Search results for: Total Vector Error
3479 Person Identification using Gait by Combined Features of Width and Shape of the Binary Silhouette
Authors: M.K. Bhuyan, Aragala Jagan.
Abstract:
Current image-based individual human recognition methods, such as fingerprints, face, or iris biometric modalities generally require a cooperative subject, views from certain aspects, and physical contact or close proximity. These methods cannot reliably recognize non-cooperating individuals at a distance in the real world under changing environmental conditions. Gait, which concerns recognizing individuals by the way they walk, is a relatively new biometric without these disadvantages. The inherent gait characteristic of an individual makes it irreplaceable and useful in visual surveillance. In this paper, an efficient gait recognition system for human identification by extracting two features namely width vector of the binary silhouette and the MPEG-7-based region-based shape descriptors is proposed. In the proposed method, foreground objects i.e., human and other moving objects are extracted by estimating background information by a Gaussian Mixture Model (GMM) and subsequently, median filtering operation is performed for removing noises in the background subtracted image. A moving target classification algorithm is used to separate human being (i.e., pedestrian) from other foreground objects (viz., vehicles). Shape and boundary information is used in the moving target classification algorithm. Subsequently, width vector of the outer contour of binary silhouette and the MPEG-7 Angular Radial Transform coefficients are taken as the feature vector. Next, the Principal Component Analysis (PCA) is applied to the selected feature vector to reduce its dimensionality. These extracted feature vectors are used to train an Hidden Markov Model (HMM) for identification of some individuals. The proposed system is evaluated using some gait sequences and the experimental results show the efficacy of the proposed algorithm.Keywords: Gait Recognition, Gaussian Mixture Model, PrincipalComponent Analysis, MPEG-7 Angular Radial Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19113478 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation
Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu
Abstract:
This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.
Keywords: machine learning, neural network, pressurized water reactor, supervisory controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5143477 Information Filtering using Index Word Selection based on the Topics
Authors: Takeru YOKOI, Hidekazu YANAGIMOTO, Sigeru OMATU
Abstract:
We have proposed an information filtering system using index word selection from a document set based on the topics included in a set of documents. This method narrows down the particularly characteristic words in a document set and the topics are obtained by Sparse Non-negative Matrix Factorization. In information filtering, a document is often represented with the vector in which the elements correspond to the weight of the index words, and the dimension of the vector becomes larger as the number of documents is increased. Therefore, it is possible that useless words as index words for the information filtering are included. In order to address the problem, the dimension needs to be reduced. Our proposal reduces the dimension by selecting index words based on the topics included in a document set. We have applied the Sparse Non-negative Matrix Factorization to the document set to obtain these topics. The filtering is carried out based on a centroid of the learning document set. The centroid is regarded as the user-s interest. In addition, the centroid is represented with a document vector whose elements consist of the weight of the selected index words. Using the English test collection MEDLINE, thus, we confirm the effectiveness of our proposal. Hence, our proposed selection can confirm the improvement of the recommendation accuracy from the other previous methods when selecting the appropriate number of index words. In addition, we discussed the selected index words by our proposal and we found our proposal was able to select the index words covered some minor topics included in the document set.Keywords: Information Filtering, Sparse NMF, Index wordSelection, User Profile, Chi-squared Measure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14563476 Cursor Position Estimation Model for Virtual Touch Screen Using Camera
Authors: Somkiat Wangsiripitak
Abstract:
Virtual touch screen using camera is an ordinary screen which uses a camera to imitate the touch screen by taking a picture of an indicator, e.g., finger, which is laid on the screen, converting the indicator tip position on the picture to the position on the screen, and moving the cursor on the screen to that position. In fact, the indicator is not laid on the screen directly, but it is intervened by the cover at some intervals. In spite of this gap, if the eye-indicator-camera angle is not large, the mapping from the indicator tip positions on the image to the corresponding cursor positions on the screen is not difficult and could be done with a little error. However, the larger the angle is, the bigger the error in the mapping occurs. This paper proposes cursor position estimation model for virtual touch screen using camera which could eliminate this kind of error. The proposed model (i) moves the on-screen pilot cursor to the screen position which locates on the screen at the position just behind the indicator tip when the indicator tip has been looked from the camera position, and then (ii) converts that pilot cursor position to the desirable cursor position (the position on the screen when it has been looked from the user-s eye through the indicator tip) by using the bilinear transformation. Simulation results show the correctness of the estimated cursor position by using the proposed model.
