operation and controls are immense. Electricity generation by Renewable Energy Sources is of stochastic nature such that there is a demand for regulation of voltage output in order to satisfy the standard loads’ requirements. In a renewable energy based microgrid, the energy sources give stochastically variable magnitude AC or DC voltages. AC voltage regulation of micro and mini sources pose practical challenges as well as unbearable costs. It is therefore practically and economically viable to convert the voltage outputs from stochastic AC and DC voltage sources to constant DC voltage to satisfy various DC loads including inverters which ultimately feed AC loads. This paper presents results obtained from SEPIC converter based DC bus voltage regulator as a case study for renewable energy microgrid application. Real-Time Simulation results show that upon appropriate choice of controller parameters for control of the SEPIC converter, the output DC bus voltage can be kept constant regardless of wide range of voltage variations of the source. This feature is particularly important in the situation that multiple renewable sources are to be integrated to supply a microgrid under main grid integration or isolated modes of operation.
Keywords: DC Voltage Regulator, microgrid, multisource, Renewable Energy, SEPIC Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43102806 Solar Architecture of Low-Energy Buildings for Industrial Applications
Authors: P. Brinks, O. Kornadt, R. Oly
Abstract:
This research focuses on the optimization of glazed surfaces and the assessment of possible solar gains in industrial buildings. Existing window rating methods for single windows were evaluated and a new method for a simple analysis of energy gains and losses by single windows was introduced. Furthermore extensive transient building simulations were carried out to appraise the performance of low cost polycarbonate multi-cell sheets in interaction with typical buildings for industrial applications. Mainly energy saving potential was determined by optimizing the orientation and area of such glazing systems in dependency on their thermal qualities. Moreover the impact on critical aspects such as summer overheating and daylight illumination was considered to ensure the user comfort and avoid additional energy demand for lighting or cooling. Hereby the simulated heating demand could be reduced by up to 1/3 compared to traditional architecture of industrial halls using mainly skylights.
Keywords: Solar Architecture, Passive Solar Building Design, Glazing, Low-Energy Buildings, Industrial Buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19802805 Assessing the Viability of Solar Water Pumps Economically, Socially and Environmentally in Soan Valley, Punjab
Authors: Zenab Naseem, Sadia Imran
Abstract:
One of the key solutions to the climate change crisis is to develop renewable energy resources, such as solar and wind power and biogas. This paper explores the socioeconomic and environmental viability of solar energy, based on a case study of the Soan Valley Development Program. Under this project, local farmers were provided solar water pumps at subsidized rates. These have been functional for the last seven years and have gained popularity among the local communities. The study measures the economic viability of using solar energy in agriculture, based on data from 36 households, of which 12 households each use diesel, electric and solar water pumps. Our findings are based on the net present value of each technology type. We also carry out a qualitative assessment of the social impact of solar water pumps relative to diesel and electric pumps. Finally, we conduct an environmental impact assessment, using the lifecycle assessment approach. All three analyses indicate that solar energy is a viable alternative to diesel and electricity.Keywords: Alternative energy sources, pollution control adoption and costs, solar energy pumps, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26242804 An Energy-Efficient Distributed Unequal Clustering Protocol for Wireless Sensor Networks
Authors: Sungju Lee, Jangsoo Lee , Hongjoong Sin, Seunghwan Yoo, Sanghyuck Lee, Jaesik Lee, Yongjun Lee, Sungchun Kim
Abstract:
The wireless sensor networks have been extensively deployed and researched. One of the major issues in wireless sensor networks is a developing energy-efficient clustering protocol. Clustering algorithm provides an effective way to prolong the lifetime of a wireless sensor networks. In the paper, we compare several clustering protocols which significantly affect a balancing of energy consumption. And we propose an Energy-Efficient Distributed Unequal Clustering (EEDUC) algorithm which provides a new way of creating distributed clusters. In EEDUC, each sensor node sets the waiting time. This waiting time is considered as a function of residual energy, number of neighborhood nodes. EEDUC uses waiting time to distribute cluster heads. We also propose an unequal clustering mechanism to solve the hot-spot problem. Simulation results show that EEDUC distributes the cluster heads, balances the energy consumption well among the cluster heads and increases the network lifetime.Keywords: Wireless Sensor Network, Distributed UnequalClustering, Multi-hop, Lifetime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24882803 Establishing a Probabilistic Model of Extrapolated Wind Speed Data for Wind Energy Prediction
Authors: Mussa I. Mgwatu, Reuben R. M. Kainkwa
Abstract:
Wind is among the potential energy resources which can be harnessed to generate wind energy for conversion into electrical power. Due to the variability of wind speed with time and height, it becomes difficult to predict the generated wind energy more optimally. In this paper, an attempt is made to establish a probabilistic model fitting the wind speed data recorded at Makambako site in Tanzania. Wind speeds and direction were respectively measured using anemometer (type AN1) and wind Vane (type WD1) both supplied by Delta-T-Devices at a measurement height of 2 m. Wind speeds were then extrapolated for the height of 10 m using power law equation with an exponent of 0.47. Data were analysed using MINITAB statistical software to show the variability of wind speeds with time and height, and to determine the underlying probability model of the extrapolated wind speed data. The results show that wind speeds at Makambako site vary cyclically over time; and they conform to the Weibull probability distribution. From these results, Weibull probability density function can be used to predict the wind energy.Keywords: Probabilistic models, wind speed, wind energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23452802 Optimal Green Facility Planning - Implementation of Organic Rankine Cycle System for Factory Waste Heat Recovery
Authors: Chun-Wei Lin, Yu-Lin Chen
Abstract:
As global industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in the production process. In the total energy consumption, 40% of the heat was used in process heat, mechanical work, chemical energy and electricity. The remaining 50% were released into the environment. It will cause energy waste and environment pollution. There are many ways for recovering the waste heat in factory. Organic Rankine Cycle (ORC) system can produce electricity and reduce energy costs by recovering the waste of low temperature heat in the factory. In addition, ORC is the technology with the highest power generating efficiency in low-temperature heat recycling. However, most of factories executives are still hesitated because of the high implementation cost of the ORC system, even a lot of heat are wasted. Therefore, this study constructs a nonlinear mathematical model of waste heat recovery equipment configuration to maximize profits. A particle swarm optimization algorithm is developed to generate the optimal facility installation plan for the ORC system.
Keywords: Green facility planning, organic rankine cycle, particle swarm optimization, waste heat recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19872801 Increase Energy Savings with Lighting Automation Using Light Pipes and Power LEDs
Abstract:
Using of natural lighting has come into prominence in constructed buildings, especially in last ten years, under scope of energy efficiency. Natural lighting methods are one of the methods that aim to take advantage of day light in maximum level and decrease using of artificial lighting. Increasing of day light amount in buildings by using suitable methods will give optimum result in terms of comfort and energy saving when the daylight-artificial light integration is ensured with a suitable control system. Using of natural light in places that require lighting will ensure energy saving in great extent. With this study, it is aimed to save energy used for purpose of lighting. Under this scope, lighting of a scanning laboratory of a hospital was realized by using a lighting automation containing natural and artificial lighting. In natural lighting, light pipes were used and in artificial lighting, dimmable power LED modules were used. Necessity of lighting was followed with motion sensors. The lighting automation containing natural and artificial light was ensured with fuzzy logic control. At the scanning laboratory where this application was realized, energy saving in lighting was obtained.
Keywords: Daylight transfer, fuzzy logic controller, light pipe, Power LED.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21522800 Integrated Energy-Aware Mechanism for MANETs using On-demand Routing
Authors: M. Tamilarasi, T.G. Palanivelu
Abstract:
Mobile Ad Hoc Networks (MANETs) are multi-hop wireless networks in which all nodes cooperatively maintain network connectivity. In such a multi-hop wireless network, every node may be required to perform routing in order to achieve end-to-end communication among nodes. These networks are energy constrained as most ad hoc mobile nodes today operate with limited battery power. Hence, it is important to minimize the energy consumption of the entire network in order to maximize the lifetime of ad hoc networks. In this paper, a mechanism involving the integration of load balancing approach and transmission power control approach is introduced to maximize the life-span of MANETs. The mechanism is applied on Ad hoc On-demand Vector (AODV) protocol to make it as energy aware AODV (EA_AODV). The simulation is carried out using GloMoSim2.03 simulator. The results show that the proposed mechanism reduces the average required transmission energy per packet compared to the standard AODV.Keywords: energy aware routing, load balance, Mobile Ad HocNetworks, MANETs , on demand routing, transmission power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19592799 The Techno-Economic and Environmental Assessments of Grid-Connected Photovoltaic Systems in Bhubaneswar, India
Authors: A. K. Pradhan, M. K. Mohanty, S. K. Kar
Abstract:
The power system utility has started to think about the green power technology in order to have an eco-friendly environment. The green power technology utilizes renewable energy sources for reduction of GHG emissions. Odisha state (India) is very rich in potential of renewable energy sources especially in solar energy (about 300 solar days), for installation of grid connected photovoltaic system. This paper focuses on the utilization of photovoltaic systems in an Institute building of Bhubaneswar city, Odisha. Different data like solar insolation (kW/m2/day), sunshine duration has been collected from metrological stations for Bhubaneswar city. The required electrical power and cost are calculated for daily load of 1.0 kW. The HOMER (Hybrid Optimization Model of Electric Renewable) software is used to estimate system size and its performance analysis. The simulation result shows that the cost of energy (COE) is $ 0.194/kWh, the Operating cost is $63/yr and the net present cost (NPC) is $3,917. The energy produced from PV array is 1,756kWh/yr and energy purchased from grid is 410kWh/yr. The AC primary load consumption is 1314 kWh/yr and the Grid sales are 746 kWh/yr. One battery is connected in parallel with 12V DC Bus and the usable nominal capacity 2.4 kWh with 9.6 h autonomy capacity.
