Search results for: AUV dynamic model
8210 Comparative Analysis of Geographical Routing Protocol in Wireless Sensor Networks
Authors: Rahul Malhotra
Abstract:
The field of wireless sensor networks (WSN) engages a lot of associates in the research community as an interdisciplinary field of interest. This type of network is inexpensive, multifunctionally attributable to advances in micro-electromechanical systems and conjointly the explosion and expansion of wireless communications. A mobile ad hoc network is a wireless network without fastened infrastructure or federal management. Due to the infrastructure-less mode of operation, mobile ad-hoc networks are gaining quality. During this work, we have performed an efficient performance study of the two major routing protocols: Ad hoc On-Demand Distance Vector Routing (AODV) and Dynamic Source Routing (DSR) protocols. We have used an accurate simulation model supported NS2 for this purpose. Our simulation results showed that AODV mitigates the drawbacks of the DSDV and provides better performance as compared to DSDV.
Keywords: Routing protocols, mobility, Mobile Ad-hoc Networks, Ad-hoc On-demand Distance Vector, Dynamic Source Routing, Destination Sequence Distance Vector, Quality of Service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7198209 Using Finite Element Analysis on Dynamic Characteristics in a Micro Stepping Mill
Authors: Bo Wun Huang, Pu Ping Yu, Jao-Hwa Kuang
Abstract:
For smaller mechatronic device, especially for micro Electronic system, a micro machining is a must. However, most investigations on vibration of a mill have been limited to the traditional type mill. In this article, vibration and dynamic characteristics of a micro mill were investigated in this study. The trend towards higher precision manufacturing technology requires producing miniaturized components. To improve micro-milled product quality, obtain a higher production rate and avoid milling breakage, the dynamic characteristics of micro milling must be studied. A stepped pre-twisted mill is used to simulate the micro mill. The finite element analysis is employed in this work. The flute length and diameter effects of the micro mill are considered. It is clear that the effects of micro mill shape parameters on vibration in a micro mill are significant.Keywords: micro system, micro mill, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18838208 LQR Based PID Controller Design for 3-DOF Helicopter System
Authors: Santosh Kr. Choudhary
Abstract:
In this article, LQR based PID controller design for 3DOF helicopter system is investigated. The 3-DOF helicopter system is a benchmark laboratory model having strongly nonlinear characteristics and unstable dynamics which make the control of such system a challenging task. This article first presents the mathematical model of the 3DOF helicopter system and then illustrates the basic idea and technical formulation for controller design. The paper explains the simple approach for the approximation of PID design parameters from the LQR controller gain matrix. The simulation results show that the investigated controller has both static and dynamic performance, therefore the stability and the quick control effect can be obtained simultaneously for the 3DOF helicopter system.
Keywords: 3DOF helicopter system, PID controller, LQR controller, modeling, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52388207 Control Strategy for an Active Suspension System
Authors: C. Alexandru, P. Alexandru
Abstract:
The paper presents the virtual model of the active suspension system used for improving the dynamic behavior of a motor vehicle. The study is focused on the design of the control system, the purpose being to minimize the effect of the road disturbances (which are considered as perturbations for the control system). The analysis is performed for a quarter-car model, which corresponds to the suspension system of the front wheel, by using the DFC (Design for Control) software solution EASY5 (Engineering Analysis Systems) of MSC Software. The controller, which is a PIDbased device, is designed through a parametric optimization with the Matrix Algebra Tool (MAT), considering the gain factors as design variables, while the design objective is to minimize the overshoot of the indicial response.Keywords: Active suspension, Controller, Dynamics, Vehicle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22668206 Dynamic Stability Assessment of Different Wheel Sized Bicycles Based on Current Frame Design Practice with ISO Requirement for Bicycle Safety
Authors: Milan Paudel, Fook Fah Yap, Anil K. Bastola
Abstract:
The difficulties in riding small wheel bicycles and their lesser stability have been perceived for a long time. Although small wheel bicycles are designed using the similar approach and guidelines that have worked well for big wheel bicycles, the performance of the big wheelers and the smaller wheelers are markedly different. Since both the big wheelers and small wheelers have same fundamental geometry, most blame the small wheel for this discrepancy in the performance. This paper reviews existing guidelines for bicycle design, especially the front steering geometry for the bicycle, and provides a systematic and quantitative analysis of different wheel sized bicycles. A validated mathematical model has been used as a tool to assess the dynamic performance of the bicycles in term of their self-stability. The results obtained were found to corroborate the subjective perception of cyclists for small wheel bicycles. The current approach for small wheel bicycle design requires higher speed to be self-stable. However, it was found that increasing the headtube angle and selecting a proper trail could improve the dynamic performance of small wheel bicycles. A range of parameters for front steering geometry has been identified for small wheel bicycles that have comparable stability as big wheel bicycles. Interestingly, most of the identified geometries are found to be beyond the ISO recommended range and seem to counter the current approach of small wheel bicycle design. Therefore, it was successfully shown that the guidelines for big wheelers do not translate directly to small wheelers, but careful selection of the front geometry could make small wheel bicycles as stable as big wheel bicycles.
