Search results for: Hydrodynamic force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 954

Search results for: Hydrodynamic force

504 A Computational Study on Flow Separation Control of Humpback Whale Inspired Sinusoidal Hydrofoils

Authors: J. Joy, T. H. New, I. H. Ibrahim

Abstract:

A computational study on bio-inspired NACA634-021 hydrofoils with leading-edge protuberances has been carried out to investigate their hydrodynamic flow control characteristics at a Reynolds number of 14,000 and different angles-of-attack. The numerical simulations were performed using ANSYS FLUENT and based on Reynolds-Averaged Navier-Stokes (RANS) solver mode incorporated with k-ω Shear Stress Transport (SST) turbulence model. The results obtained indicate varying flow phenomenon along the peaks and troughs over the span of the hydrofoils. Compared to the baseline hydrofoil with no leading-edge protuberances, the leading-edge modified hydrofoils tend to reduce flow separation extents along the peak regions. In contrast, there are increased flow separations in the trough regions of the hydrofoil with leading-edge protuberances. Interestingly, it was observed that dissimilar flow separation behaviour is produced along different peak- or trough-planes along the hydrofoil span, even though the troughs or peaks are physically similar at each interval for a particular hydrofoil. Significant interactions between adjacent flow structures produced by the leading-edge protuberances have also been observed. These flow interactions are believed to be responsible for the dissimilar flow separation behaviour along physically similar peak- or trough-planes.

Keywords: Computational Fluid Dynamics, Flow separation control, Hydrofoils, Leading-edge protuberances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
503 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto hydrodynamic boundary layer flow of a nanofluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nanothermal layer formed around the nanoparticle and Brownian motion of nanoparticles etc., appropriate models are used for the effective thermal and physical properties of nanofluids. To model the rotation of nanoparticles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that, the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: Heat transfer, Heat pipe, numerical modeling, nanofluid applications, particle swarm optimization, wedge shaped wick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280
502 Biosynthesis and In vitro Studies of Silver Bionanoparticles Synthesized from Aspergillusspecies and its Antimicrobial Activity against Multi Drug Resistant Clinical Isolates

Authors: M. Saravanan

Abstract:

Antimicrobial resistant is becoming a major factor in virtually all hospital acquired infection may soon untreatable is a serious public health problem. These concerns have led to major research effort to discover alternative strategies for the treatment of bacterial infection. Nanobiotehnology is an upcoming and fast developing field with potential application for human welfare. An important area of nanotechnology for development of reliable and environmental friendly process for synthesis of nanoscale particles through biological systems In the present studies are reported on the use of fungal strain Aspergillus species for the extracellular synthesis of bionanoparticles from 1 mM silver nitrate (AgNO3) solution. The report would be focused on the synthesis of metallic bionanoparticles of silver using a reduction of aqueous Ag+ ion with the culture supernatants of Microorganisms. The bio-reduction of the Ag+ ions in the solution would be monitored in the aqueous component and the spectrum of the solution would measure through UV-visible spectrophotometer The bionanoscale particles were further characterized by Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and Thin layer chromatography. The synthesized bionanoscale particle showed a maximum absorption at 385 nm in the visible region. Atomic Force Microscopy investigation of silver bionanoparticles identified that they ranged in the size of 250 nm - 680 nm; the work analyzed the antimicrobial efficacy of the silver bionanoparticles against various multi drug resistant clinical isolates. The present Study would be emphasizing on the applicability to synthesize the metallic nanostructures and to understand the biochemical and molecular mechanism of nanoparticles formation by the cell filtrate in order to achieve better control over size and polydispersity of the nanoparticles. This would help to develop nanomedicine against various multi drug resistant human pathogens.