Keywords: Bilinear transformation, cursor position, pilot cursor, virtual touch screen.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16313475 A 1.5V,100MS/s,12-bit Current-Mode CMOSS ample-and-Hold Circuit
Authors: O. Hashemipour, S. G. Nabavi
Abstract:
A high-linearity and high-speed current-mode sampleand- hold circuit is designed and simulated using a 0.25μm CMOS technology. This circuit design is based on low voltage and it utilizes a fully differential circuit. Due to the use of only two switches the switch related noise has been reduced. Signal - dependent -error is completely eliminated by a new zero voltage switching technique. The circuit has a linearity error equal to ±0.05μa, i.e. 12-bit accuracy with a ±160 μa differential output - input signal frequency of 5MHZ, and sampling frequency of 100 MHZ. Third harmonic is equal to –78dB.Keywords: Zero-voltage-technique, MOS-resistor, OTA, Feedback-resistor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14063474 Image Compression Using Multiwavelet and Multi-Stage Vector Quantization
Authors: S. Esakkirajan, T. Veerakumar, V. Senthil Murugan, P. Navaneethan
Abstract:
The existing image coding standards generally degrades at low bit-rates because of the underlying block based Discrete Cosine Transform scheme. Over the past decade, the success of wavelets in solving many different problems has contributed to its unprecedented popularity. Due to implementation constraints scalar wavelets do not posses all the properties such as orthogonality, short support, linear phase symmetry, and a high order of approximation through vanishing moments simultaneously, which are very much essential for signal processing. New class of wavelets called 'Multiwavelets' which posses more than one scaling function overcomes this problem. This paper presents a new image coding scheme based on non linear approximation of multiwavelet coefficients along with multistage vector quantization. The performance of the proposed scheme is compared with the results obtained from scalar wavelets.
Keywords: Image compression, Multiwavelets, Multi-stagevector quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19363473 The Modified Eigenface Method using Two Thresholds
Authors: Yan Ma, ShunBao Li
Abstract:
A new approach is adopted in this paper based on Turk and Pentland-s eigenface method. It was found that the probability density function of the distance between the projection vector of the input face image and the average projection vector of the subject in the face database, follows Rayleigh distribution. In order to decrease the false acceptance rate and increase the recognition rate, the input face image has been recognized using two thresholds including the acceptance threshold and the rejection threshold. We also find out that the value of two thresholds will be close to each other as number of trials increases. During the training, in order to reduce the number of trials, the projection vectors for each subject has been averaged. The recognition experiments using the proposed algorithm show that the recognition rate achieves to 92.875% whilst the average number of judgment is only 2.56 times.Keywords: Eigenface, Face Recognition, Threshold, Rayleigh Distribution, Feature Extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14953472 Nonlinear Torque Control for PMSM: A Lyapunov Technique Approach
Authors: M. Ouassaid, M. Cherkaoui, A. Nejmi, M. Maaroufi
Abstract:
This study presents a novel means of designing a simple and effective torque controller for Permanent Magnet Synchronous Motor (PMSM). The overall stability of the system is shown using Lyapunov technique. The Lyapunov functions used contain a term penalizing the integral of the tracking error, enhancing the stability. The tracking error is shown to be globally uniformly bounded. Simulation results are presented to show the effectiveness of the approach.
