

Abstract—In the last two decades, the world’s aviation

authorities have made several attempts to create consensus about a
global and accepted approach for applying semantics to web services
registry descriptions. This problem has led communities to face a fat
and disorganized infrastructure to describe aeronautical web services.
It is usual for developers to implement ad-hoc connections among
consumers and providers and manually create non-standardized
service compositions, which need some particular approach to
compose and semantically discover a desired web service. Current
practices are not precise and tend to focus on lightweight
specifications of some parts of the OWL-S and embed them into
syntactic descriptions (SOAP artifacts and OWL language). It is
necessary to have the ability to manage the use of both technologies.
This paper presents an implementation of the ontology OWL-S that
describes a Brazilian Aeronautical Web Service Registry, which
makes it able to publish, advertise, make multi-criteria semantic
discovery aligned with the ideas of the System Wide Information
Management (SWIM) Program, and invoke web services within the
Air Traffic Management context. The proposal’s best finding is a
generic approach to describe semantic web services. The paper also
presents a set of functional requirements to guide the ontology
development and to compare them to the results to validate the
implementation of the OWL-S Ontology.

Keywords—Aeronautical Web Services, OWL-S, Semantic Web
Services Discovery, Ontologies.

I.INTRODUCTION

HE result of the evolution of the internet in the last two
decades is a huge amount of stored information that must

be understood by humans and information systems to reach
ordinary goals like using an online library or buying bus
tickets. Because of this excessive growth of data, IT
professionals all around the globe must deal with this actual
web full of data establishing strategies for organizing,
accessing, and interpreting information that is updated every
day.

One of the several points of convergence of Semantic Web
was defined by the introduction of SOA’s paradigms because
it addresses the major challenges of becoming a structured
Web. Tim Berners Lee had a long-range vision about a
Utopian Se-mantic Web [18] and even he had thought about
one of the most important initiatives in the evolution of the
World Wide Web: - the development of standardized “services
for web”, or, the popular Web Services (WS). WS can easily
provide ordinary users with small portions of information but
they can also make available much more complex operations

L. A. A. R., J.M.P.O., and E.O. are with the Aeronautics Institute of
Technology, São José dos Campos-SP, 12200-000, Brazil (phone:
+551239470000; e-mail: rodriguezlaar@gmail.com, parente@ita.br,
oliveirae@fab.mil.br).

like buying tickets for a Metallica’s concert and the needs
related, like to rent a car, to book a hotel room or flying
tickets, offering a basis [13] for interoperability between
providers and consumers using a reliable exchange of
standardized XML messages, and it is the main reason for the
spread of the use of it.

Nowadays the common standards for implementing WS
tend to focus on interoperability among different programming
languages but their syntactic descriptions, based on XML, fail
to provide a consistent basis to allow the automation of a sort
of tasks like to make intelligent discovery of services or
service compositions based on the service’s functional and
non-functional properties descriptions [5]. Current standards
for these descriptions offer artifacts like WSDL, from SOAP,
where developers can describe a set of characteristics about a
service aiming to make a specific service’s description
different from the others, and allowing these XML
specifications to be syntactically queried, offering to an
information system or to a web user some answers which
should make them able to take the decision to choose (or not)
this service among several others.

At this point, the spread of the use of the WS has provoked
a growing and disorganized infrastructure where developers
are very sure it is a good idea to build software using the WS
paradigm but, at the same time, the ways to publish WS, to
make use of other publishers' ones and to discover WS among
distributed servers and with no standardized descriptions are
very serious problems [11]. The sharing of WS is an
intelligent facet of SOA since if there is a WS located in
another server which can satisfy a company's daily routine,
why cannot the company’s developers team implement their
information systems making use of this shared WS? The need
to share and reuse WS has made developers communities to
face obstacles to publish, advertise and discover WS in a non-
standardized environment.

The Semantic Web Study Groups have tried to fix the lack
of meaning in the XML documents by creating machine-
readable languages like RDF, RDFSchema and OWL, a set of
ontology’s representation languages [19]. If we have to XML
tags with the same “label”, it is impossible to make them
different from each other because the XML syntax has no
meaning, it is only about “tags” and that is the difference
between it and those languages. For trying to fix the lack of
meaning in the WSDL artifacts, some authors [2] have
proposed an intelligent semantic layer to better describe the
WS features, aiming to facilitate automation to discover,
advertise, compose, monitor and call the execution of these
services.

Luís Antonio de Almeida Rodriguez, José Maria Parente de Oliveira, Ednelson Oliveira

A Semantic Registry to Support Brazilian
Aeronautical Web Services Operations

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

33International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
45

3.
pd

f

Several work groups were made to propose frameworks and
machine-readable languages for WS to W3C, which
recommends OWL-S (Web Ontology Language for Services)
[7], WSMO (Web Service Modeling Ontology) and SAWSDL
(Semantic Annotations for WSDL and XML Schema) [4]. All
of these standards can compose a semantic artificial
intelligence layer and these machine-readable languages are
able for the creation of semantic descriptions which can be
manipulated by programming languages’ API. This way it is
possible to build semantic artifacts which could describe an
infrastructure able to offer the automation necessary to make
the important mentioned tasks.