Keywords: Bionanoparticles, UV-visible spectroscopy, AtomicForce Microscopy, Extracellular synthesis, Multi drug resistant, antimicrobial activity, Nanomedicine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
501 A Problem in Microstretch Thermoelastic Diffusive Medium

Authors: Devinder Singh, Arbind Kumar, Rajneesh Kumar

Abstract:

The general solution of the equations for a homogeneous isotropic microstretch thermo elastic medium with mass diffusion for two dimensional problems is obtained due to normal and tangential forces. The Integral transform technique is used to obtain the components of displacements, microrotation, stress and mass concentration, temperature change and mass concentration. A particular case of interest is deduced from the present investigation.

Keywords: Normal and tangential force, Microstretch, thermoelastic, The Integral transform technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
500 An Identification Method of Geological Boundary Using Elastic Waves

Authors: Masamitsu Chikaraishi, Mutsuto Kawahara

Abstract:

This paper focuses on a technique for identifying the geological boundary of the ground strata in front of a tunnel excavation site using the first order adjoint method based on the optimal control theory. The geological boundary is defined as the boundary which is different layers of elastic modulus. At tunnel excavations, it is important to presume the ground situation ahead of the cutting face beforehand. Excavating into weak strata or fault fracture zones may cause extension of the construction work and human suffering. A theory for determining the geological boundary of the ground in a numerical manner is investigated, employing excavating blasts and its vibration waves as the observation references. According to the optimal control theory, the performance function described by the square sum of the residuals between computed and observed velocities is minimized. The boundary layer is determined by minimizing the performance function. The elastic analysis governed by the Navier equation is carried out, assuming the ground as an elastic body with linear viscous damping. To identify the boundary, the gradient of the performance function with respect to the geological boundary can be calculated using the adjoint equation. The weighed gradient method is effectively applied to the minimization algorithm. To solve the governing and adjoint equations, the Galerkin finite element method and the average acceleration method are employed for the spatial and temporal discretizations, respectively. Based on the method presented in this paper, the different boundary of three strata can be identified. For the numerical studies, the Suemune tunnel excavation site is employed. At first, the blasting force is identified in order to perform the accuracy improvement of analysis. We identify the geological boundary after the estimation of blasting force. With this identification procedure, the numerical analysis results which almost correspond with the observation data were provided.

Keywords: Parameter identification, finite element method, average acceleration method, first order adjoint equation method, weighted gradient method, geological boundary, navier equation, optimal control theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
499 Arsenic Mobility from Mining Tailings of Monte San Nicolas to Presa de Mata in Guanajuato, Mexico

Authors: I. Cano-Aguilera, B. E. Rubio-Campos, G. De la Rosa, A. F. Aguilera-Alvarado

Abstract:

Mining tailings represent a generating source of rich heavy metal material with a potential danger the public health and the environment, since these metals, under certain conditions, can leach and contaminate aqueous systems that serve like supplying potable water sources. The strategy for this work is based on the observation, experimentation and the simulation that can be obtained by binding real answers of the hydrodynamic behavior of metals leached from mining tailings, and the applied mathematics that provides the logical structure to decipher the individual effects of the general physicochemical phenomenon. The case of study presented herein focuses on mining tailings deposits located in Monte San Nicolas, Guanajuato, Mexico, an abandoned mine. This was considered the contamination source that under certain physicochemical conditions can favor the metal leaching, and its transport towards aqueous systems. In addition, the cartography, meteorology, geology and the hydrodynamics and hydrological characteristics of the place, will be helpful in determining the way and the time in which these systems can interact. Preliminary results demonstrated that arsenic presents a great mobility, since this one was identified in several superficial aqueous systems of the micro watershed, as well as in sediments in concentrations that exceed the established maximum limits in the official norms. Also variations in pH and potential oxide-reduction were registered, conditions that favor the presence of different species from this element its solubility and therefore its mobility.

