
 

 

  
Abstract—The bound state energy of three quark systems is 

studied in the framework of a non- relativistic spin independent 
phenomenological model. The hyper- spherical coordinates are 
considered for the solution this system. According to Jacobi 
coordinate, we determined the bound state energy for (uud) and (ddu) 
quark systems, as quarks are flavorless mass, and it is restrict that 
choice potential at low and high range in nucleon bag for a bound 
state. 
 

Keywords—Adiabatic expansion, grand angular momentum, 
binding energy, perturbation, baryons.  

I. INTRODUCTION 
N connection with baryons, the hyper-spherical adiabatic 
harmonic formalism is an appropriate method for 

calculation of the bound state for three body systems. We will 
be interested in the present paper in the low energy region of 
QCD theory, in which quarks interact strongly to form bound 
states known as proton or neutron that are three quarks (uud, 
ddu) systems. There is a potential model approach to this 
subject, although it’s less fundamental. It is proved to be very 
useful even in non- relativistic approximation for bound states 
of quarks [1]-[6]. For the potential model of this study, the 
central conditions have been the flavor independent of the 
potential chosen and the existence of a confining term. 

So, we study the bound state a nucleon within a non-
relativistic spin independent phenomenological model, with a 
potential that has two small and large ranges according to 
Coulomb and strong interaction at a nucleon bag. In order to 
understand and solve of the three quark bound state energy we 
used the Schrodinger equation. The idea is to show with a 
Coulomb potential at low range that quarks have asymptotic 
freedom, and at high range with a strong potential that quarks 
are confinement in a nucleon shell. These potentials have the 
great advantage that allowed us to obtain numerical solutions 
for three quark systems spectra. We introduce the hyper 
spherical coordinates with considering of the perturbation for 
the three body problem. In order to do this, the Hamiltonian of 
the system in Jacobi coordinates(r, R), interacting via the 
Coulomb and linear (strong) force shows in Fig. 1. The hyper- 
spherical method allow one to separate the hyper-radial 
motion from the angular part. As the physical boundary 
conditions for their solution can be easily formulated, and we 
can explain the behavior of potentials for small hyper-radii 
that leading to the numerical results as confirmed at discussion 
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and conclusion. 
 

 
Fig. 1 The scheme of Jacobi coordinate used in three quark problems 

in the proton. 

II. DESCRIPTION OF THE THREE QUARK SYSTEMS 
The hyper-spherical adiabatic approach will be reasonable 

to explain this three quark systems with equal mass. This 
method is based on expansion of the three body wave function 
into the surface functions.  

The motion of three particles in their centre- of- mass (CM) 
system can be described as Jacobi-Coordinates(R,r). 
According to the Hamiltonian operator VTH += . 

The kinetic-energy operator, T, is given by 
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Now, we introduce two kinds of potentials for the quarks in 

the baryons.  The first one is the Coulomb potential that is 
large at short- range interaction when the quarks have 
asymptotic freedom, and the second one is the linear (strong) 
potential that is large at long- range interaction when the 
quarks are confinement in the nucleon bag. According to Fig. 
2, in room 1, for the three- quark system the Hamiltonian has 
the form: 
 

032

32

31

31

12

21
22

1 4
1,

22 πε
=

−
+

−
+

−
+Δ−Δ−= k

rr
qqk

rr
qqk

rr
qqk

M
h

m
hH Rr

     (2) 

 
Or 

An Approximation Method for Three Quark Systems 
in the Hyper-Spherical Approach 

B. Rezaei, G. R. Boroun, M. Abdolmaleki 

I

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences

 Vol:7, No:4, 2013 

711International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 P
hy

si
ca

l a
nd

 M
at

he
m

at
ic

al
 S

ci
en

ce
s 

V
ol

:7
, N

o:
4,

 2
01

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
74

20
.p

df



 

 

{ }
2

2 1 3 2 31 2
1 r R

 q q q q q qhH = -  Δ  - α  Δ + k  +k  + k
2 m r  R-βr  R+γr

         (3)  

 
where the Coulomb potential is dominant, βγ −=1  and 

M
m

=α . Here qi denote the charge of quarks as, equ 3
2

= , 

eqd 3
1

−=  and e is the electric charge unit. Also, in room 2, for 

the far away point (especially more than 0.1 Bohr radii) we 
use the linear potential, as we have: 
 

 { }
2 2

2 r R 1 2 1 3 2 3
h hH =-  Δ  -  Δ +κ r -r + r -r + r -r
2m 2M           (4)                                                                                                           

 
or 

{ }
2

2
2 {  - }

2 r RH r R r R r
m

α κ β γ= Δ Δ + + − + +           (5)                          

 
where κ   is an electrical potential coefficient, effects inside 
the baryons bag and make the conditions close to the real 
conditions as it is only possible to determine from the 
numerical method. However, in this problem we select two 
quarks as a measurement for calculation of Bohr radii and 
energy unite.  