Some works which try to propose semantic descriptions into
WS registries are strongly coupled to existent technologies
like the WSDL [11] and the idea is to insert into the XML
syntax small portions of a markup language to identify, among
a set of services, the ones which get closer to satisfy
requirements by using matching techniques and algorithms.
These works were focused on mixing OWL-S specifications
with the WSDL and UDDI, aiming to support some level of
automation based on semantics to identify precisely something
about the required WS based on those specifications. It is a
huge job since developers must learn and manage both
technologies (SOAP, OWL, OWL-S) [13].

Effective WS operations (publish, advertise, discover and
invoking) must focus on semantics to be precise and depend
directly on the semantic ability [5] to make specifications
about the WS. OWL-S [7], [19] is an ontology designed to do
that by using OWL language syntax and it is a powerful
mechanism to build semantic descriptions, artifacts that could
be semantically manipulated and these manipulations could
find objects in a precise way, which could define what is the
exact WS which is able to accomplish a set of user’s
requirements. Its high level of expressiveness allows
developers to build semantic WS repositories, or WS registries
[13], using it as a model to describe conceptual features in a
machine-readable language, which makes possible the
automation to make intelligent WS operations. The OWL-S
also provides [5] a platform to categorize several different
types of criteria to make advertisements and semantic searches
on its WS descriptions.

This paper presents an implementation model of a WS’
Semantic Registry based on the OWL-S reference ontology
architecture to support Brazilian Aeronautical WS CRUD
Operations (Create, Retrieve, Update and Delete). The paper is
organized as follows: Section II presents some characteristics
of the ontologies for artificial intelligence, the dorsal spin of
this job, and the OWL-S, the Ontology for WS. Section III
presents the current approaches to describe WS registries and
to automate tasks, Section IV presents the Semantic Web
Services Registry implementation and a set of experiments
and their results using Protegé [12] graphical interface and a
built-in-Python information system to execute CRUD
operations in a WS Semantic Registry published on the
internet. Section V presents the contributions and further
works.

II.ONTOLOGIES OF ARTIFICIAL INTELLIGENCE

In metaphysics, Ontology is the philosophical study of
being, exactly like some concepts such as the existence or the
reality [16]. The ontologies lead us to think about how entities
are grouped or classified into categories [5], what kind of
relationships are essential for each one of them and how does
it interfere in the domain they are inserted. Ontologies are
being used in computer science and in knowledge engineering
[16] for a long time and for different purposes, like conceptual
modeling of domains, like standards to share information
using syntactic data exchange [16] or as a kernel of domains’
descriptions, allowing developers to build huge accessible
information sources which can interact with software agents
[14] in a new paradigm to build information systems [5]. The
Ontologies of Artificial Intelligence are logical artifacts, they
are built-in common text files, exactly as any “.txt” but they
are written using XML format and a formal ontology
representation language [19].

With the essence of the Semantic Web the ontologies, with
their meaningful and structured contents, are able to offer
intelligent information to software agents, roaming from page
to page of the WWW to readily carry out more sophisticated
tasks. From an infrastructure’s perspective, the Semantic Web
has made possible the traditional web has experienced [5] a
further extension, represented by the Internet of Things (IoT),
feasible today thanks to a huge effort of the communities to
advertise the use of ontologies. The main cell of an ontology is
the triple, composed of a Subject-Predicate-Object relationship
and an ontology is a natural [19] triple repository. Exactly like
a text file, or a “.xml” file, both can be read by programming
languages’ API, like Java or Python and this process can store
the content of the files by using these standards and use it as
an information source, executing CRUD operations and
offering a basis to make syntactic data exchange.

The most important contribution of the Ontologies of
Artificial Intelligence for the WWW is the ability to offer
structured information [16] which enables a more efficient
machine-to-machine cooperation through them. To achieve
this, they represent the most suitable tool to enable transfer
and comprehension of information among software
applications, even those designed and developed by unrelated
people in different places [5]. The ontologies make it possible
to surf a sea of knowledge [16] available today without human
intervention, making the real meaning of the web of things.
This paradigm uncovers new horizons for WS and SOA to
build really challenging applications [16], like new kind of
WS, bridging the virtual and physical dimensions through the
real life with humans’ ordinary goals being achieved.