Keywords: Arsenic, mining tailings, transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
498 An Automated Approach to the Nozzle Configuration of Polycrystalline Diamond Compact Drill Bits for Effective Cuttings Removal

Authors: R. Suresh, Pavan Kumar Nimmagadda, Ming Zo Tan, Shane Hart, Sharp Ugwuocha

Abstract:

Polycrystalline diamond compact (PDC) drill bits are extensively used in the oil and gas industry as well as the mining industry. Industry engineers continually improve upon PDC drill bit designs and hydraulic conditions. Optimized injection nozzles play a key role in improving the drilling performance and efficiency of these ever changing PDC drill bits. In the first part of this study, computational fluid dynamics (CFD) modelling is performed to investigate the hydrodynamic characteristics of drilling fluid flow around the PDC drill bit. An Open-source CFD software – OpenFOAM simulates the flow around the drill bit, based on the field input data. A specifically developed console application integrates the entire CFD process including, domain extraction, meshing, and solving governing equations and post-processing. The results from the OpenFOAM solver are then compared with that of the ANSYS Fluent software. The data from both software programs agree. The second part of the paper describes the parametric study of the PDC drill bit nozzle to determine the effect of parameters such as number of nozzles, nozzle velocity, nozzle radial position and orientations on the flow field characteristics and bit washing patterns. After analyzing a series of nozzle configurations, the best configuration is identified and recommendations are made for modifying the PDC bit design.

Keywords: ANSYS Fluent, computational fluid dynamics, nozzle configuration, OpenFOAM, PDC dill bit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922
497 Calculation and Comparison of a Turbofan Engine Performance Parameters with Various Definitions

Authors: O. Onal, O. Turan

Abstract:

In this paper, some performance parameters of a selected turbofan engine (JT9D) are analyzed. The engine is a high bypass turbofan engine which powers a wide-body aircraft and it produces 206 kN thrust force (thrust/weight ratio is 5.4). The objective parameters for the engine include calculation of power, specific fuel consumption, specific thrust, engine propulsive, thermal and overall efficiencies according to the various definitions given in the literature. Furthermore, in the case study, wasted energy from the exhaust is calculated at the maximum power setting (i.e. take off phase) for the engine.

Keywords: Turbofan, power, efficiency, trust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3945
496 Numerical Simulation for Self-Loosening Phenomenon Analysis of Bolt Joint under Vibration

Authors: Long Kim Vu, Ban Dang Nguyen

Abstract:

In this paper, the finite element method (FEM) is utilized to simulate the comprehensive process including tightening, releasing and self-loosening of a bolt joint under transverse vibration. Following to the accurate geometry of helical threads, an absolutely hexahedral meshing is implemented. The accuracy of simulation process is verified and validated by comparison with the experimental results on clamping force-vibration relationship, which shows the sufficient correlation. Further analysis with different amplitude and frequency of transverse vibration is done to determine the dominant factor inducing the failure.

Keywords: Bolt self-loosening, contact state, FEM, transverse vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274
495 Dominant Correlation Effects in Atomic Spectra

Authors: Hubert Klar

Abstract:

High double excitation of two-electron atoms has been investigated using hyperpherical coordinates within a modified adiabatic expansion technique. This modification creates a novel fictitious force leading to a spontaneous exchange symmetry breaking at high double excitation. The Pauli principle must therefore be regarded as approximation valid only at low excitation energy. Threshold electron scattering from high Rydberg states shows an unexpected time reversal symmetry breaking. At threshold for double escape we discover a broad (few eV) Cooper pair.

Keywords: Correlation, resonances, threshold ionization, Cooper pair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
494 Effect of Impact Location upon Sub-Impacts between Beam and Block

Authors: T. F. Jin, X. C. Yin, P. B. Qian

Abstract:

The present investigation is concerned with sub-impacts taken placed when a rigid hemispherical-head block transversely impacts against a beam at different locations. Dynamic substructure technique for elastic-plastic impact is applied to solve numerically this problem. The time history of impact force and energy exchange between block and beam are obtained. The process of sub-impacts is analyzed from the energy exchange point of view. The results verify the influences of the impact location on impact duration, the first sub-impact and energy exchange between the beam and the block.

Keywords: Beam, sub-impact, substructure, elastic-plasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
493 Modeling and Simulation of Ship Structures Using Finite Element Method

Authors: Javid Iqbal, Zhu Shifan

Abstract:

The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.

