Search results for: Non-linear Schrodinger equation
1540 A Shape Optimization Method in Viscous Flow Using Acoustic Velocity and Four-step Explicit Scheme
Authors: Yoichi Hikino, Mutsuto Kawahara
Abstract:
The purpose of this study is to derive optimal shapes of a body located in viscous flows by the finite element method using the acoustic velocity and the four-step explicit scheme. The formulation is based on an optimal control theory in which a performance function of the fluid force is introduced. The performance function should be minimized satisfying the state equation. This problem can be transformed into the minimization problem without constraint conditions by using the adjoint equation with adjoint variables corresponding to the state equation. The performance function is defined by the drag and lift forces acting on the body. The weighted gradient method is applied as a minimization technique, the Galerkin finite element method is used as a spatial discretization and the four-step explicit scheme is used as a temporal discretization to solve the state equation and the adjoint equation. As the interpolation, the orthogonal basis bubble function for velocity and the linear function for pressure are employed. In case that the orthogonal basis bubble function is used, the mass matrix can be diagonalized without any artificial centralization. The shape optimization is performed by the presented method.Keywords: Shape Optimization, Optimal Control Theory, Finite Element Method, Weighted Gradient Method, Fluid Force, Orthogonal Basis Bubble Function, Four-step Explicit Scheme, Acoustic Velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14661539 An Adverse Model for Price Discrimination in the Case of Monopoly
Authors: Daniela Elena Marinescu, Ioana Manafi, Dumitru Marin
Abstract:
We consider a Principal-Agent model with the Principal being a seller who does not know perfectly how much the buyer (the Agent) is willing to pay for the good. The buyer-s preferences are hence his private information. The model corresponds to the nonlinear pricing problem of Maskin and Riley. We assume there are three types of Agents. The model is solved using “informational rents" as variables. In the last section we present the main characteristics of the optimal contracts in asymmetric information and some possible extensions of the model.Keywords: Adverse selection, asymmetric information, informational rent, nonlinear pricing, optimal contract
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13501538 A Simplified Distribution for Nonlinear Seas
Authors: M. A. Tayfun, M. A. Alkhalidi
Abstract:
The exact theoretical expression describing the probability distribution of nonlinear sea-surface elevations derived from the second-order narrowband model has a cumbersome form that requires numerical computations, not well-disposed to theoretical or practical applications. Here, the same narrowband model is reexamined to develop a simpler closed-form approximation suitable for theoretical and practical applications. The salient features of the approximate form are explored, and its relative validity is verified with comparisons to other readily available approximations, and oceanic data.
Keywords: Ocean waves, probability distributions, second-order nonlinearities, skewness coefficient, wave steepness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20961537 Transient Combined Conduction and Radiation in a Two-Dimensional Participating Cylinder in Presence of Heat Generation
Authors: Raoudha Chaabane, Faouzi Askri, Sassi Ben Nasrallah
Abstract:
Simultaneous transient conduction and radiation heat transfer with heat generation is investigated. Analysis is carried out for both steady and unsteady situations. two-dimensional gray cylindrical enclosure with an absorbing, emitting, and isotropically scattering medium is considered. Enclosure boundaries are assumed at specified temperatures. The heat generation rate is considered uniform and constant throughout the medium. The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The control volume finite element method (CVFEM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the CVFEM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 2-D cylindrical geometries were considered. In order to establish the suitability of the LBM, the energy equation of the present problem was also solved using the the finite difference method (FDM) of the computational fluid dynamics. The CVFEM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FDM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the CVFEM for the radiative information, results were analyzed for the effects of various parameters such as the boundary emissivity. The results of the LBMCVFEM combination were found to be in excellent agreement with the FDM-CVFEM combination. The number of iterations and the steady state temperature in both of the combinations were found comparable. Results are found for situations with and without heat generation. Heat generation is found to have significant bearing on temperature distribution.Keywords: heat generation, cylindrical coordinates; RTE;transient; coupled conduction radiation; heat transfer; CVFEM; LBM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22051536 Localized Meshfree Methods for Solving 3D-Helmholtz Equation
Authors: Reza Mollapourasl, Majid Haghi
Abstract:
In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem.
Keywords: Radial basis functions, Hermite finite difference, Helmholtz equation, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361535 Modeling of a Small Unmanned Aerial Vehicle
Authors: A. Elsayed Ahmed, A. Hafez, A. N. Ouda, H. Eldin Hussein Ahmed, H. Mohamed Abd-Elkader
Abstract:
Unmanned aircraft systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. . In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized, and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end the model is checked by matching between the behavior of the states of the nonlinear UAV and the resulted linear model with doublet at the control surfaces.