Keywords: Big wheel bicycle, design approach, ISO requirements, small wheel bicycle, stability and performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8628205 Concurrent Approach to Data Parallel Model using Java
Authors: Bala Dhandayuthapani Veerasamy
Abstract:
Parallel programming models exist as an abstraction of hardware and memory architectures. There are several parallel programming models in commonly use; they are shared memory model, thread model, message passing model, data parallel model, hybrid model, Flynn-s models, embarrassingly parallel computations model, pipelined computations model. These models are not specific to a particular type of machine or memory architecture. This paper expresses the model program for concurrent approach to data parallel model through java programming.Keywords: Concurrent, Data Parallel, JDK, Parallel, Thread
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21118204 Static and Dynamic Three-Dimensional Finite Element Analysis of Pelvic Bone
Authors: M. S. El-Asfoury, M. A. El-Hadek
Abstract:
The complex shape of the human pelvic bone was successfully imaged and modeled using finite element FE processing. The bone was subjected to quasi-static and dynamic loading conditions simulating the effect of both weight gain and impact. Loads varying between 500 – 2500 N (~50 – 250 Kg of weight) was used to simulate 3D quasi-static weight gain. Two different 3D dynamic analyses, body free fall at two different heights (1 and 2 m) and forced side impact at two different velocities (20 and 40 Km/hr) were also studied. The computed resulted stresses were compared for the four loading cases, where Von Misses stresses increases linearly with the weight gain increase under quasi-static loading. For the dynamic models, the Von Misses stress history behaviors were studied for the affected area and effected load with respect to time. The normalization Von Misses stresses with respect to the applied load were used for comparing the free fall and the forced impact load results. It was found that under the forced impact loading condition an over lapping behavior was noticed, where as for the free fall the normalized Von Misses stresses behavior was found to nonlinearly different. This phenomenon was explained through the energy dissipation concept. This study will help designers in different specialization in defining the weakest spots for designing different supporting systems.Keywords: Pelvic Bone, Static and Dynamic Analysis, Three- Dimensional Finite Element Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21508203 Dynamic Correlations and Portfolio Optimization between Islamic and Conventional Equity Indexes: A Vine Copula-Based Approach
Authors: Imen Dhaou
Abstract:
This study examines conditional Value at Risk by applying the GJR-EVT-Copula model, and finds the optimal portfolio for eight Dow Jones Islamic-conventional pairs. Our methodology consists of modeling the data by a bivariate GJR-GARCH model in which we extract the filtered residuals and then apply the Peak over threshold model (POT) to fit the residual tails in order to model marginal distributions. After that, we use pair-copula to find the optimal portfolio risk dependence structure. Finally, with Monte Carlo simulations, we estimate the Value at Risk (VaR) and the conditional Value at Risk (CVaR). The empirical results show the VaR and CVaR values for an equally weighted portfolio of Dow Jones Islamic-conventional pairs. In sum, we found that the optimal investment focuses on Islamic-conventional US Market index pairs because of high investment proportion; however, all other index pairs have low investment proportion. These results deliver some real repercussions for portfolio managers and policymakers concerning to optimal asset allocations, portfolio risk management and the diversification advantages of these markets.