Keywords: Dynamic analysis, finite element methods, ship structure, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391
492 Time Map

Authors: A. Peveri

Abstract:

The interaction of mass will determine the curvature of space-time, may determine that events proceed at different rates of time at each point in space, so each has a corresponding gravitational potential time. So we can find different values ​​of gravity (g), corresponding to different times (t), thus making a "map of time in space." The space-time is curved by present mass, causing a force of attraction towards the body, but if you invest the curvature of space-time, we find that this field is repulsive: Obtaining negative gravitational forces and positive gravitational forces respectively.

Keywords: Space-time, time, positive gravitation, negative gravitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
491 The Finite Difference Scheme for the Suspended String Equation with the Nonlinear External Forces

Authors: Jaipong Kasemsuwan

Abstract:

This paper presents the finite difference scheme and the numerical simulation of suspended string. The vibration solutions when the various external forces are taken into account are obtained and compared with the solutions without external force. In addition, we also investigate how the external forces and their powers and coefficients affect the amplitude of vibration.

Keywords: Nonlinear external forces, Numerical simulation, Suspended string equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
490 Parametric Non-Linear Analysis of Reinforced Concrete Frames with Supplemental Damping Systems

Authors: Daniele Losanno, Giorgio Serino

Abstract:

This paper focuses on parametric analysis of reinforced concrete structures equipped with supplemental damping braces. Practitioners still luck sufficient data for current design of damper added structures and often reduce the real model to a pure damper braced structure even if this assumption is neither realistic nor conservative. In the present study, the damping brace is modelled as made by a linear supporting brace connected in series with the viscous/hysteretic damper. Deformation capacity of existing structures is usually not adequate to undergo the design earthquake. In spite of this, additional dampers could be introduced strongly limiting structural damage to acceptable values, or in some cases, reducing frame response to elastic behavior. This work is aimed at providing useful considerations for retrofit of existing buildings by means of supplemental damping braces. The study explicitly takes into consideration variability of (a) relative frame to supporting brace stiffness, (b) dampers’ coefficient (viscous coefficient or yielding force) and (c) non-linear frame behavior. Non-linear time history analysis has been run to account for both dampers’ behavior and non-linear plastic hinges modelled by Pivot hysteretic type. Parametric analysis based on previous studies on SDOF or MDOF linear frames provide reference values for nearly optimal damping systems design. With respect to bare frame configuration, seismic response of the damper-added frame is strongly improved, limiting deformations to acceptable values far below ultimate capacity. Results of the analysis also demonstrated the beneficial effect of stiffer supporting braces, thus highlighting inadequacy of simplified pure damper models. At the same time, the effect of variable damping coefficient and yielding force has to be treated as an optimization problem.

Keywords: Brace stiffness, dissipative braces, non-linear analysis, plastic hinges, reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 868
489 Aerodynamic Interaction between Two Speed Skaters Measured in a Closed Wind Tunnel

Authors: Ola Elfmark, Lars M. Bardal, Luca Oggiano, H˚avard Myklebust

Abstract:

Team pursuit is a relatively new event in international long track speed skating. For a single speed skater the aerodynamic drag will account for up to 80% of the braking force, thus reducing the drag can greatly improve the performance. In a team pursuit the interactions between athletes in near proximity will also be essential, but is not well studied. In this study, systematic measurements of the aerodynamic drag, body posture and relative positioning of speed skaters have been performed in the low speed wind tunnel at the Norwegian University of Science and Technology, in order to investigate the aerodynamic interaction between two speed skaters. Drag measurements of static speed skaters drafting, leading, side-by-side, and dynamic drag measurements in a synchronized and unsynchronized movement at different distances, were performed. The projected frontal area was measured for all postures and movements and a blockage correction was performed, as the blockage ratio ranged from 5-15% in the different setups. The static drag measurements where performed on two test subjects in two different postures, a low posture and a high posture, and two different distances between the test subjects 1.5T and 3T where T being the length of the torso (T=0.63m). A drag reduction was observed for all distances and configurations, from 39% to 11.4%, for the drafting test subject. The drag of the leading test subject was only influenced at -1.5T, with the biggest drag reduction of 5.6%. An increase in drag was seen for all side-by-side measurements, the biggest increase was observed to be 25.7%, at the closest distance between the test subjects, and the lowest at 2.7% with ∼ 0.7 m between the test subjects. A clear aerodynamic interaction between the test subjects and their postures was observed for most measurements during static measurements, with results corresponding well to recent studies. For the dynamic measurements, the leading test subject had a drag reduction of 3% even at -3T. The drafting showed a drag reduction of 15% when being in a synchronized (sync) motion with the leading test subject at 4.5T. The maximal drag reduction for both the leading and the drafting test subject were observed when being as close as possible in sync, with a drag reduction of 8.5% and 25.7% respectively. This study emphasize the importance of keeping a synchronized movement by showing that the maximal gain for the leading and drafting dropped to 3.2% and 3.3% respectively when the skaters are in opposite phase. Individual differences in technique also appear to influence the drag of the other test subject.

Keywords: Aerodynamic interaction, drag cycle, drag force, frontal area, speed skating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
488 Dynamic Analyze of Snake Robot

Authors: Seif Dalilsafaei

Abstract:

Crawling movement as a motive mode seen in nature of some animals such as snakes possesses a specific syntactic and dynamic analysis. Serpentine robot designed by inspiration from nature and snake-s crawling motion, is regarded as a crawling robot. In this paper, a serpentine robot with spiral motion model will be analyzed. The purpose of this analysis is to calculate the vertical and tangential forces along snake-s body and to determine the parameters affecting on these forces. Two types of serpentine robots have been designed in order to examine the achieved relations explained below.

Keywords: Force, Dynamic analyze, Joint and Snake robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
487 The Adsorption of SDS on Ferro-Precipitates

Authors: R.Marsalek

Abstract:

This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (ν ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ν <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.

Keywords: ferro-precipitate, adsorption, SDS, zeta potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
486 Comparative Finite Element Simulation of Nonlinear Vibrations and Sensor Output Voltage of Smart Piezolaminated Structures

Authors: Ruediger Schmidt, Thang Duy Vu

Abstract:

Two geometrically nonlinear plate theories, based either on first- or third-order transverse shear deformation theory are used for finite element modeling and simulation of the transient response of smart structures incorporating piezoelectric layers. In particular the time histories of nonlinear vibrations and sensor voltage output of a thin beam with a piezoelectric patch bonded to the surface due to an applied step force are studied.

Keywords: Nonlinear vibrations, piezoelectric patches, sensor voltage output, smart structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
485 Globalization - Opportunity or Threat to the Rural Areas in Poland

Authors: Marian Woźniak, Alicja Sobkowiak

Abstract:

The world is entering a new path of development which is becoming the driving force of globalization. It is seen as an irreversible process of the present reality and has a significant impact on the transformation of economic, social and cultural rights. This also applies to changes in the rural environment which while emphasizing the global development should also maintain its identity and locality, and a rural community should do more to recognize the globalization of an opportunity than a threat to the Polish countryside. The paper discusses theoretical problems of rural development and the importance of diversification in rural areas and preserving the countryside life and there werepresente the opinions of residents of the Polish countryside on the impact of globalization on the development.

Keywords: globalization, rural areas

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
484 Microstructure Changes of Machined Surfaceson Austenitic 304 Stainless Steel

Authors: Lin. Yan, Wenyu. Yang, Hongping. Jin, Zhiguang Wang

Abstract:

This paper presents a experiment to estimate the influences of cutting conditions in microstructure changes of machining austenitic 304 stainless steel, especially for wear insert. The wear insert were prefabricated with a width of 0.5 mm. And the forces, temperature distribution, RS, and microstructure changes were measured by force dynamometer, infrared thermal camera, X-ray diffraction, XRD, SEM, respectively. The results told that the different combinations of machining condition have a significant influence on machined surface microstructure changes. In addition to that, the ANOVA and AOMwere used to tell the different influences of cutting speed, feed rate, and wear insert.