Keywords: Equations of motion, linearization, modeling, nonlinear model, UAV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56131534 A Review on Higher Order Spline Techniques for Solving Burgers Equation Using B-Spline Methods and Variation of B-Spline Techniques
Authors: Maryam Khazaei Pool, Lori Lewis
Abstract:
This is a summary of articles based on higher order B-splines methods and the variation of B-spline methods such as Quadratic B-spline Finite Elements Method, Exponential Cubic B-Spline Method Septic B-spline Technique, Quintic B-spline Galerkin Method, and B-spline Galerkin Method based on the Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin method (CBGM). In this paper we study the B-spline methods and variations of B-spline techniques to find a numerical solution to the Burgers’ equation. A set of fundamental definitions including Burgers equation, spline functions, and B-spline functions are provided. For each method, the main technique is discussed as well as the discretization and stability analysis. A summary of the numerical results is provided and the efficiency of each method presented is discussed. A general conclusion is provided where we look at a comparison between the computational results of all the presented schemes. We describe the effectiveness and advantages of these methods.
Keywords: Burgers’ Equation, Septic B-spline, Modified Cubic B-Spline Differential Quadrature Method, Exponential Cubic B-Spline Technique, B-Spline Galerkin Method, and Quintic B-Spline Galerkin Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3661533 Stabilization of a Three-Pole Active Magnetic Bearing by Hybrid Control Method in Static Mode
Authors: Mahdi Kiani, Hassan Salarieh, Aria Alasty, S. Mahdi Darbandi
Abstract:
The design and implementation of the hybrid control method for a three-pole active magnetic bearing (AMB) is proposed in this paper. The system is inherently nonlinear and conventional nonlinear controllers are a little complicated, while the proposed hybrid controller has a piecewise linear form, i.e. linear in each sub-region. A state-feedback hybrid controller is designed in this study, and the unmeasurable states are estimated by an observer. The gains of the hybrid controller are obtained by the Linear Quadratic Regulator (LQR) method in each sub-region. To evaluate the performance, the designed controller is implemented on an experimental setup in static mode. The experimental results show that the proposed method can efficiently stabilize the three-pole AMB system. The simplicity of design, domain of attraction, uncomplicated control law, and computational time are advantages of this method over other nonlinear control strategies in AMB systems.Keywords: Active magnetic bearing, three pole AMB, hybrid control, Lyapunov function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15761532 Nonlinear Sensitive Control of Centrifugal Compressor
Authors: F. Laaouad, M. Bouguerra, A. Hafaifa, A. Iratni
Abstract:
In this work, we treat the problems related to chemical and petrochemical plants of a certain complex process taking the centrifugal compressor as an example, a system being very complex by its physical structure as well as its behaviour (surge phenomenon). We propose to study the application possibilities of the recent control approaches to the compressor behaviour, and consequently evaluate their contribution in the practical and theoretical fields. Facing the studied industrial process complexity, we choose to make recourse to fuzzy logic for analysis and treatment of its control problem owing to the fact that these techniques constitute the only framework in which the types of imperfect knowledge can jointly be treated (uncertainties, inaccuracies, etc..) offering suitable tools to characterise them. In the particular case of the centrifugal compressor, these imperfections are interpreted by modelling errors, the neglected dynamics, no modelisable dynamics and the parametric variations. The purpose of this paper is to produce a total robust nonlinear controller design method to stabilize the compression process at its optimum steady state by manipulating the gas rate flow. In order to cope with both the parameter uncertainty and the structured non linearity of the plant, the proposed method consists of a linear steady state regulation that ensures robust optimal control and of a nonlinear compensation that achieves the exact input/output linearization.
Keywords: Compressor, Fuzzy logic, Surge control, Bilinearcontroller, Stability analysis, Nonlinear plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21471531 Integral Operators Related to Problems of Interface Dynamics
Authors: Pa Pa Lin
Abstract:
This research work is concerned with the eigenvalue problem for the integral operators which are obtained by linearization of a nonlocal evolution equation. The purpose of section II.A is to describe the nature of the problem and the objective of the project. The problem is related to the “stable solution" of the evolution equation which is the so-called “instanton" that describe the interface between two stable phases. The analysis of the instanton and its asymptotic behavior are described in section II.C by imposing the Green function and making use of a probability kernel. As a result , a classical Theorem which is important for an instanton is proved. Section III devoted to a study of the integral operators related to interface dynamics which concern the analysis of the Cauchy problem for the evolution equation with initial data close to different phases and different regions of space.
