Search results for: automatic knowledge discovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2597

Search results for: automatic knowledge discovery

2147 A Study and Implementation of On-line Learning Diagnosis and Inquiry System

Authors: YuLung Wu

Abstract:

In Knowledge Structure Graph, each course unit represents a phase of learning activities. Both learning portfolios and Knowledge Structure Graphs contain learning information of students and let teachers know which content are difficulties and fails. The study purposes "Dual Mode On-line Learning Diagnosis System" that integrates two search methods: learning portfolio and knowledge structure. Teachers can operate the proposed system and obtain the information of specific students without any computer science background. The teachers can find out failed students in advance and provide remedial learning resources.

Keywords: Knowledge Structure Graph, On-line LearningDiagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
2146 Semi-Automatic Method to Assist Expert for Association Rules Validation

Authors: Amdouni Hamida, Gammoudi Mohamed Mohsen

Abstract:

In order to help the expert to validate association rules extracted from data, some quality measures are proposed in the literature. We distinguish two categories: objective and subjective measures. The first one depends on a fixed threshold and on data quality from which the rules are extracted. The second one consists on providing to the expert some tools in the objective to explore and visualize rules during the evaluation step. However, the number of extracted rules to validate remains high. Thus, the manually mining rules task is very hard. To solve this problem, we propose, in this paper, a semi-automatic method to assist the expert during the association rule's validation. Our method uses rule-based classification as follow: (i) We transform association rules into classification rules (classifiers), (ii) We use the generated classifiers for data classification. (iii) We visualize association rules with their quality classification to give an idea to the expert and to assist him during validation process.

Keywords: Association rules, Rule-based classification, Classification quality, Validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
2145 A Study of Distinctive Models for Pre-hospital EMS in Thailand: Knowledge Capture

Authors: R. Sinthavalai, N. Memongkol, N. Patthanaprechawong, J. Viriyanantavong, C. Choosuk

Abstract:

In Thailand, the practice of pre-hospital Emergency Medical Service (EMS) in each area reveals the different growth rates and effectiveness of the practices. Those can be found as the diverse quality and quantity. To shorten the learning curve prior to speed-up the practices in other areas, story telling and lessons learnt from the effective practices are valued as meaningful knowledge. To this paper, it was to ascertain the factors, lessons learnt and best practices that have impact as contributing to the success of prehospital EMS system. Those were formulized as model prior to speedup the practice in other areas. To develop the model, Malcolm Baldrige National Quality Award (MBNQA), which is widely recognized as a framework for organizational quality assessment and improvement, was chosen as the discussion framework. Remarkably, this study was based on the consideration of knowledge capture; however it was not to complete the loop of knowledge activities. Nevertheless, it was to highlight the recognition of knowledge capture, which is the initiation of knowledge management.

Keywords: Emergency Medical Service, Modeling, MBNQA, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
2144 The Effect of Social Capital on Creativity in Information Systems Development Projects: The Mediating Effect of Knowledge Integration

Authors: Hsiu-Hua Cheng

Abstract:

This study analyzed the creativity of student teams participating in an exploratory information system development project (ISDP) and examined antecedents of their creativity. By using partial least squares (PLS) to analyze a sample of thirty-six teams enrolled in an information system department project training course that required three semesters of project-based lessons, the results found social capitals (structural, relational and cognitive social capital) positively influence knowledge integration. However, relational social capital does not significantly influence knowledge integration. Knowledge integration positively affects team creativity. This study also demonstrated that social capitals significantly influence team creativity through knowledge integration. The implications of our findings for future research are discussed.

Keywords: Information system development project (ISDP), Social capital, Knowledge integration, Team creativity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
2143 Automatic Vehicle Identification by Plate Recognition

Authors: Serkan Ozbay, Ergun Ercelebi

Abstract:

Automatic Vehicle Identification (AVI) has many applications in traffic systems (highway electronic toll collection, red light violation enforcement, border and customs checkpoints, etc.). License Plate Recognition is an effective form of AVI systems. In this study, a smart and simple algorithm is presented for vehicle-s license plate recognition system. The proposed algorithm consists of three major parts: Extraction of plate region, segmentation of characters and recognition of plate characters. For extracting the plate region, edge detection algorithms and smearing algorithms are used. In segmentation part, smearing algorithms, filtering and some morphological algorithms are used. And finally statistical based template matching is used for recognition of plate characters. The performance of the proposed algorithm has been tested on real images. Based on the experimental results, we noted that our algorithm shows superior performance in car license plate recognition.