Keywords: Microstructure Changes, Wear width, Stainless steel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294
483 Nanoindentation of Thin Films Prepared by Physical Vapor Deposition

Authors: Dhiflaoui Hafedh, Khlifi Kaouthar, Ben Cheikh Larbi Ahmed

Abstract:

These Monolayer and multilayer coatings of CrN and AlCrN deposited on 100Cr6 (AISI 52100) substrate by PVD magnetron sputtering system. The microstructures of the coatings were characterized using atomic force microscopy (AFM). The AFM analysis revealed the presence of domes and craters that are uniformly distributed over all surfaces of the various layers. Nanoindentation measurement of CrN coating showed maximum hardness (H) and modulus (E) of 14 GPa and 190 GPa, respectively. The measured H and E values of AlCrN coatings were found to be 30 GPa and 382 GPa, respectively. The improved hardness in both the coatings was attributed mainly to a reduction in crystallite size and decrease in surface roughness. The incorporation of Al into the CrN coatings has improved both hardness and Young’s modulus.

Keywords: CrN/AlCrN, coatings, hardness, nano-indentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
482 Array Data Transformation for Source Code Obfuscation

Authors: S. Praveen, P. Sojan Lal

Abstract:

Obfuscation is a low cost software protection methodology to avoid reverse engineering and re engineering of applications. Source code obfuscation aims in obscuring the source code to hide the functionality of the codes. This paper proposes an Array data transformation in order to obfuscate the source code which uses arrays. The applications using the proposed data structures force the programmer to obscure the logic manually. It makes the developed obscured codes hard to reverse engineer and also protects the functionality of the codes.

Keywords: Reverse Engineering, Source Code Obfuscation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
481 Production Structures of Energy Based on Water Force, Its Infrastructure Protection, and Possible Causes of Failure

Authors: Gabriela-Andreea Despescu, Mădălina-Elena Mavrodin, Gheorghe Lăzăroiu, Florin Adrian Grădinaru

Abstract:

The purpose of this paper is to contribute to the enhancement of a hydroelectric plant protection by coordinating protection measures / existing security and introducing new measures under a risk management process. In addition, plan identifies key critical elements of a hydroelectric plant, from its level vulnerabilities and threats it is subjected to in order to achieve the necessary protection measures to reduce the level of risk.

Keywords: Critical infrastructure, risk analysis, critical infrastructure protection, vulnerability, risk management, turbine, Impact analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
480 Two Degree of Freedom Spherical Mechanism Design for Exact Sun Tracking

Authors: Osman Acar

Abstract:

Sun tracking systems are the systems following the sun ray by a right angle or by predetermined certain angle. In this study, we used theoretical trajectory of sun for latitude of central Anatolia in Turkey. A two degree of freedom spherical mechanism was designed to have a large workspace able to follow the sun's theoretical motion by the right angle during the whole year. An inverse kinematic analysis was generated to find the positions of mechanism links for the predicted trajectory. Force and torque analysis were shown for the first day of the year.

Keywords: Sun tracking, theoretical sun trajectory, spherical mechanism, inverse kinematic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
479 Preparation and Characterization of Self Assembled Gold Nanoparticles on Amino Functionalized SiO2 Dielectric Core

Authors: M.E.khosroshahi , M.S.Nourbakhsh

Abstract:

Wet chemistry methods are used to prepare the SiO2/Au nanoshells. The purpose of this research was to synthesize gold coated SiO2 nanoshells for biomedical applications. Tunable nanoshells were prepared by using different colloidal concentrations. The nanoshells are characterized by FTIR, XRD, UV-Vis spectroscopy and atomic force microscopy (AFM). The FTIR results confirmed the functionalization of the surfaces of silica nanoparticles with NH2 terminal groups. A tunable absorption was observed between 470-600 nm with a maximum range of 530-560 nm. Based on the XRD results three main peaks of Au (111), (200) and (220) were identified. Also AFM results showed that the silica core diameter was about 100 nm and the thickness of gold shell about 10 nm.