Keywords: Integral action, Lyapunov Technique, Non Linear Control, Permanent Magnet Synchronous Motors, Torque Control, Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33813471 Effective Context Lossless Image Coding Approach Based on Adaptive Prediction
Authors: Grzegorz Ulacha, Ryszard Stasiński
Abstract:
In the paper an effective context based lossless coding technique is presented. Three principal and few auxiliary contexts are defined. The predictor adaptation technique is an improved CoBALP algorithm, denoted CoBALP+. Cumulated predictor error combining 8 bias estimators is calculated. It is shown experimentally that indeed, the new technique is time-effective while it outperforms the well known methods having reasonable time complexity, and is inferior only to extremely computationally complex ones.Keywords: Adaptive prediction, context coding, image losslesscoding, prediction error bias correction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13503470 Multilevel Classifiers in Recognition of Handwritten Kannada Numerals
Authors: Dinesh Acharya U., N. V. Subba Reddy, Krishnamoorthi Makkithaya
Abstract:
The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals based on structural features. Five different types of features, namely, profile based 10-segment string, water reservoir; vertical and horizontal strokes, end points and average boundary length from the minimal bounding box are used in the recognition of numeral. The effect of each feature and their combination in the numeral classification is analyzed using nearest neighbor classifiers. It is common to combine multiple categories of features into a single feature vector for the classification. Instead, separate classifiers can be used to classify based on each visual feature individually and the final classification can be obtained based on the combination of separate base classification results. One popular approach is to combine the classifier results into a feature vector and leaving the decision to next level classifier. This method is extended to extract a better information, possibility distribution, from the base classifiers in resolving the conflicts among the classification results. Here, we use fuzzy k Nearest Neighbor (fuzzy k-NN) as base classifier for individual feature sets, the results of which together forms the feature vector for the final k Nearest Neighbor (k-NN) classifier. Testing is done, using different features, individually and in combination, on a database containing 1600 samples of different numerals and the results are compared with the results of different existing methods.Keywords: Fuzzy k Nearest Neighbor, Multiple Classifiers, Numeral Recognition, Structural features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17513469 Extrapolation of Clinical Data from an Oral Glucose Tolerance Test Using a Support Vector Machine
Authors: Jianyin Lu, Masayoshi Seike, Wei Liu, Peihong Wu, Lihua Wang, Yihua Wu, Yasuhiro Naito, Hiromu Nakajima, Yasuhiro Kouchi
Abstract:
To extract the important physiological factors related to diabetes from an oral glucose tolerance test (OGTT) by mathematical modeling, highly informative but convenient protocols are required. Current models require a large number of samples and extended period of testing, which is not practical for daily use. The purpose of this study is to make model assessments possible even from a reduced number of samples taken over a relatively short period. For this purpose, test values were extrapolated using a support vector machine. A good correlation was found between reference and extrapolated values in evaluated 741 OGTTs. This result indicates that a reduction in the number of clinical test is possible through a computational approach.Keywords: SVM regression, OGTT, diabetes, mathematical model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16143468 A Novel Spectrum Sensing Scheme Based on Periodicity of DVB-T Pilot Signals
Authors: Hyung-Weon Cho, Youngyoon Lee, Seung Goo Kang, Dahae Chong, Myungsoo Lee, Chonghan Song, Seokho Yoon
Abstract:
This paper proposes a novel spectrum sensing technique for the digital video broadcasting-terrestrial (DVB-T) systems, which utilizes the periodicity of pilot signals in the orthogonal frequency division multiplexing (OFDM) symbols. The proposed scheme can overcome the effect of the timing synchronization error by recorrelating the correlation values in the same sample distances. The numerical results demonstrate that the detection probability performance of the proposed scheme outperforms that of the conventional scheme when there exists a timing synchronization error.Keywords: DVB-T, spectrum sensing, OFDM, timing synchronizationerror.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19223467 Statistical Wavelet Features, PCA, and SVM Based Approach for EEG Signals Classification
Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh
Abstract:
The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the supportvectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.