 

 

Fig. 2 The plan of our problem in hyper- spherical coordinate and 
two room positions determined 

 
Now, we introduce dimensionless variables according to 

 
2 2

2
r R2 2

r RΔ =  , α Δ =   , x=  , y=
a  α a r R 

α

∂ ∂
∂ ⎛ ⎞∂ ⎜ ⎟
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      (6)  

Here 

|
3
1-||

3
2|

aa 0=    and a0 being the Bohr radius.  

Then convert these variables with respect to the 
Hamiltonian hyper-spherical coordinates. By defining the 
hyper-radius and the hyper angle instead of the variables x 
and y, we have 
 

i i
i i i i i i

i i

x yx =ρcosω  , y =ρsinω  , X =  , Y =
x y

                  (7)  

 
As notations X and Y are used for ),(

ii xxiX ϕθ= , 

),(
ii yyiY ϕθ=  respectively with 0 ρ≤ ≤ ∞ and 0

2i
πω≤ ≤  .    

In the hyper spherical coordinate that are very useful for 
dealing with the three- body problem, we define 

( ) ( ), , , ,i i i ix yρ ρ ωΩ = . The kinetic energy of the 

Hamiltonian can be written as a Laplacian in a 6-dimentional 
space, due to the symmetry in the two Jacobi vectors, as: 
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where, 

2 2
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Also the grand angular momentum operators given by [2], 
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= × ∇ = × ∇

 
 

Here, 
ixL and 

iyL  are the orbital angular momentum 

operators corresponding to the variables x and y, as for the 
coulomb potential part we can write: 
 

1 3 2 31 2
c

i i i i i

q q q qq q
V =  +  + 

ρ cosω α ρ sinω -βρ cosω  α ρ sinω +γρ cosω
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

   (9)   

 
and for the linear potential part 
 

 { }L i i i i iV =κ ρ cosω  +α ρ sinω -β ρ cosω +α ρ sinω+ γ ρ cosω
 (10) 

 

The five angles symbolized by  ( ) ( ), , , ,i i i ix yρ ρ ωΩ =    

together with hyper radius 2 2
i ix yρ = + , (it is a measure 

for the three body system) provide a complete set of variables 
for describing the positions of all three quarks.   
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III. THE HYPER-SPHERICAL ADIABATIC APPROACH 
With respect to the hyper spherical adiabatic coordinates       

[7]-[10], the Schrodinger equation has the following form: 
 

2 2 2
5 2 5 2

2 2 ( )
2  C LV V E

m
ρ ρ ψ ψ ψ

ρ ρ
−⎛ ⎞∂ Λ

− + + + =⎜ ⎟∂⎝ ⎠
         (11)   

 
We choice of the hyper spherical coordinates for 

parameterize the internal degrees of freedom of the system 
under study and the expansion of its wave function into a 
complete set of hyper angular adiabatic. In this approach the 
solution of the Schrodinger equation is divided in two steps, 
firstly one need to obtain the hyper angular adiabatic functions 
and its proper Eigen values, secondly one has to solve the 
infinite set of coupled one-dimensional differential equation 
for the hyper radial functions. The method consists in 
expanding the wave function of two particles in terms of a 
complete set of adiabatic Eigen function ),( Ωρψ  which 
depend parametrically on the hyper -spherical radius. Here 
using surface functions as a basis for the solution of this 
Hamiltonian. The Eigen values, for this Hamiltonian with the 
fixed values of the hyper radius are: 
 

( ) ( ) ( ), ,n n nH Uρ ρ ρ ρΦ Ω = Φ Ω                      (12)  
 

This equation is an angular differential part equation of the 
total Hamiltonian. Therefore, the Eigen value, known as Eigen 
potentials and its Eigen functions are called surface function. 
Since, surface functions form a complete set on the sphere of 
constant value of hyper radius; therefore we can expand the 
three bodies Eigen functions in the complete orthogonal set of 
surface function as bellows: 
 