Keywords: Gold nanoshells, Synthesis, UV-vis spectroscopy, XRD, AFM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3237
478 A Study of the Change of Damping Coefficient Regarding Minimum Displacement

Authors: Tawiwat V., Narongkorn D., Auttapoom L.

Abstract:

This research proposes the change of damping coefficient regarding minimum displacement. From the mass with external forced and damper problem, when is the constant external forced transmitted to the understructure in the difference angle between 30 and 60 degrees. This force generates the vibration as general known; however, the objective of this problem is to have minimum displacement. As the angle is changed and the goal is the same; therefore, the damper of the system must be varied while keeping constant spring stiffness. The problem is solved by using nonlinear programming and the suitable changing of the damping coefficient is provided.

Keywords: Damping coefficient, Optimal control, Minimum Displacement and Vibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
477 Predictions and Comparisons of Thermohydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer-Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings (GFBs) are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional (3D) fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.

Keywords: Fluid structure interaction multi-physics simulations, gas foil bearing, oil-free, transient thermohydrodynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 394
476 Association between Single Nucleotide Polymorphism of Calpain1 Gene and Meat Tenderness Traits in Different Genotypes of Chicken: Malaysian Native and Commercial Broiler Line

Authors: Abtehal Y. Anaas, Mohd. Nazmi Bin Abd. Manap

Abstract:

Meat Tenderness is one of the most important factors affecting consumers' assessment of meat quality. Variation in meat tenderness is genetically controlled and varies among breeds, and it is also influenced by environmental factors that can affect its creation during rigor mortis and postmortem. The final postmortem meat tenderization relies on the extent of proteolysis of myofibrillar proteins caused by the endogenous activity of the proteolytic calpain system. This calpain system includes different calcium-dependent cysteine proteases, and an inhibitor, calpastatin. It is widely accepted that in farm animals including chickens, the μ-calpain gene (CAPN1) is a physiological candidate gene for meat tenderness. This study aimed to identify the association of single nucleotide polymorphism (SNP) markers in the CAPN1 gene with the tenderness of chicken breast meat from two Malaysian native and commercial broiler breed crosses. Ten, five months old native chickens and ten, 42 days commercial broilers were collected from the local market and breast muscles were removed two hours after slaughter, packed separately in plastic bags and kept at -20ºC for 24 h. The tenderness phenotype for all chickens’ breast meats was determined by Warner-Bratzler Shear Force (WBSF). Thawing and cooking losses were also measured in the same breast samples before using in WBSF determination. Polymerase chain reaction (PCR) was used to identify the previously reported C7198A and G9950A SNPs in the CAPN1 gene and assess their associations with meat tenderness in the two breeds. The broiler breast meat showed lower shear force values and lower thawing loss rates than the native chickens (p<0.05), whereas there were similar in the rates of cooking loss. The study confirms some previous results that the markers CAPN1 C7198A and G9950A were not significantly associated with the variation in meat tenderness in chickens. Therefore, further study is needed to confirm the functional molecular mechanism of these SNPs and evaluate their associations in different chicken populations.

Keywords: CAPNl, chicken, meat tenderness, meat quality, SNPs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
475 Preparation of Nanophotonics LiNbO3 Thin Films and Studying Their Morphological and Structural Properties by Sol-Gel Method for Waveguide Applications

Authors: A. Fakhri Makram, Marwa S. Alwazni, Al-Douri Yarub, Evan T. Salim, Hashim Uda, Chin C. Woei

Abstract:

Lithium niobate (LiNbO3) nanostructures are prepared on quartz substrate by the sol-gel method. They have been deposited with different molarity concentration and annealed at 500°C. These samples are characterized and analyzed by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM). The measured results showed an importance increasing in molarity concentrations that indicate the structure starts to become crystal, regular, homogeneous, well crystal distributed, which made it more suitable for optical waveguide application.

Keywords: Lithium niobate, morphological properties, Pechini method, thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925