Keywords: Discrete Wavelet Transform, Electroencephalogram, Pattern Recognition, Principal Component Analysis, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31133466 Dichotomous Logistic Regression with Leave-One-Out Validation
Authors: Sin Yin Teh, Abdul Rahman Othman, Michael Boon Chong Khoo
Abstract:
In this paper, the concepts of dichotomous logistic regression (DLR) with leave-one-out (L-O-O) were discussed. To illustrate this, the L-O-O was run to determine the importance of the simulation conditions for robust test of spread procedures with good Type I error rates. The resultant model was then evaluated. The discussions included 1) assessment of the accuracy of the model, and 2) parameter estimates. These were presented and illustrated by modeling the relationship between the dichotomous dependent variable (Type I error rates) with a set of independent variables (the simulation conditions). The base SAS software containing PROC LOGISTIC and DATA step functions can be making used to do the DLR analysis.Keywords: Dichotomous logistic regression, leave-one-out, testof spread.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20703465 Sensorless Control of a Six-Phase Induction Motors Drive Using FOC in Stator Flux Reference Frame
Authors: G. R. Arab Markadeh, J. Soltani, N. R. Abjadi, M. Hajian
Abstract:
In this paper, a direct torque control - space vector modulation (DTC-SVM) scheme is presented for a six-phase speed and voltage sensorless induction motor (IM) drive. The decoupled torque and stator flux control is achieved based on IM stator flux field orientation. The rotor speed is detected by on-line estimating of the rotor angular slip speed and stator vector flux speed. In addition, a simple method is introduced to estimate the stator resistance. Moreover in this control scheme the voltage sensors are eliminated and actual motor phase voltages are approximated by using PWM inverter switching times and the dc link voltage. Finally, some simulation and experimental results are presented to verify the effectiveness and capability of the proposed control scheme.Keywords: Stator FOC, Multiphase motors, sensorless.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20093464 A New Method in Detection of Ceramic Tiles Color Defects Using Genetic C-Means Algorithm
Authors: Mahkameh S. Mostafavi
Abstract:
In this paper an algorithm is used to detect the color defects of ceramic tiles. First the image of a normal tile is clustered using GCMA; Genetic C-means Clustering Algorithm; those results in best cluster centers. C-means is a common clustering algorithm which optimizes an objective function, based on a measure between data points and the cluster centers in the data space. Here the objective function describes the mean square error. After finding the best centers, each pixel of the image is assigned to the cluster with closest cluster center. Then, the maximum errors of clusters are computed. For each cluster, max error is the maximum distance between its center and all the pixels which belong to it. After computing errors all the pixels of defected tile image are clustered based on the centers obtained from normal tile image in previous stage. Pixels which their distance from their cluster center is more than the maximum error of that cluster are considered as defected pixels.
Keywords: C-Means algorithm, color spaces, Genetic Algorithm, image clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16513463 Power System Security Assessment using Binary SVM Based Pattern Recognition
Authors: S Kalyani, K Shanti Swarup
Abstract:
Power System Security is a major concern in real time operation. Conventional method of security evaluation consists of performing continuous load flow and transient stability studies by simulation program. This is highly time consuming and infeasible for on-line application. Pattern Recognition (PR) is a promising tool for on-line security evaluation. This paper proposes a Support Vector Machine (SVM) based binary classification for static and transient security evaluation. The proposed SVM based PR approach is implemented on New England 39 Bus and IEEE 57 Bus systems. The simulation results of SVM classifier is compared with the other classifier algorithms like Method of Least Squares (MLS), Multi- Layer Perceptron (MLP) and Linear Discriminant Analysis (LDA) classifiers.Keywords: Static Security, Transient Security, Pattern Recognition, Classifier, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18753462 Applications of Support Vector Machines on Smart Phone Systems for Emotional Speech Recognition
Authors: Wernhuar Tarng, Yuan-Yuan Chen, Chien-Lung Li, Kun-Rong Hsie, Mingteh Chen
Abstract:
An emotional speech recognition system for the applications on smart phones was proposed in this study to combine with 3G mobile communications and social networks to provide users and their groups with more interaction and care. This study developed a mechanism using the support vector machines (SVM) to recognize the emotions of speech such as happiness, anger, sadness and normal. The mechanism uses a hierarchical classifier to adjust the weights of acoustic features and divides various parameters into the categories of energy and frequency for training. In this study, 28 commonly used acoustic features including pitch and volume were proposed for training. In addition, a time-frequency parameter obtained by continuous wavelet transforms was also used to identify the accent and intonation in a sentence during the recognition process. The Berlin Database of Emotional Speech was used by dividing the speech into male and female data sets for training. According to the experimental results, the accuracies of male and female test sets were increased by 4.6% and 5.2% respectively after using the time-frequency parameter for classifying happy and angry emotions. For the classification of all emotions, the average accuracy, including male and female data, was 63.5% for the test set and 90.9% for the whole data set.Keywords: Smart phones, emotional speech recognition, socialnetworks, support vector machines, time-frequency parameter, Mel-scale frequency cepstral coefficients (MFCC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18423461 Maximum Wind Power Extraction Strategy and Decoupled Control of DFIG Operating in Variable Speed Wind Generation Systems
Authors: Abdellatif Kasbi, Abderrafii Rahali
Abstract:
This paper appraises the performances of two control scenarios, for doubly fed induction generator (DFIG) operating in wind generation system (WGS), which are the direct decoupled control (DDC) and indirect decoupled control (IDC). Both control scenarios studied combines vector control and Maximum Power Point Tracking (MPPT) control theory so as to maximize the captured power through wind turbine. Modeling of DFIG based WGS and details of both control scenarios have been presented, a proportional integral controller is employed in the active and reactive power control loops for both control methods. The performance of the both control scenarios in terms of power reference tracking and robustness against machine parameters inconstancy has been shown, analyzed and compared, which can afford a reference to the operators and engineers of a wind farm. All simulations have been implemented via MATLAB/Simulink.