( ) ( ) ( )5 2
1

, =   ,n nn
fρ ρ ρ ρ∞−

=
Ψ Ω Φ Ω∑             (13)  

 
By substituting this equation into (11), we gain coupled 

differential equations. Finally an infinite set of radial 
equations must be solved to obtain the energies, E. This radial 
equation is,        
                                                                    

( ) ( ) ( )
2

2 1
+  =   2 P  n n nm nm nm

U E f Q fρ ρ ρ
ρρ

∞

=

⎛ ⎞ ⎛ ⎞∂ ∂
− − +⎜ ⎟ ⎜ ⎟∂∂ ⎝ ⎠⎝ ⎠

∑               (14) 

 
The non-adiabatic coupling matrix element are given by, 
 

( ) ( ) ( )
2

*
2   =  ,   ,  dnm n mQ ρ ρ ρ

ρ
∂

Φ Ω Φ Ω Ω
∂∫                    (15) 

 

( ) ( ) ( )*   =  ,   ,  dnm n mP ρ ρ ρ
ρ
∂

Φ Ω Φ Ω Ω
∂∫                     (16) 

 
Here we introduce two kinds of approximations: 

 One is uncoupled adiabatic approximation (UAA): 
 

( ) ( )( ) ( )
2

' '
2  =  +    .UAA

n n n n nf U E fρ ρ ρ
ρ
∂

Φ Φ −
∂                 

 (17) 

 
 Second is extreme adiabatic approximation (EAA): 
 

( ) ( )( ) ( )
2

2  =    .EAA
n n nf U E fρ ρ ρ

ρ
∂

−
∂

                          (18) 

 
Looking exactly as a radial two-body Schrodinger equation, 

where U act as an effective potential. For the calculation of 
the ground –state energies, we restrict our solution between 
EEAA   and EUAA   as: 
 

E  EAA exact UAAE E≤ ≤                 (19) 

IV. BEHAVIOR OF EIGEN POTENTIAL AND SURFACE 
FUNCTIONS FOR SMALL HYPER RADII 

The main effort is to determine of the Eigen potential from 
(12). For small hyper radii, the grand angular momentum 

term
2

2ρ
Λ

 is dominated over the coulomb potential and the 

linear potential. Hence (12) is reduced to: 
 

( )( ) ( )2 2 , 0n nUρ ρ ρΛ − Φ Ω =                      (20) 

 
Comparing this relation with the Eigen value equation of 

the grand angular momentum operator 
 

( )( ) ( )2 1 0lYΛ − + Ω =               (21) 

 
Give us, 
 

( ) ( )
2

1
  nU ρ

ρ
+

→
 

 
where 

( ) ( ),  n lYρΦ Ω → Ω  
 
Therefore 
 

( ) ( ) ( )
1 1,
2 2

, cos  sin  P  cos 2  Y ,
x yi ix yi i

x yi i

l ll l LM
l l i i k i l l i iY x yω ω ω

⎛ ⎞+ +⎜ ⎟
⎝ ⎠Ω = Ν

( ) ( )2 ! + 2 + 2   + + 2
3 3+  +  
2 2

x y x y
l

x y

k l l k l l k

l k l k

+ +
Ν =

⎛ ⎞ ⎛ ⎞Γ + Γ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
and  

( ) ( ) ( ) ( ) ( )( ), 1 1
1 1

2 !

i j k
k i k ji j

k k k

x x dP x x
k dx

− −
+ +− +

= − +
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( ) ( ) ( ),
,

Y , ,   Y  Y  ,
x y i i i i x x y yi i i i i i

x yi i

LM
l l i i x x y y l m i l m i

m m
x y l m l m LM x y= ∑

 

Here  ,  
i i i ix x y yl m l m LM  are the Clebsch-Gordan 

coefficients and Y
x xi il m , 

Y
y yi il m  is the usual spherical 

harmonic. The index [ ] of the hyper-spherical harmonic 

denotes the set of quantum numbers [ ] { }, , , ,x yl k l l L M= , as 

the Eigen value is given by 3+2 +
2x yl l l k= + . Therefore we 

can consider second and third term in set (11), as a 
perturbative potential for grand angular momentum and 
finding the binding energy. As 

 
2

2 + C LH Y V V Yρ ρ
Λ

= +
           

 (22) 

V. COMPUTATIONAL CALCULATION 
Our main task is to find the bound state energy for this 

quark system in the nucleon. In the first step, we find the 
Eigen potential as Ueff and then substitute in (18). Now it is 
possible to solve this equation via numerical integration. In 
order to find our solution, we consider κ  as a constant that 
make the below condition on the potentials. As for distance 
ρ 0.1a≤  the coulomb potential is dominantly than the 
linear potential and for ρ 0 .1 a≥  the linear potential is 
dominantly than the coulomb potential. And also for 
ρ=0.1a   two portions are equal. 