Keywords: Character recognizer, license plate recognition, plate region extraction, segmentation, smearing, template matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7590
2142 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics

Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen

Abstract:

This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: State estimation, control systems, observer systems, unscented Kalman filter, nonlinear vehicle dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
2141 A Knowledge-Based E-mail System Using Semantic Categorization and Rating Mechanisms

Authors: Azleena Mohd Kassim, Muhamad Rashidi A. Rahman, Yu-N. Cheah

Abstract:

Knowledge-based e-mail systems focus on incorporating knowledge management approach in order to enhance the traditional e-mail systems. In this paper, we present a knowledgebased e-mail system called KS-Mail where people do not only send and receive e-mail conventionally but are also able to create a sense of knowledge flow. We introduce semantic processing on the e-mail contents by automatically assigning categories and providing links to semantically related e-mails. This is done to enrich the knowledge value of each e-mail as well as to ease the organization of the e-mails and their contents. At the application level, we have also built components like the service manager, evaluation engine and search engine to handle the e-mail processes efficiently by providing the means to share and reuse knowledge. For this purpose, we present the KS-Mail architecture, and elaborate on the details of the e-mail server and the application server. We present the ontology mapping technique used to achieve the e-mail content-s categorization as well as the protocols that we have developed to handle the transactions in the e-mail system. Finally, we discuss further on the implementation of the modules presented in the KS-Mail architecture.

Keywords: E-mail rating, knowledge-based system, ontology mapping, text categorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
2140 Unsupervised Clustering Methods for Identifying Rare Events in Anomaly Detection

Authors: Witcha Chimphlee, Abdul Hanan Abdullah, Mohd Noor Md Sap, Siriporn Chimphlee, Surat Srinoy

Abstract:

It is important problems to increase the detection rates and reduce false positive rates in Intrusion Detection System (IDS). Although preventative techniques such as access control and authentication attempt to prevent intruders, these can fail, and as a second line of defence, intrusion detection has been introduced. Rare events are events that occur very infrequently, detection of rare events is a common problem in many domains. In this paper we propose an intrusion detection method that combines Rough set and Fuzzy Clustering. Rough set has to decrease the amount of data and get rid of redundancy. Fuzzy c-means clustering allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect suspicious activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining-(KDDCup 1999) Dataset show that the method is efficient and practical for intrusion detection systems.

Keywords: Network and security, intrusion detection, fuzzy cmeans, rough set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2863
2139 The Effects of Transformational Leadership on Process Innovation through Knowledge Sharing

Authors: Sawsan J. Al-Husseini, Talib A. Dosa

Abstract:

Transformational leadership has been identified as the most important factor affecting innovation and knowledge sharing; it leads to increased goal-directed behavior exhibited by followers and thus to enhanced performance and innovation for the organization. However, there is a lack of models linking transformational leadership, knowledge sharing, and process innovation within higher education (HE) institutions in general within developing countries, particularly in Iraq. This research aims to examine the mediating role of knowledge sharing in the transformational leadership and process innovation relationship. A quantitative approach was taken and 254 usable questionnaires were collected from public HE institutions in Iraq. Structural equation modelling with AMOS 22 was used to analyze the causal relationships among factors. The research found that knowledge sharing plays a pivotal role in the relationship between transformational leadership and process innovation, and that transformational leadership would be ideal in an educational context, promoting knowledge sharing activities and influencing process innovation in the public HE in Iraq. The research has developed some guidelines for researchers as well as leaders and provided evidence to support the use of TL to increase process innovation within HE environment in developing countries, particularly in Iraq.

Keywords: Transformational leadership, knowledge sharing, process innovation, structural equation modelling, developing countries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
2138 Determining Cluster Boundaries Using Particle Swarm Optimization

Authors: Anurag Sharma, Christian W. Omlin

Abstract:

Self-organizing map (SOM) is a well known data reduction technique used in data mining. Data visualization can reveal structure in data sets that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOMs, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of a generic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOMs. The application of our method to unlabeled call data for a mobile phone operator demonstrates its feasibility. PSO algorithm utilizes U-matrix of SOMs to determine cluster boundaries; the results of this novel automatic method correspond well to boundary detection through visual inspection of code vectors and k-means algorithm.