A. The OWL-S Ontology for WS Descriptions

This integrated vision of the WWW using ontologies should
enable full access not only to content, but also to services on
the Web [13] or the WS. The idea is about users and software
agents being able to discover, invoke, compose and execute
services with a high degree of automation [5]. Developers can
use ontologies to model, to formalize data structures, to define
domain’s vocabulary and the fact that ontologies are

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

34International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
45

3.
pd

f

implemented using machine-readable languages makes them
not only modeling artifacts, but, an accessible semantic layer
[4] to compose software, able to specify business rules, data
structure, domain’s dialects and Web Services Registries
descriptions, becoming a basis to make semantic data
exchange. OWL-S is the Ontology for Services from W3C
which makes these actions possible. It is called ontology,
language, dialect [19] or architecture of ontologies by
developer communities.

The OWL-S ontology architecture is composed of several
“.owl” files which represent, each one, a different Ontology.
These ontologies make use of each other by importing its
contents using standardized commands and it proposes a
reliable communication and reuse of entities among them. The
overall structure of the Upper level of the OWL-S is presented
in Fig. 1 and suggests different perspectives [8]:
● A Class diagram represents the content of the Service

ontology, represented by the Service.owl file from the
original release [7];

● There are four OWL Classes into the Service.owl
ontology:

 the Class Service, which defines the primitive type - Web
Service;

 the Class ServiceProfile, which makes the WS’s
advertisement to providers and requesters and makes it
possible to do semantic discovery and other abilities

 the Class ServiceModel, which gives a detailed
description of the WS’s operations considering a process
view and

 the Class ServiceGrounding, which is responsible for a
complete description of how to deal physically with the
services via protocols and messages.

OWL-S was built on OWL language stereotypes and it is a
standard developed by the Web-Ontology Working Group
[19].

Fig. 1 The upper level of OWL-S ontology [8]

Fig. 1 presents the Service.owl ontology which encapsulates
four OWL Classes and all the relationships among them.
Martin et al. [5] present an approach destined to create a WS
description’s repository very similar to a WSDL, but
composed of semantic descriptions of WS using the OWL-S.
The approach starts by populating these Classes with the
creation of owl:Individuals of the Service Class, representing
each one a specific WS. These owl:Individuals will compose
at the end of the process, each one, a huge RDF Graph [19]
exactly as in Fig. 6, at almost the end of this paper, full of

connections among different ontologies, Classes and
Individuals [13] and granting a detailed semantic description
of each WS which presents functional and non-functional
characteristics. This huge set of RDF Graphs describes
business rules, laws and a sort of other visions destined to
describe all the features about a WS and to make it possible to
have a semantic description’s foundation capable of more
complex tasks, like service discovery and service composition
[13].

Fig. 2 is a UML 2 Class Diagram [18] and it presents the
ontology ServiceProfile.owl, a specialization’s level destined
to make the Advertisement of WS of the OWL-S using a sort of
entities presented at the original implementation, like the
ontology ServiceCategory.owl, or the Classes Parameter,
Input, Output, Process and Product. These are all a set of
criteria to standardize the tasks to publish, advertise, search
and to discover WS precisely and using specific features [8].
In order to describe the functionality of a service, the OWL-S
architecture proposes several specifications of those Classes
from the upper-level ontology.

The specializations of the Classes from the upper level also
present other UML2 diagrams which have the same idea of
Fig. 2, but applied to present the essence of each other two
Classes from the Upper level, the ServiceModel and
ServiceGrounding, through the two ontologies named
Process.owl and Grounding.owl [5]. Fig. 2 also presents the
non-functional properties of the WS like the Provider,
functional elements and additional properties, for example:
preconditions, which describe particular characteristics of the
WS. This semantic description also provides some human-
readable information about the WS like its name
(serviceName), working requirements (textDescription) and
the mechanism to refer to humans or companies responsible
for that service (contactInformation).

The Profile.owl’s specialization of the Upper level presents
how the original OWL-S can handle the issues of information
transformation [5] by representing a huge set of features about
the WS like the inputs necessary to invoke and the output, or
the delivery. The behavior and the change of state caused by
the execution of the service, like the preconditions and effects
are also mapped to Profile.owl’s connections. This denotes the
connection between Profile and the ServiceModel set of
instances, by the corresponding Process. Each Profile’s
instance must have an association to an instance of each other
connected entity, as presented in Fig. 2. The relationships
define specific properties and characteristics, like the
Category and the Product, generated by the WS. The entities
connected to Profile are native OWL stereotypes meaning
each one presents some type of a specific characteristic which
is unique for the description of that instance of Profile.
Observing this powerful way to establish semantic
descriptions it is possible to realize that syntactic knowledge
becomes semantic knowledge.

It is possible to build a complete customized
implementation of OWL-S ontology architecture by filling
each ontology with a set of owl:Individuals [5]. Each
owl:Individual, connected to another one from another owl

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

35International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
45

3.
pd

f

Class using a specific ObjectProperty or, connected to a
specific serviceName and textDescription which are
DatatypeProperties [19], provides a ‘predicate’ or an ‘object’
of a triple able to be queried.