Keywords: CVaR, Dow Jones Islamic index, GJR-GARCH-EVT-pair copula, portfolio optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10058202 Order Reduction of Linear Dynamic Systems using Stability Equation Method and GA
Authors: G. Parmar, R. Prasad, S. Mukherjee
Abstract:
The authors present an algorithm for order reduction of linear dynamic systems using the combined advantages of stability equation method and the error minimization by Genetic algorithm. The denominator of the reduced order model is obtained by the stability equation method and the numerator terms of the lower order transfer function are determined by minimizing the integral square error between the transient responses of original and reduced order models using Genetic algorithm. The reduction procedure is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The proposed algorithm has also been extended for the order reduction of linear multivariable systems. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing ones including one example of multivariable system.
Keywords: Genetic algorithm, Integral square error, Orderreduction, Stability equation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31968201 Qmulus – A Cloud Driven GPS Based Tracking System for Real-Time Traffic Routing
Authors: Niyati Parameswaran, Bharathi Muthu, Madiajagan Muthaiyan
Abstract:
This paper presents Qmulus- a Cloud Based GPS Model. Qmulus is designed to compute the best possible route which would lead the driver to the specified destination in the shortest time while taking into account real-time constraints. Intelligence incorporated to Qmulus-s design makes it capable of generating and assigning priorities to a list of optimal routes through customizable dynamic updates. The goal of this design is to minimize travel and cost overheads, maintain reliability and consistency, and implement scalability and flexibility. The model proposed focuses on reducing the bridge between a Client Application and a Cloud service so as to render seamless operations. Qmulus-s system model is closely integrated and its concept has the potential to be extended into several other integrated applications making it capable of adapting to different media and resources.Keywords: Cloud Services, GPS, Real-Time Constraints, Shortest Path, System Management and Traffic Routing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18018200 A Model of Market Segmentation for the Customers of Mellat Bank in Iran
Authors: Nader Gharibnavaz, Hossein Yazdi
Abstract:
If organizations like Mellat Bank want to identify its customer market completely to reach its specified goals, it can segment the market to offer the product package to the right segment. Our objective is to offer a segmentation model for Iran banking market in Mellat bank view. The methodology of this project is combined by “segmentation on the basis of four part-quality variables" and “segmentation on the basis of different in means". Required data are gathered from E-Systems and researcher personal observation. Finally, the research offers the organization that at first step form a four dimensional matrix with 756 segments using four variables named value-based, behavioral, activity style, and activity level, and at the second step calculate the means of profit for every cell of matrix in two distinguished work level (levels α1:normal condition and α2: high pressure condition) and compare the segments by checking two conditions that are 1- homogeneity every segment with its sub segment and 2- heterogeneity with other segments, and so it can do the necessary segmentation process. After all, the last offer (more explained by an operational example and feedback algorithm) is to test and update the model because of dynamic environment, technology, and banking system.Keywords: market segmentation model, banking system, Mellat bank
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32948199 PI Control for Positive Output Elementary Super Lift Luo Converter
Authors: K. Ramash Kumar, S. Jeevananthan
Abstract:
The object of this paper is to design and analyze a proportional – integral (PI) control for positive output elementary super lift Luo converter (POESLLC), which is the start-of-the-art DC-DC converter. The positive output elementary super lift Luo converter performs the voltage conversion from positive source voltage to positive load voltage. This paper proposes a development of PI control capable of providing the good static and dynamic performance compared to proportional – integralderivative (PID) controller. Using state space average method derives the dynamic equations describing the positive output elementary super lift luo converter and PI control is designed. The simulation model of the positive output elementary super lift Luo converter with its control circuit is implemented in Matlab/Simulink. The PI control for positive output elementary super lift Luo converter is tested for transient region, line changes, load changes, steady state region and also for components variations.Keywords: DC-DC converter, Positive output elementarysuper lift Luo converter (POESLLC), Proportional – Integral (PI)control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50318198 Evolutionary Cobreeding of Cooperative and Competitive Subcultures
Authors: Emilia Nercissians
Abstract:
Neoclassical and functionalist explanations of self organization in multiagent systems have been criticized on several accounts including unrealistic explication of overadapted agents and failure to resolve problems of externality. The paper outlines a more elaborate and dynamic model that is capable of resolving these dilemmas. An illustrative example where behavioral diversity is cobred in a repeated nonzero sum task via evolutionary computing is presented.Keywords: evolutionary stability, externalities, neofunctionalism, prisoners' dilemma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13128197 Dynamic Performance Indicators for Aged-Care Construction Projects
Authors: Norman Wu, Darren Sun
Abstract:
Key performance indicators (KPIs) are used for post result evaluation in the construction industry, and they normally do not have provisions for changes. This paper proposes a set of dynamic key performance indicators (d-KPIs) which predicts the future performance of the activity being measured and presents the opportunity to change practice accordingly. Critical to the predictability of a construction project is the ability to achieve automated data collection. This paper proposes an effective way to collect the process and engineering management data from an integrated construction management system. The d-KPI matrix, consisting of various indicators under seven categories, developed from this study can be applied to close monitoring of the development projects of aged-care facilities. The d-KPI matrix also enables performance measurement and comparison at both project and organization levels.Keywords: Aged-care project, construction, dynamic KPI, healthcare system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23818196 Musical Instrument Classification Using Embedded Hidden Markov Models
Authors: Ehsan Amid, Sina Rezaei Aghdam
Abstract:
In this paper, a novel method for recognition of musical instruments in a polyphonic music is presented by using an embedded hidden Markov model (EHMM). EHMM is a doubly embedded HMM structure where each state of the external HMM is an independent HMM. The classification is accomplished for two different internal HMM structures where GMMs are used as likelihood estimators for the internal HMMs. The results are compared to those achieved by an artificial neural network with two hidden layers. Appropriate classification accuracies were achieved both for solo instrument performance and instrument combinations which demonstrates that the new approach outperforms the similar classification methods by means of the dynamic of the signal.Keywords: hidden Markov model (HMM), embedded hidden Markov models (EHMM), MFCC, musical instrument.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19008195 Quadrotor Black-Box System Identification
Authors: Ionel Stanculeanu, Theodor Borangiu
Abstract:
This paper presents a new approach in the identification of the quadrotor dynamic model using a black-box system for identification. Also the paper considers the problems which appear during the identification in the closed-loop and offers a technical solution for overcoming the correlation between the input noise present in the output
Keywords: System identification, UAV, prediction error method, quadrotor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34708194 Early Requirement Engineering for Design of Learner Centric Dynamic LMS
Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta
Abstract:
We present a modeling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modeling tool and Means End Analysis, that adopts primitive concepts for modeling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.