Keywords: Particle swarm optimization, self-organizing maps, clustering, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
2137 Situation-based Knowledge Presentation for Mobile Workers

Authors: Alessandra Agostini, Roberto Boselli, Flavio De Paoli, Riccardo Dondi

Abstract:

The work presented in this paper focus on Knowledge Management services enabling CSCW (Computer Supported Cooperative Work) applications to provide an appropriate adaptation to the user and the situation in which the user is working. In this paper, we explain how a knowledge management system can be designed to support users in different situations exploiting contextual data, users' preferences, and profiles of involved artifacts (e.g., documents, multimedia files, mockups...). The presented work roots in the experience we had in the MILK project and early steps made in the MAIS project.

Keywords: Information Management Systems, InformationRetrieval, Knowledge Management, Mobile CommunicationSystems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
2136 What the Future Holds for Social Media Data Analysis

Authors: P. Wlodarczak, J. Soar, M. Ally

Abstract:

The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.

Keywords: Social Media, text mining, knowledge discovery, predictive analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3850
2135 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems

Authors: Bruno Trstenjak, Dzenana Donko

Abstract:

Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.

Keywords: Case based reasoning, classification, expert's knowledge, hybrid model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
2134 The Relationship between Absorptive Capacity and Green Innovation

Authors: R. Hashim, A. J. Bock, S. Cooper

Abstract:

Absorptive capacity generally facilitates the adoption of innovation. How does this relationship change when economic return is not the sole driver of innovation uptake? We investigate whether absorptive capacity facilitates the adoption of green innovation based on a survey of 79 construction companies in Scotland. Based on the results of multiple regression analyses, we confirm that existing knowledge utilisation (EKU), knowledge building (KB) and external knowledge acquisition (EKA) are significant predictors of green process GP), green administrative (GA) and green technical innovation (GT), respectively. We discuss the implications for theories of innovation adoption and knowledge enhancement associated with environmentally-friendly practices.

Keywords: Absorptive capacity, construction industry, environmental, green innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3176
2133 A Visualized Framework for Representing Uncertain and Incomplete Temporal Knowledge

Authors: Yue Wang, Jixin Ma, Brian Knight

Abstract:

This paper presents a visualized computer aided case tool for non-expert, called Visual Time, for representing and reasoning about incomplete and uncertain temporal information. It is both expressive and versatile, allowing logical conjunctions and disjunctions of both absolute and relative temporal relations, such as “Before”, “Meets”, “Overlaps”, “Starts”, “During”, and “Finishes”, etc. In terms of a visualized framework, Visual Time provides a user-friendly environment for describing scenarios with rich temporal structure in natural language, which can be formatted as structured temporal phrases and modeled in terms of Temporal Relationship Diagrams (TRD). A TRD can be automatically and visually transformed into a corresponding Time Graph, supported by automatic consistency checker that derives a verdict to confirm if a given scenario is temporally consistent or inconsistent.

Keywords: Time Visualization, Uncertainty, Incompleteness, Consistency Checking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
2132 Effects of Manufacture and Assembly Errors on the Output Error of Globoidal Cam Mechanisms

Authors: Shuting Ji, Yueming Zhang, Jing Zhao

Abstract:

The output error of the globoidal cam mechanism can be considered as a relevant indicator of mechanism performance, because it determines kinematic and dynamical behavior of mechanical transmission. Based on the differential geometry and the rigid body transformations, the mathematical model of surface geometry of the globoidal cam is established. Then we present the analytical expression of the output error (including the transmission error and the displacement error along the output axis) by considering different manufacture and assembly errors. The effects of the center distance error, the perpendicular error between input and output axes and the rotational angle error of the globoidal cam on the output error are systematically analyzed. A globoidal cam mechanism which is widely used in automatic tool changer of CNC machines is applied for illustration. Our results show that the perpendicular error and the rotational angle error have little effects on the transmission error but have great effects on the displacement error along the output axis. This study plays an important role in the design, manufacture and assembly of the globoidal cam mechanism.