Fig. 2 Profile.owl’s specialization level [8]

The OWL-S ontology architecture and implementation
allow developers to literally build a Semantic Registry, and it
is possible to make queries by using SPARQL [6] and obtain
precise answers, which could be used like a communication
unique protocol for software agents to execute their actions
and to accomplish their goals.

III.OTHER APPROACHES TO DESCRIBE WS REGISTRIES

To identify and choose a service is necessary to match
words syntactically, such as a service name or a service text
description which are written using WS registry's
specifications standards like WSDL or UDDI [8]. Different
techniques have been proposed to describe registries in a
semantic level [15] which can improve the accuracy of WS
descriptions: data mining, mapping algorithms, ontology
based information systems and service description [20] and all
of them have reached the conclusion that the levels of the WS
registry’s descriptions can reach can offer [15]: Syntactic
matching, where the similarity of data is found using syntax
driven techniques and the Semantic matching, where the key
idea is the mapping of meanings between concepts.

Pranav [10] presents a different registry’s description which
enables service discovery using a match based on non-
functional parameters like a standardized description of WS
providers, which advertises their services presenting their
capabilities using non-functional specifications and criteria
along with evident functional matching. The QoS is used to
specify those parameters and some other matching schemes
are used, like Domain, Category and Business offer to build a
matching algorithm oriented to a specific domain of services.
The QoS specification is an extension of the original Profile
and has its customized taxonomy.

Almeida [1] presents in his thesis a reference model to the
Brazilian military command and control systems. The idea is a
centralized and structured model of specification led by a

reference ontology recommended by OTAN, the JC3IEDM,
which allows dynamic compositions of WS semantically
described like this model. This work presents a tool to convert
a regular WSDL into a customized one, which has small
portions of OWL-S specifications to bring some semantic
description for this artifact.

Marco et al. [6] describe an approach for the description
and discovery of semantic WS using SPARQL and software
agents. They propose language to describe the preconditions
and post conditions of WS as well as the goals of each agent to
make discoveries. Also, they show that the SPARQL query
evaluation can be used to check the preconditions in a given
context, to build post conditions which will result from the
execution of the service and determine if it satisfies or not the
agents.

Rodriguez and Parente [13] have published a paper that
proposes an implementation of OWL-S to support semantic
discovery for Brazilian Air-Traffic Management Web
Services. This work has presented how to fill the original
OWL-S ontologies with instances and all those ideas were
applied at this work.

IV.AN IMPLEMENTATION MODEL OF THE OWL-S TO SUPPORT A

BRAZILIAN AERONAUTICAL WS REGISTRY DESCRIPTION

The idea behind this work was to make an experiment
which could be coherent with SWIM SDCM [17]
specifications and its semantic models based on OWL-S.
Brazilian aviation agencies are running to build formal
vocabularies, ontologies and semantic descriptions that could
serve as a machine-readable knowledge to support intelligent
information systems. The goal is for Brazil to reach
interoperability with all the nations aligned with the SWIM
and to establish Brazilian aviation with its own WS semantic
description models. Thus, we can state the following problem:
The lack of semantics in the Brazilian Aeronautical WS’s
registry descriptions destined to support air-traffic
management (ATM) information systems. Every day ATM’s
information systems have a high computational cost to
publish, to share, to make use or, a simple task like to discover
a WS in a set of syntactic descriptions. There is no complete
solution for implementing repositories, or registries, of WS
where developers could have a complete semantic
description’s foundation [13] which could be able to describe
the WS with a formalism’s level which allows software agents
to interact with the registry making automatic tasks like
semantic searches or WS compositions.

Following W3C recommendations and also ideas like
Martin’s [5] implementation, a solution was proposed for the
problem: To implement a customized OWL-S ontology to act
as a WS’ Registry. The goals are twofold:
1. To develop a WS registry by implementing a customized

OWL-S, based on a set of Competency Questions (CQ)
[9] to define the functional requirements for the Brazilian
OWL-S ontology architecture. The ontology itself is the
registry, or, the WS repository and it can be accessed by
any software agents from anywhere in the internet, it is
going to be published in the WWW and composed by

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

36International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
45

3.
pd

f

several aeronautical WS semantic descriptions coupled to
the OWL-S original ontology, but also some new entities
created to abide by Brazilian aeronautical domain and
laws;

2. The set of CQ will be translated [9] to SPARQL queries
and they will be run [6] using a Python Web-based
software built for this scientific work and destined to
execute the semantic searches for WS to compare the
results with the CQ, to make a complete check of
requirements accomplishment with answers for the CQ.
The SPARQL queries will be executed to find specific
WS Individuals (which represents, each one, a unique
WS) described in the Brazilian OWL-S ontology
architecture, by applying on the semantic search the
criteria used to standardize WS operations factors:

criteria = {Category, Name, Result, Input, Output, Process,

Condition, Provider, Geographic Region, Expression (SPARQL text),
QoS Rank, EndPoint, Protocol, IP_Adress}

To go for the first goal and exactly like the method and data

available in Mendeley Data [9], a set of CQ were created to
define all the necessary information to explain the connections
shown in Figs. 1 and 2. These questions are related to all the
functional and non-functional characteristics about all WS and
their relationships defined into the Brazilian ontology
architecture. For a matter of available space in this paper, a
small part of these questions is presented in Table I and the
namespace of the Brazilian ontology architecture is published
at [22].