Keywords: Evolution, Green function, instanton, integral operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12391530 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks
Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin
Abstract:
This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of singleparameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.
Keywords: Hybrid fault diagnosis, Dynamic neural networks, Nonlinear systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22231529 An Efficient Method for Solving Multipoint Equation Boundary Value Problems
Authors: Ampon Dhamacharoen, Kanittha Chompuvised
Abstract:
In this work, we solve multipoint boundary value problems where the boundary value conditions are equations using the Newton-Broyden Shooting method (NBSM).The proposed method is tested upon several problems from the literature and the results are compared with the available exact solution. The experiments are given to illustrate the efficiency and implementation of the method.Keywords: Boundary value problem; Multipoint equation boundary value problems, Shooting Method, Newton-Broyden method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17891528 Conjugate Gradient Algorithm for the Symmetric Arrowhead Solution of Matrix Equation AXB=C
Authors: Minghui Wang, Luping Xu, Juntao Zhang
Abstract:
Based on the conjugate gradient (CG) algorithm, the constrained matrix equation AXB=C and the associate optimal approximation problem are considered for the symmetric arrowhead matrix solutions in the premise of consistency. The convergence results of the method are presented. At last, a numerical example is given to illustrate the efficiency of this method.Keywords: Iterative method, symmetric arrowhead matrix, conjugate gradient algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14141527 Dynamic Analysis of Nonlinear Models with Infinite Extension by Boundary Elements
Authors: Delfim Soares Jr., Webe J. Mansur
Abstract:
The Time-Domain Boundary Element Method (TDBEM) is a well known numerical technique that handles quite properly dynamic analyses considering infinite dimension media. However, when these analyses are also related to nonlinear behavior, very complex numerical procedures arise considering the TD-BEM, which may turn its application prohibitive. In order to avoid this drawback and model nonlinear infinite media, the present work couples two BEM formulations, aiming to achieve the best of two worlds. In this context, the regions expected to behave nonlinearly are discretized by the Domain Boundary Element Method (D-BEM), which has a simpler mathematical formulation but is unable to deal with infinite domain analyses; the TD-BEM is employed as in the sense of an effective non-reflexive boundary. An iterative procedure is considered for the coupling of the TD-BEM and D-BEM, which is based on a relaxed renew of the variables at the common interfaces. Elastoplastic models are focused and different time-steps are allowed to be considered by each BEM formulation in the coupled analysis.Keywords: Boundary Element Method, Dynamic Elastoplastic Analysis, Iterative Coupling, Multiple Time-Steps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15401526 On Optimum Stratification
Authors: M. G. M. Khan, V. D. Prasad, D. K. Rao
Abstract:
In this manuscript, we discuss the problem of determining the optimum stratification of a study (or main) variable based on the auxiliary variable that follows a uniform distribution. If the stratification of survey variable is made using the auxiliary variable it may lead to substantial gains in precision of the estimates. This problem is formulated as a Nonlinear Programming Problem (NLPP), which turn out to multistage decision problem and is solved using dynamic programming technique.
Keywords: Auxiliary variable, Dynamic programming technique, Nonlinear programming problem, Optimum stratification, Uniform distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21141525 Adaptive Sliding Mode Observer for a Class of Systems
Abstract:
In this paper, the performance of two adaptive observers applied to interconnected systems is studied. The nonlinearity of systems can be written in a fractional form. The first adaptive observer is an adaptive sliding mode observer for a Lipchitz nonlinear system and the second one is an adaptive sliding mode observer having a filtered error as a sliding surface. After comparing their performances throughout the inverted pendulum mounted on a car system, it was shown that the second one is more robust to estimate the state.Keywords: Adaptive observer, Lipchitz system, Interconnected fractional nonlinear system, sliding mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16641524 Intelligent ABS Fuzzy Controller for Diverse RoadSurfaces
Authors: Roozbeh Keshmiri, Alireza Mohamad Shahri
Abstract:
Fuzzy controllers are potential candidates for the control of nonlinear, time variant and also complicated systems. Anti lock brake system (ABS) which is a nonlinear system, may not be easily controlled by classical control methods. An intelligent Fuzzy control method is very useful for this kind of nonlinear system. A typical antilock brake system (ABS) by sensing the wheel lockup, releases the brakes for a short period of time, and then reapplies again the brakes when the wheel spins up. In this paper, an intelligent fuzzy ABS controller is designed to adjust slipping performance for variety of roads. There are tow major sections in the proposing control system. First section consists of tow Fuzzy-Logic Controllers (FLC) providing optimal brake torque for both front and rear wheels. Second section which is also a FLC provides required amount of slip and torque references properties for different kind of roads. Simulation results of our proposed intelligent ABS for three different kinds of road show more reliable and better performance in compare with two other break systems.Keywords: Fuzzy Logic Control, ABS, Anti lock BrakingSystem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37471523 Nonlinear Dynamical Characterization of Heart Rate Variability Time Series of Meditation