Keywords: Globoidal cam mechanism, manufacture error, transmission error, automatic tool changer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
2131 Automatic Lip Contour Tracking and Visual Character Recognition for Computerized Lip Reading

Authors: Harshit Mehrotra, Gaurav Agrawal, M.C. Srivastava

Abstract:

Computerized lip reading has been one of the most actively researched areas of computer vision in recent past because of its crime fighting potential and invariance to acoustic environment. However, several factors like fast speech, bad pronunciation, poor illumination, movement of face, moustaches and beards make lip reading difficult. In present work, we propose a solution for automatic lip contour tracking and recognizing letters of English language spoken by speakers using the information available from lip movements. Level set method is used for tracking lip contour using a contour velocity model and a feature vector of lip movements is then obtained. Character recognition is performed using modified k nearest neighbor algorithm which assigns more weight to nearer neighbors. The proposed system has been found to have accuracy of 73.3% for character recognition with speaker lip movements as the only input and without using any speech recognition system in parallel. The approach used in this work is found to significantly solve the purpose of lip reading when size of database is small.

Keywords: Contour Velocity Model, Lip Contour Tracking, LipReading, Visual Character Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
2130 Knowledge Management Criteria among Malaysian Organizations: An ANOVA Approach

Authors: Reza Sigari Tabrizi, Yeap Peik Foong, Nazli Ebrahimi

Abstract:

The Knowledge Management (KM) Criteria is an essential foundation to evaluate KM outcomes. Different sets of criteria were developed and tailored by many researchers to determine the results of KM initiatives. However, literature review has emphasized on incomplete set of criteria for evaluating KM outcomes. Hence, this paper tried to address the problem of determining the criteria for measuring knowledge management outcomes among different types of Malaysian organizations. Successively, this paper was assumed to develop widely accepted criteria to measure success of knowledge management efforts for Malaysian organizations. Our analysis approach was based on the ANOVA procedure to compare a set of criteria among different types of organizations. This set of criteria was exploited from literature review. It is hoped that this study provides a better picture for different types of Malaysian organizations to establish a comprehensive set of criteria due to measure results of KM programs.

Keywords: KM Criteria, Knowledge Management, KMOutcomes, ANOVA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
2129 Application of Tacit Knowledge from Professional Packaging Designer for Teaching Packaging Design

Authors: Somsri Binraman, Boonliang Kaewnapan, Krittika Tanprasert

Abstract:

In the package design industry, there are a lot of tacit knowledge resided within each designer. The objectives are to capture them and compile it to be used as a teaching resource and to create a video clip of package design process as well as to evaluate its quality and learning effectiveness. Interview were used as a technique for capturing knowledge in brand design concept, differentiation, recognition, rank of recognition factor, consumer survey, knowledge about marketing, research, graphic design, the effect of color, and law and regulation. Video clip about package design were created. The clip consisted of both the speech and clip of actual process. The quality of the video in term of media was ranked as good while the content was ranked as excellent. The students- score on post-test was significantly greater than that of pretest (p>0.001).

Keywords: Tacit knowledge, interview, video, packaging, design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
2128 Scatterer Density in Nonlinear Diffusion for Speckle Reduction in Ultrasound Imaging: The Isotropic Case

Authors: Ahmed Badawi

Abstract:

This paper proposes a method for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. A nonlinear image diffusion method that incorporates local image parameter, namely, scatterer density in addition to gradient, to weight the nonlinear diffusion process, is proposed. The method was tested for the isotropic case with a contrast detail phantom and varieties of clinical ultrasound images, and then compared to linear and some other diffusion enhancement methods. Different diffusion parameters were tested and tuned to best reduce speckle noise and preserve edges. The method showed superior performance measured both quantitatively and qualitatively when incorporating scatterer density into the diffusivity function. The proposed filter can be used as a preprocessing step for ultrasound image enhancement before applying automatic segmentation, automatic volumetric calculations, or 3D ultrasound volume rendering.

Keywords: Ultrasound imaging, Nonlinear isotropic diffusion, Speckle noise, Scattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
2127 Knowledge Management in Academic: A Perspective of Academic Research Contribution to Economic Development of a Nation

Authors: Hilary J. Watsilla, Narasimha R. Vajjhala

Abstract:

Information and Communication Technology (ICT) has made information access easier and affordable. Academic research has also benefited from this, with online journals and academic resource readily available by the click of a button. However, there are limited ways of assessing and controlling the quality of the academic research mostly in public institution. Nigeria is the most populous country in Africa with a significant number of universities and young population. The quality of knowledge created by academic researchers, however, needs to be evaluated due to the high number of predatory journals published by academia. The purpose of this qualitative study is to look at the knowledge creation, acquisition, and assimilation process by academic researchers in public universities in Nigeria. Qualitative research will be carried out using in-depth interviews and observations. Academic researchers will be interviewed and absorptive capacity theory will be used as the theoretical framework to guide the research. The findings from this study should help understand the impact of ICT on the knowledge creation process in academic research and to understand how ICT can affect the quality of knowledge produced by researchers. The findings from this study should help add value to the existing body of knowledge on the quality of academic research, especially in Africa where there is limited availability of quality academic research. As this study is limited to Nigerian universities, the outcome may not be generalized to other developing countries.