TABLE I

A SMALL PORTION OF THE COMPETENCY QUESTIONS
What is the WS which is associated
with a specific
ServiceCategory_BR?

What is the WS which is associated with
a specific ActorDefault_BR which is a
Provider?

What is the WS which is associated
with a specific Process?

What is the WS which is associated with
a specific City?

What is the WS which is associated
with a specific Product?

What is the WS which is associated with
a specific FinalRank?

Extra entities were created for customizing Brazilian laws
and aviation rules, like a class called owl:Class
SparqlConditionExpression, to be related to the idea to deal
with the SPARQL protocol for acting as a message flow to be
used to redirect software decisions. The next goal was to begin
the registry’s descriptions by the creation of each WS which
would compose it by creating the WS in a top-down approach
[5] through the Service.owl ontology and the implementation
of named owl:Individuals for the owl:Classes: Service,
ServiceModel, ServiceProfile and ServiceGrounding which
would compose the whole set of WS, exactly as presented in
Fig. 1. The software Protegé 5.5 [12] was adopted to
accomplish this task.

A set of 22 instances (owl:Individuals) of Brazilian WS
were created to populate the owl:Class Service and they
represent, each one, a specific Brazilian Aeronautical Web
Service exactly as they are defined in real life [21]. After the
creation of the instances of the Class Service, for each one of
them, there is an implementation for the corresponding

instance of the Classes ServiceModel, ServiceProfile and
ServiceGrounding, and also the respective connections among
each other exactly as in Fig. 1, using those associations. Fig. 3
presents the owl Class Service at the left side, highlighted, and
the set of WS already created at the right side of Protegé’s
graphical interface.

Fig. 3 Instances of the Class Service

Fig. 4 presents, in blue color, the original ObjectProperties
of OWL-S being used to associate one specific WS, the
owl:Individual get_Metar_Service, to three other ones:
associated to get_Metar_Profile, get_Metar_Process and
get_Metar_Grounding, as seen at the right side of Protegé.
After doing that for all the WS, the upper-level
implementation was all set and the next goal was to create the
population of the Profile.owl, Process.owl and
Grounding.owl, the second level’s ontologies, to describe the
semantic foundation which would allow automatic tasks like
semantic discovery and composition of WS. To implement the
Profile.owl ontology of Brazilian ontology architecture,
another set of owl:Individuals was inserted exactly as
presented in Fig. 2.

A triple repository was created for each instance of Profile
which is a multi-criteria way to find any WS by using the
SPARQL protocol and by passing one element of criteria as a
“search” parameter, exactly like goal number 2. After finding
the required Profile’s instance, it has another association with
an instance of the ontology Service.owl in the upper level, so,
it is possible to discover its instance of Service (which is a
WS) connected to that Profile just by making another
SPARQL query. The complete set of a single instance’s
associations can be seen in Fig. 5.

Fig. 5 presents the whole set of implemented connections
between instances of different Ontologies and different
Classes necessary to describe ONE WS of the Brazilian
ontology architecture. To finish the implementation, the
Process.owl and Grounding.owl specialization’s ontologies

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

37International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
45

3.
pd

f

were filled with owl:Individuals and their relationships are the
same way as in Fig. 2. These two 2nd levels of specialized
ontologies serve as “How to access” the WS and “how to make
physical access” to the WS, describing the process to access
the WS and the physical information, like an Endpoint IP
address. After that owl:Classes destined to define the Atomic

and the Composite WS and the dependency’s relationship
between them were implemented as triples, allowing to sort
and associate the atomic services which will compose a more
complex composite WS. These detailed specializations and
their diagrams can be seen in [5]

Fig. 4 Associations for the WS get_Metar_Service

Fig. 5 Implementation of a single instance of WS and its connections

It is very clear to observe in Fig. 5 the advertisement’s
feature about the instances of Profile Class which can connect
it to several other classes' instances to reach a specific WS. It
is possible to run one SPARQL query from a criteria entity to
find a Profile’s instance by choosing one of the peripheral
factors cited on goal number 2 and presented in Fig. 2, and it
is also possible to run another query to find the instance of
Service, which is connected to THAT Profile’s instance, like in
Fig. 5, reaching the goal of describe a semantic foundation
composed by several RDF Graphs which, reunited, form the

Brazilian ontology architecture, a WS’ Registry able to act as
an intelligent source of information, or, a kernel of semantic
artificial intelligence.