Keywords: Adaptive Courseware, Early Requirement Engineering, Means End Analysis, Organizational Modeling, Requirement Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16548193 Sway Reduction on Gantry Crane System using Delayed Feedback Signal and PD-type Fuzzy Logic Controller: A Comparative Assessment
Authors: M.A. Ahmad
Abstract:
This paper presents the use of anti-sway angle control approaches for a two-dimensional gantry crane with disturbances effect in the dynamic system. Delayed feedback signal (DFS) and proportional-derivative (PD)-type fuzzy logic controller are the techniques used in this investigation to actively control the sway angle of the rope of gantry crane system. A nonlinear overhead gantry crane system is considered and the dynamic model of the system is derived using the Euler-Lagrange formulation. A complete analysis of simulation results for each technique is presented in time domain and frequency domain respectively. Performances of both controllers are examined in terms of sway angle suppression and disturbances cancellation. Finally, a comparative assessment of the impact of each controller on the system performance is presented and discussed.Keywords: Gantry crane, anti-sway control, DFS controller, PD-type Fuzzy Logic Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21558192 DC-Link Voltage Control of DC-DC Boost Converter-Inverter System with PI Controller
Authors: Thandar Aung, Tun Lin Naing
Abstract:
In this paper, the DC-link voltage control of DC-DC boost converter–inverter system is proposed. The mathematical model is developed from four different sub-circuits that depended on the switch positions. The developed differential equations are combined to develop the dynamic model. Transfer function is generated from the switched function model. Fluctuation of DC-link voltage causes connected loads malfunction. For this problem, a kind of traditional controller, the PI controller is applied to achieve constant DC-link voltage. The PI controller gains are obtained based on transfer function step response. The simulation work has been studied by using MATLAB/Simulink software and hardware prototype is implemented with a low-cost microcontroller Arduino Nano. Experimental results are collected by using ArduinoIO library package. Closed-loop DC-link voltage control system is tested with various line and load disturbances. It is found that the experimental results give equal responses with the simulation results.Keywords: ArduinoIO library package, boost converter-inverter system, low cost microcontroller, PI controller, switched function model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14238191 Frequency Response of Complex Systems with Localized Nonlinearities
Authors: E. Menga, S. Hernandez
Abstract:
Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an ‘updating’ process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models.Keywords: Frequency response, nonlinear dynamics, structural dynamic modification, softening effect, rubber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13228190 Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application
Authors: Paweł Żur, Alicja Żur, Andrzej Baier
Abstract:
Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components.
Keywords: 3D printing, composite bushing, modal analysis, multi-material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 798189 Dynamic Load Balancing in PVM Using Intelligent Application
Authors: Kashif Bilal, Tassawar Iqbal, Asad Ali Safi, Nadeem Daudpota
Abstract:
This paper deals with dynamic load balancing using PVM. In distributed environment Load Balancing and Heterogeneity are very critical issues and needed to drill down in order to achieve the optimal results and efficiency. Various techniques are being used in order to distribute the load dynamically among different nodes and to deal with heterogeneity. These techniques are using different approaches where Process Migration is basic concept with different optimal flavors. But Process Migration is not an easy job, it impose lot of burden and processing effort in order to track each process in nodes. We will propose a dynamic load balancing technique in which application will intelligently balance the load among different nodes, resulting in efficient use of system and have no overheads of process migration. It would also provide a simple solution to problem of load balancing in heterogeneous environment.
Keywords: PVM, load balancing, task allocation, intelligent application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18158188 Instability Analysis of Laminated Composite Beams Subjected to Parametric Axial Load
Authors: Alireza Fereidooni, Kamran Behdinan, Zouheir Fawaz
Abstract:
The integral form of equations of motion of composite beams subjected to varying time loads are discretized using a developed finite element model. The model consists of a straight five node twenty-two degrees of freedom beam element. The stability analysis of the beams is studied by solving the matrix form characteristic equations of the system. The principle of virtual work and the first order shear deformation theory are employed to analyze the beams with large deformation and small strains. The regions of dynamic instability of the beam are determined by solving the obtained Mathieu form of differential equations. The effects of nonconservative loads, shear stiffness, and damping parameters on stability and response of the beams are examined. Several numerical calculations are presented to compare the results with data reported by other researchers.Keywords: Finite element beam model, Composite Beams, stability analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22268187 Simulation for Input-Output Energy Structure in Agriculture: Bangladesh