Keywords: Knowledge creation, academic research, knowledge management, information and communication technology, research, university.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
2126 The Use of Knowledge Management Systems and ICT Service Desk Management to Minimize the Digital Divide Experienced in the Museum Sector

Authors: Ruel A. Welch

Abstract:

Since the introduction of ServiceNow, the UK’s Science Museum Group’s (SMG) ICT service desk portal, there has not been an analysis of the tools available to SMG staff for Just-in-time knowledge acquisition (Knowledge Management Systems) and reporting ICT incidents with a focus on an aspect of professional identity namely, gender. Therefore, it is important for SMG to investigate the apparent disparities so that solutions can be derived to minimize this digital divide if one exists. This study is conducted in the milieu of UK museums, galleries, arts, academic, charitable, and cultural heritage sector. It is acknowledged at SMG that there are challenges with keeping up with an ever-changing digital landscape. Subsequently, this entails the rapid upskilling of staff and developing an infrastructure that supports just-in-time technological knowledge acquisition and reporting technology related issues. This problem was addressed by analysing ServiceNow ICT incident reports and reports from knowledge articles from a six-month period from February to July. This study found a statistically significant relationship between gender and reporting an ICT incident. There is also a significant relationship between gender and the priority level of ICT incident. Interestingly, there is no statistically significant relationship between gender and reading knowledge articles. Additionally, there is no statistically significant relationship between gender and reporting an ICT incident related to the knowledge article that was read by staff. The knowledge acquired from this study is useful to service desk management practice as it will help to inform the creation of future knowledge articles and ICT incident reporting processes.

Keywords: digital divide, ICT service desk practice, knowledge management systems, workplace learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 644
2125 A New Hybrid K-Mean-Quick Reduct Algorithm for Gene Selection

Authors: E. N. Sathishkumar, K. Thangavel, T. Chandrasekhar

Abstract:

Feature selection is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that all genes are not important in gene expression data. Some of the genes may be redundant, and others may be irrelevant and noisy. Here a novel approach is proposed Hybrid K-Mean-Quick Reduct (KMQR) algorithm for gene selection from gene expression data. In this study, the entire dataset is divided into clusters by applying K-Means algorithm. Each cluster contains similar genes. The high class discriminated genes has been selected based on their degree of dependence by applying Quick Reduct algorithm to all the clusters. Average Correlation Value (ACV) is calculated for the high class discriminated genes. The clusters which have the ACV value as 1 is determined as significant clusters, whose classification accuracy will be equal or high when comparing to the accuracy of the entire dataset. The proposed algorithm is evaluated using WEKA classifiers and compared. The proposed work shows that the high classification accuracy.

Keywords: Clustering, Gene Selection, K-Mean-Quick Reduct, Rough Sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298
2124 Expectation about Teamwork to Build a Knowledge Management System

Authors: Andrea Bencsik

Abstract:

Gurus of the Classical Management School (like Taylor, Fayol and Ford) had an opinion that work must be delegated to the individual and the individual has to be instructed, his work assessed and paid based on individual performance. The theories of the Human Relations School have changed this mentality regarding the concept of groups. They came to the conclusion that the influence of groups greatly affects the behaviour and performance of its members. Group theories today are characterized by problem-solving teams and self-managing groups authorized to make decisions and execute; professional communities also play an important role during the operation of knowledge management systems. In this theoretical research we try to find answers to a question: what kind of characteristics (professional competencies, personal features, etc.) a successful team needs to manage a change to operate a knowledge management system step by step.