At this point, the whole Brazilian ontology architecture
implementation was complete; it was possible to publish it on
the internet at [22] and also start the execution of the CQ as
described in Table I to check if the ontology is satisfying the
functional requirements established for its development. The
new Brazilian WS registry offers an accessible information
kernel to create, publish, advertise, update, retrieve, delete and

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

38International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
45

3.
pd

f

call any kind of distributed standardized WS, but it does not
execute any kind of WS.

We have presented the translation of the whole set of CQ to
SPARQL code and it was made exactly as Potoniec has
proposed [9]. The instances used as examples in the queries’
codes were based on Fig. 5, and the idea is start from any

instance from the peripheral area of Fig. 5 and navigate from
it, using SPARQL queries, to reach the instance of the Class
Service passing through the Profile_GAMA instance (Fig. 5).
Table II presents the sequence of CQ being translated and
executed on the internet to discover the next instance, and
using the instance before as a “search” parameter.

TABLE II

CQ CONVERTED INTO SPARQL QUERIES TO BE ANSWERED AND TO VALIDATE THE FUNCTIONAL REQUIREMENTS
What is the WS which is associated
with a specific ServiceCategory_BR?

Start: Category_A → SPARQL_1 →
Profile_GAMA → SPARQL_2 →FlightPlan

SPARQL_1: SELECT ? WHERE {? has_categoryCategory_A} → Query
result = Profile_GAMA
SPARQL_2: SELECT ? WHERE {? presentedByProfile_GAMA} → Query
result = FlightPlan (WS) (This is the WS we want to find)

What is the WS which is associated
with a specific Process?

Start: Process_X → SPARQL_1 →
Profile_GAMA → SPARQL_2 →FlightPlan

SPARQL_1: SELECT ? WHERE {? has_processProcess_X} → Query
result = Profile_GAMA
SPARQL_2: SELECT ? WHERE { ?presentedByProfile_GAMA} → Query
result = FlightPlan (WS)

What is the WS which is associated
with a specific ActorDefault_BR
which is a PROVIDER?

Start: Provider_Beta → SPARQL_1 →
Profile_GAMA → SPARQL_2 →FlightPlan

SPARQL_1: SELECT ? WHERE {? contactInformationProvider_1} →
Query result = Profile_GAMA
SPARQL_2: SELECT ? WHERE { ?presentedByProfile_GAMA} → Query
result = FlightPlan (WS)

What is the WS which is associated
with a specific Product?

Start: Prod_1 → SPARQL_1 →
Profile_GAMA → SPARQL_2 →FlightPlan

SPARQL_1: SELECT? WHERE {? has_productProd_1} → Query result =
Profile_GAMA
SPARQL_2: SELECT ? WHERE { ?presentedByProfile_GAMA} → Query
result = FlightPlan (WS)

What is the WS which is associated
with a specific FinalRank ?

Start: BEST → SPARQL_1 →
Profile_GAMA → SPARQL_2 →FlightPlan

SPARQL_1: SELECT ? WHERE {? has_rankValueBEST} → Query result
= Profile_GAMA
SPARQL_2: SELECT ? WHERE { ?presentedByProfile_GAMA} → Query
result = FlightPlan (WS)

What is the WS which is associated
with a specific City?

Start: Sao_Paulo → SPARQL_1 →
Provider_Beta → SPARQL_2 →Prod_1
→SPARQL_3 → Profile_GAMA
→SPARQL_4 → FlightPlan

SPARQL_1: SELECT ? WHERE {? hostedByCitySao_Paulo} → Query
result = Provider_Beta
SPARQL_2: SELECT ? WHERE { Provider_Betaprovides_product ?} →
Query result = Prod_1
SPARQL_3: SELECT ? WHERE {? has_productProd_1} → Query result =
Profile_GAMA
SPARQL_4: SELECT ? WHERE { ?presentedByProfile_GAMA} → Query
result = FlightPlan (WS)

It is possible to see in Table II that the SPARQL queries
formulated for the experiment answer all the set of questions,
meaning the ontology is validated considering Table I which
presents the set of the functional requirements to build it. All
the partial answers for the queries are owl:Individuals which
can confirm the correctness for the ATM domain’s
representation, which can be also considered as a formal
vocabulary to make data exchange. The SPARQL’s answers
validate the functional requirements and the next step was to
build a Python Web-based system to present some features of
the semantic registry to show it is useful.

V.A PYTHON WEB-BASED INFORMATION SYSTEM

The Brazilian ontology architecture itself is the semantic
description which offers a semantic foundation to be accessed
and manipulated as an intelligent information’s kernel and to
acquire the ability to create, edit, publish, advertise WS and
call an external execution of the WS previously registered into
this semantic registry. The goal of this Python system is to
present a particular vision about how to use the Brazilian
ontology architecture as a WS’ REGISTRY, which it is
possible to interact with to execute common WS Providers and
Requester’s operations, like to publish, advertise, to list, to
make semantic discovery and to call a WS from anywhere in
the internet.