Keywords: Economic assessment, HOMER, Optimization, Photovoltaic (PV), Renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22602798 Study The Effects of Conventional and Low Input Production System on Energy Efficiency of Silybum marianum L.
Authors: M. Haj Seyed Hadi, M. Darzi, E. Sharifi Ashoorabadi
Abstract:
Medicinal plants are most suitable crops for ecological production systems because of their role in human health and the aim of sustainable agriculture to improve ecosystem efficiency and its products quality. Calculations include energy output (contents of energy in seed) and energy inputs (consumption of fertilizers, pesticides, labor, machines, fuel and electricity). The ratio of output of the production to inputs is called the energy outputs / inputs ratio or energy efficiency. One way to quantify essential parts of agricultural development is the energy flow method. The output / input energy ratio is proposed as the most comprehensive single factor in pursuing the objective of sustainability. Sylibum marianum L. is one of the most important medicinal plants in Iran and has effective role on health of growing population in Iran. The objective of this investigation was to find out energy efficiency in conventional and low input production system of Milk thistle. This investigation was carried out in the spring of 2005 – 2007 in the Research Station of Rangelands in Hamand - Damavand region of IRAN. This experiment was done in split-split plot based on randomized complete block design with 3 replications. Treatments were 2 production systems (Conventional and Low input system) in the main plots, 3 planting time (25 of March, 4 and 14 of April) in the sub plots and 2 seed types (Improved and Native of Khoozestan) in the sub-sub plots. Results showed that in conventional production system energy efficiency, because of higher inputs and less seed yield, was less than low input production system. Seed yield was 1199.5 and 1888 kg/ha in conventional and low input systems, respectively. Total energy inputs and out puts for conventional system was 10068544.5 and 7060515.9 kcal. These amounts for low input system were 9533885.6 and 11113191.8 kcal. Results showed that energy efficiency for seed production in conventional and low input system was 0.7 and 1.16, respectively. So, milk thistle seed production in low input system has 39.6 percent higher energy efficiency than conventional production system. Also, higher energy efficiency were found in sooner planting time (25 of March) and native seed of Khoozestan.
Keywords: energy efficiency, milk thistle, production system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16212797 Reducing Power Consumption in Cloud Platforms using an Effective Mechanism
Authors: Shuen-Tai Wang, Chin-Hung Li, Ying-Chuan Chen
Abstract:
In recent years there has been renewal of interest in the relation between Green IT and Cloud Computing. The growing use of computers in cloud platform has caused marked energy consumption, putting negative pressure on electricity cost of cloud data center. This paper proposes an effective mechanism to reduce energy utilization in cloud computing environments. We present initial work on the integration of resource and power management that aims at reducing power consumption. Our mechanism relies on recalling virtualization services dynamically according to user-s virtualization request and temporarily shutting down the physical machines after finish in order to conserve energy. Given the estimated energy consumption, this proposed effort has the potential to positively impact power consumption. The results from the experiment concluded that energy indeed can be saved by powering off the idling physical machines in cloud platforms.Keywords: Green IT, Cloud Computing, virtualization, power consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21562796 Piezoelectric Micro-generator Characterization for Energy Harvesting Application
Authors: José E. Q. Souza, Marcio Fontana, Antonio C. C. Lima
Abstract:
This paper presents analysis and characterization of a piezoelectric micro-generator for energy harvesting application. A low-cost experimental prototype was designed to operate as piezoelectric micro-generator in the laboratory. An input acceleration of 9.8m/s2 using a sine signal (peak-to-peak voltage: 1V, offset voltage: 0V) at frequencies ranging from 10Hz to 160Hz generated a maximum average power of 432.4μW (linear mass position = 25mm) and an average power of 543.3μW (angular mass position = 35°). These promising results show that the prototype can be considered for low consumption load application as an energy harvesting micro-generator.Keywords: Piezoelectric, microgenerator, energy harvesting, cantilever beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9092795 Estimating Marine Tidal Power Potential in Kenya
Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema
Abstract:
The rapidly diminishing fossil fuel reserves, their exorbitant cost and the increasingly apparent negative effect of fossil fuels to climate changes is a wake-up call to explore renewable energy. Wind, bio-fuel and solar power have already become staples of Kenyan electricity mix. The potential of electric power generation from marine tidal currents is enormous, with oceans covering more than 70% of the earth. However, attempts to harness marine tidal energy in Kenya, has yet to be studied thoroughly due to its promising, cyclic, reliable and predictable nature and the vast energy contained within it. The high load factors resulting from the fluid properties and the predictable resource characteristics make marine currents particularly attractive for power generation and advantageous when compared to others. Global-level resource assessments and oceanographic literature and data have been compiled in an analysis of the technology-specific requirements for tidal energy technologies and the physical resources. Temporal variations in resource intensity as well as the differences between small-scale applications are considered.