Authors: B. S. Raghavendra, D. Narayana Dutt
Abstract:
Many recent electrophysiological studies have revealed the importance of investigating meditation state in order to achieve an increased understanding of autonomous control of cardiovascular functions. In this paper, we characterize heart rate variability (HRV) time series acquired during meditation using nonlinear dynamical parameters. We have computed minimum embedding dimension (MED), correlation dimension (CD), largest Lyapunov exponent (LLE), and nonlinearity scores (NLS) from HRV time series of eight Chi and four Kundalini meditation practitioners. The pre-meditation state has been used as a baseline (control) state to compare the estimated parameters. The chaotic nature of HRV during both pre-meditation and meditation is confirmed by MED. The meditation state showed a significant decrease in the value of CD and increase in the value of LLE of HRV, in comparison with premeditation state, indicating a less complex and less predictable nature of HRV. In addition, it was shown that the HRV of meditation state is having highest NLS than pre-meditation state. The study indicated highly nonlinear dynamic nature of cardiac states as revealed by HRV during meditation state, rather considering it as a quiescent state.Keywords: Correlation dimension, Embedding dimension, Heartrate variability, Largest Lyapunov exponent, Meditation, Nonlinearity score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19081522 Nonlinear Response of Infinite Beams on a Tensionless Extensible Geosynthetic – Reinforced Earth Beds under Moving Load
Authors: Karuppsamy K., Eswara Prasad C. R.
Abstract:
In this paper analysis of an infinite beam resting on tensionless extensible geosynthetic reinforced granular bed overlying soft soil strata under moving load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough elastic membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear Winkler springs representing the under-lied very poor soil. The tensionless extensible geosynthetic layer has been assumed to deform such that at interface the geosynthetic and the soil have some deformation. Nonlinear behavior of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. This study clearly observed that the comparisons of tension and tensionless foundation and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil foundation system.
Keywords: Infinite Beams, Tensionless Extensible Geosynthetic, Granular layer, Moving Load and Nonlinear behavior of poor soil
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20481521 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation
Authors: Vishwesh Kulkarni, Nikhil Bellarykar
Abstract:
Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.Keywords: Synthetic gene network, network identification, nonlinear modeling, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8041520 Periodic Solutions for a Third-order p-Laplacian Functional Differential Equation
Authors: Yanling Zhu, Kai Wang
Abstract:
By means of Mawhin’s continuation theorem, we study a kind of third-order p-Laplacian functional differential equation with distributed delay in the form: ϕp(x (t)) = g t, 0 −τ x(t + s) dα(s) + e(t), some criteria to guarantee the existence of periodic solutions are obtained.
Keywords: p–Laplacian, distributed delay, periodic solution, Mawhin's continuation theorem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12941519 An Optimal Control of Water Pollution in a Stream Using a Finite Difference Method
Authors: Nopparat Pochai, Rujira Deepana
Abstract:
Water pollution assessment problems arise frequently in environmental science. In this research, a finite difference method for solving the one-dimensional steady convection-diffusion equation with variable coefficients is proposed; it is then used to optimize water treatment costs.Keywords: Finite difference, One-dimensional, Steady state, Waterpollution control, Optimization, Convection-diffusion equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17481518 Numerical Analysis of Concrete Crash Barriers
Authors: J. Kala, P. Hradil, V. Salajka
Abstract:
Reinforced concrete crash barriers used in road traffic must meet a number of criteria. Crash barriers are laid lengthwise, one behind another, and joined using specially designed steel locks. While developing BSV reinforced concrete crash barriers (type ŽPSV), experiments and calculations aimed to optimize the shape of a newly designed lock and the reinforcement quantity and distribution in a crash barrier were carried out. The tension carrying capacity of two parallelly joined locks was solved experimentally. Based on the performed experiments, adjustments of nonlinear properties of steel were performed in the calculations. The obtained results served as a basis to optimize the lock design using a computational model that takes into account the plastic behaviour of steel and the influence of the surrounding concrete [6]. The response to the vehicle impact has been analyzed using a specially elaborated complex computational model, comprising both the nonlinear model of the damping wall or crash barrier and the detailed model of the vehicle [7].Keywords: Crash Barrier, impact, static analysis, concrete nonlinear model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32471517 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle
Authors: Babesse Saad, Ameddah Djameleddine
Abstract:
In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.Keywords: Rollover, single unit heavy vehicle, neural networks, nonlinear side force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10471516 Propagation of Viscous Waves and Activation Energy of Hydrocarbon Fluids
Authors: Ram N. Singh, Abraham K. George, Dawood N. Al-Namaani
Abstract:
The Euler-s equation of motion is extended to include the viscosity stress tensor leading to the formulation of Navier– Stokes type equation. The latter is linearized and applied to investigate the rotational motion or vorticity in a viscous fluid. Relations for the velocity of viscous waves and attenuation parameter are obtained in terms of viscosity (μ) and the density (¤ü) of the fluid. μ and ¤ü are measured experimentally as a function of temperature for two different samples of light and heavy crude oil. These data facilitated to determine the activation energy, velocity of viscous wave and the attenuation parameter. Shear wave velocity in heavy oil is found to be much larger than the light oil, whereas the attenuation parameter in heavy oil is quite low in comparison to light one. The activation energy of heavy oil is three times larger than light oil.Keywords: Activation Energy, Attenuation, Crude Oil, Navier- Stokes Equation, Viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19881515 Design, Simulation and Experimental Realization of Nonlinear Controller for GSC of DFIG System
Authors: R.K. Behera, S.Behera
Abstract:
In a wind power generator using doubly fed induction generator (DFIG), the three-phase pulse width modulation (PWM) voltage source converter (VSC) is used as grid side converter (GSC) and rotor side converter (RSC). The standard linear control laws proposed for GSC provides not only instablity against comparatively large-signal disturbances, but also the problem of stability due to uncertainty of load and variations in parameters. In this paper, a nonlinear controller is designed for grid side converter (GSC) of a DFIG for wind power application. The nonlinear controller is designed based on the input-output feedback linearization control method. The resulting closed-loop system ensures a sufficient stability region, make robust to variations in circuit parameters and also exhibits good transient response. Computer simulations and experimental results are presented to confirm the effectiveness of the proposed control strategy.Keywords: Doubly fed Induction Generator, grid side converter, machine side converter, dc link, feedback linearization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21241514 Iterative Solutions to Some Linear Matrix Equations
Authors: Jiashang Jiang, Hao Liu, Yongxin Yuan
Abstract:
In this paper the gradient based iterative algorithms are presented to solve the following four types linear matrix equations: (a) AXB = F; (b) AXB = F, CXD = G; (c) AXB = F s. t. X = XT ; (d) AXB+CYD = F, where X and Y are unknown matrices, A,B,C,D, F,G are the given constant matrices. It is proved that if the equation considered has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. The numerical results show that the proposed method is reliable and attractive.
Keywords: Matrix equation, iterative algorithm, parameter estimation, minimum norm solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18651513 Stability Analysis of a Class of Nonlinear Systems Using Discrete Variable Structures and Sliding Mode Control
Authors: Vivekanandan C., Prabhakar .R., Prema D.
Abstract:
This paper presents the application of discrete-time variable structure control with sliding mode based on the 'reaching law' method for robust control of a 'simple inverted pendulum on moving cart' - a standard nonlinear benchmark system. The controllers designed using the above techniques are completely insensitive to parametric uncertainty and external disturbance. The controller design is carried out using pole placement technique to find state feedback gain matrix , which decides the dynamic behavior of the system during sliding mode. This is followed by feedback gain realization using the control law which is synthesized from 'Gao-s reaching law'. The model of a single inverted pendulum and the discrete variable structure control controller are developed, simulated in MATLAB-SIMULINK and results are presented. The response of this simulation is compared with that of the discrete linear quadratic regulator (DLQR) and the advantages of sliding mode controller over DLQR are also presentedKeywords: Inverted pendulum, Variable Structure, Sliding mode control, Discrete-time systems, Nonlinear systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20061512 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method
Authors: N. Fusun Oyman Serteller
Abstract:
In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples. Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.
Keywords: Finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7161511 Vibration Analysis of Functionally Graded Engesser- Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation
Authors: M. Karami Khorramabadi, A. R. Nezamabadi
Abstract:
This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.
Keywords: Functionally Graded Beam, Free Vibration, Elastic Foundation, Engesser-Timoshenko Beam Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937