The SWIM-Brazil App is a concept’s proof app which offers

a software implementation model able to access any semantic
registry implemented like the Brazilian ontology architecture.
The system offers a set of functionalities which makes a user
able to make login, to list all registered WS, to make semantic
discovery of WS obtaining precise results (finding a single
WS) and using a multi criteria approach coherent with the
original OWL-S’s implementation. After semantically
discovering the WS, the human user or an external app can
“call” the execution of this WS no matter where it is published
on the internet.

We have chosen the platform Python 3.10.6, the framework
Django 4.1 [3] interacting with the owlready 0.38 to act as a
persistence layer manipulating the ontologies, the Apache
Web Server to store and make the ontologies accessible and
the middleware OpenLDAP 2.5.14 for the authentication.
Python 3 was chosen to be able to interact with the latest
version of owlready2, which allows the manipulation of the
OWL-S ontologies in a non-verbose approach. With a view
heading to enabling capillarity by accessing via browser to
human users and via network to information systems, the
SWIM-Brazil’s App was designed as a web application.

Usually, Django has its own persistence framework and
because of its easy ways to make integration with a sort of
middleware, we have changed the persistence’s layer
framework to use the Python’s library owlready2 0.38 and
data will be persisted into the Brazilian ontology architecture.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

39International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
45

3.
pd

f

The SWIM-Brazil App web application works according to
the scheme described in Fig. 6, which is a little bit different
from the original Django architecture [3]: (1) a common user
via browser sends an http request to the SWIM-Brazil App;
(2) the App server forwards the request to the Apache Web
Server, aiming to reach the Brazilian ontology architecture
which is stored into this server; (3) the URL setting contained

in the urls.py file selects the user’s view according to the url
specified in the request; (4) the view communicates with the
Brazilian ontology architecture) via models.py, renders the
html or other format using templates and returns the http
response to the App server; (5) finally, the App server returns
the requested page to the browser.

Fig. 6 SWIM-Brazil App architecture (adapted from [3])

An important component of the Django’s architecture is the
Model, which represents the access of the domain concepts
and the encapsulation of the traditional relational database,
according to the Active Record’s design pattern. In the SWIM-
Brazil’s App this access to a database is not used, the app
persists data into the Brazilian ontology architecture, where
the tasks of reading and writing are made using the owlready2
library.

SWIM-Brazil App is a modular monolith application
composed by two modules, exactly as the Django’s rules.
There are two extension points to connect the next modules of
the software. To separate the data manipulation levels, the
business rules data are going to be persisted into the Brazilian
ontology architecture and the information about authentication
is going to be persisted into a LDAP directory service, using
OpenLDAP.

Fig. 7 presents two SWIM-Brazil App’s web pages destined
to allow the user to make semantic discovery according to the
search criteria of goal number 2 on this paper and a second
web page destined to “search by category criteria”. Fig. 8
presents another web page where it is possible to see the
semantic search result and the name of the WS to be clicked
and call its execution.

Fig. 7 presents the “Criteria of Service”, which is the multi
criteria options to semantically search for a Web Service. If
the User chooses the search by category criteria, the “Service
Category” result is presented containing all the specific
categories able to be chosen to look for a Web Service. There
are different abstraction levels to define this set of categories
and they can show a list of services or a specific one, it
depends on that abstraction level.

It is possible to execute some efficient automated tasks like

semantic search and discovery using several criteria, allowing
a common web user to search for web services considering
different possible ways to find them. The software developed
for this article is a proof of concept and there is a lot of things
to still implement.

VI. CONTRIBUTIONS AND FURTHER WORKS

In this paper we have described an implementation model
of OWL-S which supports Brazilian Aeronautical Web
Services. We have proposed a solution for the Air-Traffic WS
registries’ management based on an existing technology which
makes developers able to implement semantic descriptions and
use them as machine-readable artifacts by programming
languages API. The implementation considered a top-down
approach to fill all levels of the architecture with instances and
the twofold goals were reached with a set of Competency
Questions destined to establish functional requirements which
could be checked for accomplishment as in Table I, and a
complete description of twenty aeronautical WS exactly as in
Fig. 5.

As contributions, it is possible to cite the Brazilian ontology
architecture as an extension of the W3C’s OWL-S technology,
customized to attend the Brazilian ATM’s WS domain. Also, a
Brazilian ATM’s WS formal description model was created
and it is able to offer some level of interoperability with the
nations aligned with the SWIM. Also it is possible to cite the
Brazilian ATM WS’ vocabulary which is going to be an
opportunity to standardize the Brazilian ATM’s information
systems.

Further works could be related to encapsulating the
Brazilian ontology architecture and building ATM information
systems around it.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

40International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
45

3.
pd

f

Fig. 7 SWIM-Brazil App semantic search by criteria and search by Category

Fig. 8 SWIM-Brazil App semantic search result

REFERENCES
[1] Almeida, J.F. - Um modelo de alinhamento de sistemas de comando e

controle. Instituto Tecnológico de Aeronáutica. São José dos Campos,
2009.

