Automatic Musical Genre Classification Using Divergence and Average Information Measures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33155
Automatic Musical Genre Classification Using Divergence and Average Information Measures

Authors: Hassan Ezzaidi, Jean Rouat

Abstract:

Recently many research has been conducted to retrieve pertinent parameters and adequate models for automatic music genre classification. In this paper, two measures based upon information theory concepts are investigated for mapping the features space to decision space. A Gaussian Mixture Model (GMM) is used as a baseline and reference system. Various strategies are proposed for training and testing sessions with matched or mismatched conditions, long training and long testing, long training and short testing. For all experiments, the file sections used for testing are never been used during training. With matched conditions all examined measures yield the best and similar scores (almost 100%). With mismatched conditions, the proposed measures yield better scores than the GMM baseline system, especially for the short testing case. It is also observed that the average discrimination information measure is most appropriate for music category classifications and on the other hand the divergence measure is more suitable for music subcategory classifications.

Keywords: Audio feature, information measures, music genre.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1079078

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583

References:


[1] H. Ezzaidi and J. Rouat, Speech, music and songs discrimination in the context of handsets variability, In proceedings of ICSLP 2002, 16-20 September 2002.
[2] FT. Lambrou, P. Kudumakis, M. Sandler, R. Speller and A. Linney, Classification of Audio Signals using Statistical Features on Time and Wavelet Transform Domains, In IEEE ICASSP 98, May 1998, Seattle, USA.
[3] J. Tou and R. Gonzalez. Pattern recognition principles, Addison-Wesley Publishinig Company, Reading, Massachusetts , 1974.
[4] Masataka Goto, Hiroki Hashiguchi, Takuichi Nishimura, and Ryuichi Oka,RWC Music Database: Music Genre Database and Musical Instrument Sound Database, In Proceedings of the 4th International Conference on Music Information Retrieval (ISMIR 2003), pp. 229-230, October 2003.
[5] Aucouturier, J.J and Pachet, F. Musical Genre: a Survey. In Journal of New Music Research, Vol. 32, No 1, pp.83- 93, 2003.
[6] Ricardo Malheiro, Rui P. Paiva, Ant ˆ Unio Mendes, Teresa Mendes, Amilcar Cardoso, A Prototype for Classification of Classical Music using Neural Networks, In Proc. of the 8th IASTED International Conference on Artificial Intelligence and Soft Computing, pp. 294-299, ASC-2004, Marbella, Spain, September-2004.
[7] H. Soltau, T. Schultz, M. Westphal, and A. Waibel. Recognition of Musical Types. In Proceedings International Conference on Acoustics, Speech and Signal Processing (ICASSP)., May 1998, vol. 2, pp. 1137˜n1140.
[8] Tzanetakis, G., Essl, G., and Cook, P., Automatic Musical Genre Classification of Audio Signals, In Proceedings of the 2001 International Symposium on Music Information Retrieval, 2001.
[9] Tzanetakis, G., and P. R. Cook, Musical Genre Classification of Audio Signals, In IEEE Transactions on Speech and Audio, July, 2002.
[10] Li, Tao and Tzanetakis, George, Factors in Automatic Musical Genre Classification of Audio Signals, In Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY October 2003.
[11] Tao Li, Mitsunori Ogihara, and Qi Li. A Comparative Study on Content- Based Music Genre Classification, In Proceedings of Annual ACM Conference on Research and Development in Information Retrieval, ( SIGIR 2003),Pages 282-289.
[12] Douglas Turnbull, Charles Elkan, Fast Recognition of Musical Genres Using RBF Networks, In IEEE Trans. Knowl. Data Eng, 17(4): 580-584 (2005).