Keywords: DFIG, WGS, DDC, IDC, vector control, MPPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7083460 A Modified Genetic Based Technique for Solving the Power System State Estimation Problem
Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy
Abstract:
Power system state estimation is the process of calculating a reliable estimate of the power system state vector composed of bus voltages' angles and magnitudes from telemetered measurements on the system. This estimate of the state vector provides the description of the system necessary for the operation and security monitoring. Many methods are described in the literature for solving the state estimation problem, the most important of which are the classical weighted least squares method and the nondeterministic genetic based method; however both showed drawbacks. In this paper a modified version of the genetic algorithm power system state estimation is introduced, Sensitivity of the proposed algorithm to genetic operators is discussed, the algorithm is applied to case studies and finally it is compared with the classical weighted least squares method formulation.Keywords: Genetic algorithms, ill-conditioning, state estimation, weighted least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17133459 Efficient Realization of an ADFE with a New Adaptive Algorithm
Authors: N. Praveen Kumar, Abhijit Mitra, C. Ardil
Abstract:
Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.Keywords: Decision feedback equalizer, Adaptive algorithm, Block based computation, Set membership filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16773458 A Kernel Based Rejection Method for Supervised Classification
Authors: Abdenour Bounsiar, Edith Grall, Pierre Beauseroy
Abstract:
In this paper we are interested in classification problems with a performance constraint on error probability. In such problems if the constraint cannot be satisfied, then a rejection option is introduced. For binary labelled classification, a number of SVM based methods with rejection option have been proposed over the past few years. All of these methods use two thresholds on the SVM output. However, in previous works, we have shown on synthetic data that using thresholds on the output of the optimal SVM may lead to poor results for classification tasks with performance constraint. In this paper a new method for supervised classification with rejection option is proposed. It consists in two different classifiers jointly optimized to minimize the rejection probability subject to a given constraint on error rate. This method uses a new kernel based linear learning machine that we have recently presented. This learning machine is characterized by its simplicity and high training speed which makes the simultaneous optimization of the two classifiers computationally reasonable. The proposed classification method with rejection option is compared to a SVM based rejection method proposed in recent literature. Experiments show the superiority of the proposed method.Keywords: rejection, Chow's rule, error-reject tradeoff, SupportVector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14453457 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features
Authors: Birmohan Singh, V. K. Jain
Abstract:
Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support vector machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and an accuracy of 96% for mammogram images collected from digital database for screening mammography database.Keywords: Architecture Distortion, GLCM Texture features, GLRLM Texture Features, Mammograms, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22613456 Fast Search Method for Large Video Database Using Histogram Features and Temporal Division
Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi
Abstract:
In this paper, we propose an improved fast search algorithm using combined histogram features and temporal division method for short MPEG video clips from large video database. There are two types of histogram features used to generate more robust features. The first one is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Another one is ordinal feature which is robust to color distortion. Combined with active search [4], a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by 6 hours of video to search for given 200 MPEG video clips which each length is 30 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 120ms, and Equal Error Rate (ERR) of 1% is achieved, which is more accurately and robust than conventional fast video search algorithm.Keywords: Fast search, Adjacent pixel intensity differencequantization (APIDQ), DC image, Histogram feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16243455 Global Security Using Human Face Understanding under Vision Ubiquitous Architecture System
Abstract:
Different methods containing biometric algorithms are presented for the representation of eigenfaces detection including face recognition, are identification and verification. Our theme of this research is to manage the critical processing stages (accuracy, speed, security and monitoring) of face activities with the flexibility of searching and edit the secure authorized database. In this paper we implement different techniques such as eigenfaces vector reduction by using texture and shape vector phenomenon for complexity removal, while density matching score with Face Boundary Fixation (FBF) extracted the most likelihood characteristics in this media processing contents. We examine the development and performance efficiency of the database by applying our creative algorithms in both recognition and detection phenomenon. Our results show the performance accuracy and security gain with better achievement than a number of previous approaches in all the above processes in an encouraging mode.Keywords: Ubiquitous architecture, verification, Identification, recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13363454 Evaluating Sinusoidal Functions by a Low Complexity Cubic Spline Interpolator with Error Optimization
Authors: Abhijit Mitra, Harpreet Singh Dhillon
Abstract:
We present a novel scheme to evaluate sinusoidal functions with low complexity and high precision using cubic spline interpolation. To this end, two different approaches are proposed to find the interpolating polynomial of sin(x) within the range [- π , π]. The first one deals with only a single data point while the other with two to keep the realization cost as low as possible. An approximation error optimization technique for cubic spline interpolation is introduced next and is shown to increase the interpolator accuracy without increasing complexity of the associated hardware. The architectures for the proposed approaches are also developed, which exhibit flexibility of implementation with low power requirement.
Keywords: Arithmetic, spline interpolator, hardware design, erroranalysis, optimization methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20573453 A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems
Authors: Nahid Ardalani, Ahmadreza Khoogar, H. Roohi
Abstract:
In this paper we compare the response of linear and nonlinear neural network-based prediction schemes in prediction of received Signal-to-Interference Power Ratio (SIR) in Direct Sequence Code Division Multiple Access (DS/CDMA) systems. The nonlinear predictor is Multilayer Perceptron MLP and the linear predictor is an Adaptive Linear (Adaline) predictor. We solve the problem of complexity by using the Minimum Mean Squared Error (MMSE) principle to select the optimal predictors. The optimized Adaline predictor is compared to optimized MLP by employing noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an urban environment. The results show that the Adaline predictor can estimates SIR with the same error as MLP when the user has the velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 120 km/h the mean squared error of MLP is two times more than Adaline predictor. This makes the Adaline predictor (with lower complexity) more suitable than MLP for closed-loop power control where efficient and accurate identification of the time-varying inverse dynamics of the multi path fading channel is required.Keywords: Power control, neural networks, DS/CDMA mobilecommunication systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25153452 Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.
Keywords: LS-SVM, medical ultrasound imaging, partially developed speckle, multi-look model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13413451 Determination of Measurement Uncertainty in Extracting of Forming Limit Diagrams
Authors: M. Mahboubkhah, H. Fayazfar
Abstract:
In this research, Forming Limit Diagrams for supertension sheet metals which are using in automobile industry have been obtained. The exerted strains to sheet metals have been measured with four different methods and the errors of each method have also been represented. These methods have been compared with together and the most efficient and economic way of extracting of the exerted strains to sheet metals has been introduced. In this paper total error and uncertainty of FLD extraction procedures have been derived. Determination of the measurement uncertainty in extracting of FLD has a great importance in design and analysis of the sheet metal forming process.Keywords: Forming Limit Diagram, Major and Minor Strain, Measurement Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20023450 A New Splitting H1-Galerkin Mixed Method for Pseudo-hyperbolic Equations
Authors: Yang Liu, Jinfeng Wang, Hong Li, Wei Gao, Siriguleng He
Abstract:
A new numerical scheme based on the H1-Galerkin mixed finite element method for a class of second-order pseudohyperbolic equations is constructed. The proposed procedures can be split into three independent differential sub-schemes and does not need to solve a coupled system of equations. Optimal error estimates are derived for both semidiscrete and fully discrete schemes for problems in one space dimension. And the proposed method dose not requires the LBB consistency condition. Finally, some numerical results are provided to illustrate the efficacy of our method.
Keywords: Pseudo-hyperbolic equations, splitting system, H1-Galerkin mixed method, error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502