An Approximation Method for Three Quark Systems in the Hyper-Spherical Approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
An Approximation Method for Three Quark Systems in the Hyper-Spherical Approach

Authors: B. Rezaei, G. R. Boroun, M. Abdolmaleki

Abstract:

The bound state energy of three quark systems is studied in the framework of a non- relativistic spin independent phenomenological model. The hyper- spherical coordinates are considered for the solution this system. According to Jacobi coordinate, we determined the bound state energy for (uud) and (ddu) quark systems, as quarks are flavorless mass, and it is restrict that choice potential at low and high range in nucleon bag for a bound state.

Keywords: Adiabatic expansion, grand angular momentum, binding energy, perturbation, baryons.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1089010

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433

References:


[1] A. Gara, B. Durand, L. Durand and L. J. Nickisch, "Relativistic Description of Quark - anti-Quark Bound States. 1. Spin Independent Treatment,” Phys.Rev.D40, 843(1989).
[2] L. P. Fulcher, Z. Chen and K. C. Yeong, "Perturbative evaluation of the eigenvalues of the Herbst Hamiltonian” Phys.Rev.D47, 4122(1993).B.
[3] A. Duncan, E. Eichten and H. Tacker, Phys.Lett.B303, 109(1993).
[4] W. Lucha, H. Rupprecht and F. F. Schoberl, Phys.Rev.D46, 1088(1992).
[5] G. Jaczko and L. Durand, Phys.Rev.D58, 114017(1998).
[6] G. R. Boroun and H. Abdolmalki, "Fragmentation of Heavy Quarks Using Wave Function at the Origin” Phys. Scr. 80, 065003(2009).
[7] M. I. haftel and V. B. Mandelzweig, "Precise non-variational calculation of the μdt molecular ion” Phys.Rev.A41, 2339(1990).
[8] H. T. Coelho and J. E. Hornos, "Hyperspherical Approach to Ultra-Precise Nonvariational Calculations in Few Body Problem” Phys. Rev. A43, 6379(1990).
[9] J. Avery, "Hyper-spherical Harmonics and generalized Sturmians” Kluwer, Dordrech, 2000.
[10] B. C. Reed, "Quantum Mechanics” Jones and Barlett publishers, 2008.