[2] Antoniou, G; van Harmelen, F. A Semantic Web Primer. 2. ed. London:
The MIT Press, 2008. 287p.

[3] DJANGO. Python framework, http://www.djangoproject.com. Access
03/30/2023.

[4] Kopecky, J. SAWSDL: Semantic Annotations for WSDL and XML
Schema. IEEE Computer Society, 2007.

[5] Martin, D. et al. Bringing Semantics to Web Services with OWL-S.
Conference Paper at World Wide Web (2007) 10:243–277. DOI
10.1007/s11280-007-0033-x.

[6] Marco L.S., David M., Claude M. - Discovering Semantic Web Services
using SPARQL and Intelligent Agents - Hewlett-Packard Italy
Innovation Center, Corso Trapani 16, 10139 Torino, Italy. 2012.

[7] OWL-S - Semantic Markup for Web Services.
https://www.w3.org/Submission/OWL-S/. Access 06/01/2023.

[8] Panagiotis Bouros - Semantic Web Services: A conceptual comparison
of OWL-S, WSMO and METEOR-S approaches. Technical Report.
Department of Informatics and Telecommunications. National and
Kapodistrian University of Athens (NKUA). Panepistimiopolis,
T.Y.P.A. Buildings, GR-157 84 Ilisia, Athens, Greece. 2006.

[9] Potoniec J.; Wi D.; Ławrynowicz A.; Keet M. - Dataset of ontology
competency questions to SPARQL-OWL queries translations. Data
Article. Elsevier. Data in brief 29 (2020) 105098. Contents lists
available at ScienceDirect - Data in brief: journal homepage:
www.elsevier.com/locate/dib.

[10] Pranav, K. - Service Matching based on OWL-S. Seminar Thesis
Submitted to the Software Engineering Research Group in Partial
Fulfillment of the Requirements for the Seminar Cloud Computing and
Services by Pranav Kadam, Vogeliusweg 17, 33100 Paderborn.
Paderborn, March 2013.

[11] Priyadharshini, G.; Gunasri R.; Saravana B. - A Survey on Semantic
Web Service Discovery Methods. International Journal of Computer
Applications (0975 – 8887) Volume 82 – No 11, November 2013. Tamil
Nadu, India.

[12] Protegé. A free, open-source ontology editor and framework for building
intelligent systems. https://protege.stanford.edu/. Access 06/1st/2022.

[13] Rodriguez, L.A.A., Parente, J.M.O. - An Implementation of OWL-S to
Support Semantic Web Services Discovery. Proceedings of FOMI2022:
12th International Workshop on Formal Ontologies meet Industry,
September 12-15, 2022, Tarbes, France.

[14] Rodriguez, L.A.A., Parente, J.M.O. - An Ontology to support Brazilian
Traffic Flow Management Based on NASA’s ATM Reference Model.
SITRAER 2022 - International Air Transportation Symposium, São José
dos Campos, Brasil.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

41International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
45

3.
pd

f

[15] Rodriguez, L.A.A., Parente, J.M.O. - An Approach to Support Semantic
Discovery Using Ontologies to Describe Aeronautical Web Services
Repositories. Proceedings of ONTOBRAS 2023, Brasília - DF, Brasil.

[16] Rohallah B., Ramdane M., Zaïdi S. - Semantic Web Service Discovery
Based on Agents and Ontologies. International Journal of Innovation,
Management and Technology, Vol. 3, No. 4, August 2012.

[17] Rong, W., Liu, K.: A Survey of Context Aware Web Service Discovery:
From User’s Perspective. In: Fifth IEEE International Symposium on
Service Oriented System Engineering (2010).

[18] Salvatore, G., Giuseppe, L.R.- Advances onto the Internet of Things:
How Ontologies Make the Internet of Things Meaningful. Advances in
Intelligent Systems and Computing, Volume 260. Polish Academy of
Sciences, Warsaw, Poland.

[19] SWIM - Manual on System Wide Information Management (SWIM)
Concept. International Civil Aviation Organization. 999 Robert
Bourassa Boulevard, Montréal, Quebec, Canada H3C 5H7. Website
https://www.icao.int/APAC/Pages/swim.aspx. Access 06/1st/2023.

[20] UML2 - The Unified Modeling Language Specification Version
2.5.1.UML®. Unified Modeling Language:
https://www.omg.org/spec/UML/2.5.1/About-UML/. Access
06/01/2023.

[21] W3C. World Wide Web Consortium. http://www.w3.org. Access
06/1st/2022.

[22] SR - The semantic registry is published at https://www.hildeproject.com.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:1, 2024

42International Scholarly and Scientific Research & Innovation 18(1) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
1,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
45

3.
pd

f