In this framework we treated the quark systems in the states 
with the total angular momentum L=0  and used the numerical 
method based on the shooting method [10]. The procedure for 
numerical integration ( )nf ρ can be written as bellows: 

I. Specify Ueff, the step size, the initial position of hyper 
radii and the value of ( )0nf ρ   and ( )

0
d f d

ρ
ρ . 

II. Have a trial guess at energy Eigen value E. 
III. A new integration “cycle” begins by using, (18) to 

compute ( )
0

2 2d f d
ρ

ρ  . 

IV. For forward step, we compute ( )0nf iρ ρ+ Δ , 

( )
0 id f d

ρ ρ
ρ

+ Δ
  , ( )

0

2 2

i
d f d

ρ ρ
ρ

+ Δ
  . 

V. We choice E in a way that the boundary condition 
( )1, ( 1) 0fρ ρ→ = =   observe. 

With respect to the properties of the three quark systems, 
we can determine the effective potentials with respect to the 
observed conditions for the nucleon quark systems in Tables I 
and II. Also we can see from Tables III and IV that solution 
obtained by shooting method can be determined the bound 
state energy in the nucleons for uud and udu (or ddu and dud). 
The corresponding Eigen potentials of three quark systems for 
L=0 are shown in Figs. 3 and 5. Also, the radial wave function 
into hyper radii plot in Figs. 4 and 6 for finding bound state 

energy in (uud, udu, ddu and dud) systems. The method of 
this research gives the lower bound of Eigen energy if we 
used the ground radial wave function in three quark systems 
with respect to shooting method. 

 

 

Fig. 3 Ueff for two kind of system (uu+d & ud+u) in proton 
 

 

Fig. 4 The boundary condition observed at two systems for E defined 
in proton quark systems 

 

 

Fig. 5 Ueff for two kind of system (uu+d & ud+u) in proton 
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Fig. 6 The boundary condition observed at two systems for E defined 
in neutron quark systems 

VI. CONCLUSION 
Within a nonrelativistic spin independent model with a 

global potential, we consider the bound state energy of three 
flavorless quark systems. The hyper- spherical method used 
for these systems and our calculations for the bound state 
energy is based on the shooting method. Although, the 
obtained results are not as good as the ones obtained for the 
global potential, but we think it give good estimate of the 
three quark system of nucleon with respect to the numerical 
calculations for two different potentials that one is the 
Coulomb potential at low- distance and the second is the 
linear potential at long- distance in the nucleon bag. At low- 
range distance, the linear potential is perturbation portion and 
for high- range distance at nucleon bag the Coulomb potential 
is perturbation portion. As it can be seen the numerical results 
obtained are only estimates for the three- quark system bound 
state.   

 
TABLE I 

Ueff DETERMINED FOR TWO SYSTEMS IN PROTON 
Proton Ueff observed 

condition 
uud system 

( ) ( )2

( 1) 125.71  1.78eff
l lU κ ρ

ρ ρ
+

= − +  
=1444.38κ  

udu system 
( ) ( )2

( 1) 1107.10  + 15.65  eff
l lU κ ρ

ρ ρ
+

= +  
=684.34κ  

 
TABLE II 

Ueff DETERMINED FOR TWO SYSTEMS IN NEUTRON 
neutron Ueff observed condition 

ddu system 
( ) ( )2

( 1) 1125.71  114.24eff
l lU κ ρ

ρ ρ
+

= − +  
=110.04κ  

udd system 
( ) ( )2

( 1) 114.92  + 6.02  eff
l lU κ ρ

ρ ρ
+

= +  
=247.84κ  

 
TABLE III 

THE BOUND STATE ENERGY FOR TWO SYSTEMS IN PROTON 
E(EAA) uud system udu system 
proton 1.97 GeV 2.30 GeV 

 
 
 
 

TABLE IV 
THE BOUND STATE ENERGY FOR TWO SYSTEMS IN NEUTRON 

E(EAA) ddu system udu system 
Neutron 0.66 GeV 0.28 GeV 
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