Keywords: Knowledge management, team, team knowledge, team memory, team roles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
2123 A Semantic Registry to Support Brazilian Aeronautical Web Services Operations

Authors: Luís Antonio de Almeida Rodriguez, José Maria Parente de Oliveira, Ednelson Oliveira

Abstract:

In the last two decades, the world’s aviation authorities have made several attempts to create consensus about a global and accepted approach for applying semantics to web services registry descriptions. This problem has led communities to face a fat and disorganized infrastructure to describe aeronautical web services. It is usual for developers to implement ad-hoc connections among consumers and providers and manually create non-standardized service compositions, which need some particular approach to compose and semantically discover a desired web service. Current practices are not precise and tend to focus on lightweight specifications of some parts of the OWL-S and embed them into syntactic descriptions (SOAP artifacts and OWL language). It is necessary to have the ability to manage the use of both technologies. This paper presents an implementation of the ontology OWL-S that describes a Brazilian Aeronautical Web Service Registry, which makes it able to publish, advertise, make multi-criteria semantic discovery aligned with the ideas of the System Wide Information Management (SWIM) Program, and invoke web services within the Air Traffic Management context. The proposal’s best finding is a generic approach to describe semantic web services. The paper also presents a set of functional requirements to guide the ontology development and to compare them to the results to validate the implementation of the OWL-S Ontology.

Keywords: Aeronautical Web Services, OWL-S, Semantic Web Services Discovery, Ontologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186
2122 Automatic Musical Genre Classification Using Divergence and Average Information Measures

Authors: Hassan Ezzaidi, Jean Rouat

Abstract:

Recently many research has been conducted to retrieve pertinent parameters and adequate models for automatic music genre classification. In this paper, two measures based upon information theory concepts are investigated for mapping the features space to decision space. A Gaussian Mixture Model (GMM) is used as a baseline and reference system. Various strategies are proposed for training and testing sessions with matched or mismatched conditions, long training and long testing, long training and short testing. For all experiments, the file sections used for testing are never been used during training. With matched conditions all examined measures yield the best and similar scores (almost 100%). With mismatched conditions, the proposed measures yield better scores than the GMM baseline system, especially for the short testing case. It is also observed that the average discrimination information measure is most appropriate for music category classifications and on the other hand the divergence measure is more suitable for music subcategory classifications.

Keywords: Audio feature, information measures, music genre.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
2121 DJess A Knowledge-Sharing Middleware to Deploy Distributed Inference Systems

Authors: Federico Cabitza, Bernardo Dal Seno

Abstract:

In this paper DJess is presented, a novel distributed production system that provides an infrastructure for factual and procedural knowledge sharing. DJess is a Java package that provides programmers with a lightweight middleware by which inference systems implemented in Jess and running on different nodes of a network can communicate. Communication and coordination among inference systems (agents) is achieved through the ability of each agent to transparently and asynchronously reason on inferred knowledge (facts) that might be collected and asserted by other agents on the basis of inference code (rules) that might be either local or transmitted by any node to any other node.

Keywords: Knowledge-Based Systems, Expert Systems, Distributed Inference Systems, Parallel Production Systems, Ambient Intelligence, Mobile Agents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
2120 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
2119 AI Tutor: A Computer Science Domain Knowledge Graph-Based QA System on JADE platform

Authors: Yingqi Cui, Changran Huang, Raymond Lee

Abstract:

In this paper, we proposed an AI Tutor using ontology and natural language process techniques to generate a computer science domain knowledge graph and answer users’ questions based on the knowledge graph. We define eight types of relation to extract relationships between entities according to the computer science domain text. The AI tutor is separated into two agents: learning agent and Question-Answer (QA) agent and developed on JADE (a multi-agent system) platform. The learning agent is responsible for reading text to extract information and generate a corresponding knowledge graph by defined patterns. The QA agent can understand the users’ questions and answer humans’ questions based on the knowledge graph generated by the learning agent.

Keywords: Artificial intelligence, natural language process, knowledge graph, agent, QA system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
2118 Massive Lesions Classification using Features based on Morphological Lesion Differences

Authors: U. Bottigli, D.Cascio, F. Fauci, B. Golosio, R. Magro, G.L. Masala, P. Oliva, G. Raso, S.Stumbo

Abstract:

Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based on morphological lesion differences. Some classifiers as a Feed Forward Neural Network, a K-Nearest Neighbours and a Support Vector Machine are used to distinguish the pathological records from the healthy ones. The results obtained in terms of sensitivity (percentage of pathological ROIs correctly classified) and specificity (percentage of non-pathological ROIs correctly classified) will be presented through the Receive Operating Characteristic curve (ROC). In particular the best performances are 88% ± 1 of area under ROC curve obtained with the Feed Forward Neural Network.

Keywords: Neural Networks, K-Nearest Neighbours, SupportVector Machine, Computer Aided Diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383