Keywords: Energy data assessment, environmental legislation, renewable energy, tidal-in-stream turbines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13642794 Evaluation Performance of PID, LQR, Pole Placement Controllers for Heat Exchanger
Authors: Mohamed Essahafi, Mustapha Ait Lafkih
Abstract:
In industrial environments, the heat exchanger is a necessary component to any strategy of energy conversion. Much of thermal energy used in industrial processes passes at least one times by a heat exchanger, and methods systems recovering thermal energy. This survey paper tries to presents in a systemic way an sample control of a heat exchanger by comparison between three controllers LQR (linear quadratic regulator), PID (proportional, integrator and derivate) and Pole Placement. All of these controllers are used mainly in industrial sectors (chemicals, petrochemicals, steel, food processing, energy production, etc…) of transportation (automotive, aeronautics), but also in the residential sector and tertiary (heating, air conditioning, etc...) The choice of a heat exchanger, for a given application depends on many parameters: field temperature and pressure of fluids, and physical properties of aggressive fluids, maintenance and space. It is clear that the fact of having an exchanger appropriate, well-sized, well made and well used allows gain efficiency and energy processes.
Keywords: LQR linear-quadratic regulator, PID control, Pole Placement, Heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43922793 Minimization Entropic Applied to Rotary Dryers to Reduce the Energy Consumption
Authors: I. O. Nascimento, J. T. Manzi
Abstract:
The drying process is an important operation in the chemical industry and it is widely used in the food, grain industry and fertilizer industry. However, for demanding a considerable consumption of energy, such a process requires a deep energetic analysis in order to reduce operating costs. This paper deals with thermodynamic optimization applied to rotary dryers based on the entropy production minimization, aiming at to reduce the energy consumption. To do this, the mass, energy and entropy balance was used for developing a relationship that represents the rate of entropy production. The use of the Second Law of Thermodynamics is essential because it takes into account constraints of nature. Since the entropy production rate is minimized, optimals conditions of operations can be established and the process can obtain a substantial gain in energy saving. The minimization strategy had been led using classical methods such as Lagrange multipliers and implemented in the MATLAB platform. As expected, the preliminary results reveal a significant energy saving by the application of the optimal parameters found by the procedure of the entropy minimization It is important to say that this method has shown easy implementation and low cost.Keywords: Drying, entropy minimization, modeling dryers, thermodynamic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14292792 Influence of Surfactant on Supercooling Degree of Aqueous Titania Nanofluids in Energy Storage Systems
Authors: Hoda Aslani, Mohammad Moghiman, Mohammad Aslani
Abstract:
Considering the demand to reduce global warming potential and importance of solidification in various applications, there is an increasing interest in energy storage systems to find the efficient phase change materials. Therefore, this paper presents an experimental study and comparison on the potential of titania nanofluids with and without surfactant for cooling energy storage systems. A designed cooling generation device based on compression refrigeration cycle is used to explore nanofluids solidification characteristics. In this work, titania nanoparticles of 0.01, 0.02 and 0.04 wt.% are dispersed in deionized water as base fluid. Measurement of phase change parameters of nanofluids illustrates that the addition of polyvinylpyrrolidone (PVP) as surfactant to titania nanofluids advances the onset nucleation time and leads to lower solidification time. Also, the experimental results show that only adding 0.02 wt.% titania nanoparticles, especially in the case of nanofluids with a surfactant, can evidently reduce the supercooling degree by nearly 70%. Hence, it is concluded that there is a great energy saving potential in the energy storage systems using titania nanofluid with PVP.
Keywords: Cooling energy storage, nanofluid, PVP, solidification, titania.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764