Authors: M. S. Alam, M. R. Alam, Nusrat Jahan Imu
Abstract:
This paper presents a computer simulation model based on system dynamics methodology for analyzing the dynamic characteristics of input energy structure in agriculture and Bangladesh is used here as a case study for model validation. The model provides an input energy structure linking the major energy flows with human energy and draft energy from cattle as well as tractors and/or power tillers, irrigation, chemical fertilizer and pesticide. The evaluation is made in terms of different energy dependent indicators. During the simulation period, the energy input to agriculture increased from 6.1 to 19.15 GJ/ha i.e. 2.14 fold corresponding to energy output in terms of food, fodder and fuel increase from 71.55 to 163.58 GJ/ha i.e. 1.28 fold from the base year. This result indicates that the energy input in Bangladeshi agricultural production is increasing faster than the energy output. Problems such as global warming, nutrient loading and pesticide pollution can associate with this increasing input. For an assessment, a comparative statement of input energy use in agriculture of developed countries (DCs) and least developed countries (LDCs) including Bangladesh has been made. The performance of the model is found satisfactory to analyze the agricultural energy system for LDCs
Keywords: Agriculture, energy indicator, system dynamics, energy flows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25808186 Optimization of the Input Layer Structure for Feed-Forward Narx Neural Networks
Authors: Zongyan Li, Matt Best
Abstract:
This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.Keywords: Correlation analysis, F-ratio, Levenberg-Marquardt, MSE, NARX, neural network, optimisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21958185 Development a New Model of EEVC/WG17 Lower Legform for Pedestrian Safety
Authors: Alireza Noorpoor, Akbar Abvabi, Mehdi Saeed Kiasat
Abstract:
Development, calibration and validation of a threedimensional model of the Legform impactor for pedestrian crash with bumper are presented. Lower limb injury is becoming an increasingly important concern in vehicle safety for both occupants and pedestrians. In order to prevent lower extremity injuries to a pedestrian when struck by a car, it is important to elucidate the loadings from car front structures on the lower extremities and the injury mechanism caused by these loadings. An impact test procedure with a legform addressing lower limb injuries in car pedestrian accidents has been proposed by EEVC/WG17. In this study a modified legform impactor is introduced and validated against EEVC/WG17 criteria. The finite element model of this legform is developed using LS-DYNA software. Total mass of legform impactor is 13.4 kg.Technical specifications including the mass and location of the center of gravity and moment of inertia about a horizontal axis through the respective centre of gravity in femur and tibia are determined. The obtained results of legform impactor static and dynamic tests are as specified in the EEVC/WG17.Keywords: Legform impactor, Pedestrian safety, Finite element model, Knee joint, EEVC/WG17.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30568184 Modeling and Simulation of Ship Structures Using Finite Element Method
Authors: Javid Iqbal, Zhu Shifan
Abstract:
The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.
Keywords: Dynamic analysis, finite element methods, ship structure, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24838183 Theoretical Modal Analysis of Freely and Simply Supported RC Slabs
Authors: M. S. Ahmed, F. A. Mohammad
Abstract:
This paper focuses on the dynamic behavior of reinforced concrete (RC) slabs. Therefore, the theoretical modal analysis was performed using two different types of boundary conditions. Modal analysis method is the most important dynamic analyses. The analysis would be modal case when there is no external force on the structure. By using this method in this paper, the effects of freely and simply supported boundary conditions on the frequencies and mode shapes of RC square slabs are studied. ANSYS software was employed to derive the finite element model to determine the natural frequencies and mode shapes of the slabs. Then, the obtained results through numerical analysis (finite element analysis) would be compared with the exact solution. The main goal of the research study is to predict how the boundary conditions change the behavior of the slab structures prior to performing experimental modal analysis. Based on the results, it is concluded that simply support boundary condition has obvious influence to increase the natural frequencies and change the shape of the mode when it is compared with freely supported boundary condition of slabs. This means that such support conditions have the direct influence on the dynamic behavior of the slabs. Thus, it is suggested to use free-free boundary condition in experimental modal analysis to precisely reflect the properties of the structure. By using free-free boundary conditions, the influence of poorly defined supports is interrupted.
Keywords: Natural frequencies, Mode shapes, Modal analysis, ANSYS software, RC slabs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38318182 Linear Dynamic Stability Analysis of a Continuous Rotor-Disk-Blades System
Authors: F. Rahimi Dehgolan, S. E. Khadem, S. Bab, M. Najafee
Abstract:
Nowadays, using rotating systems like shafts and disks in industrial machines have been increased constantly. Dynamic stability is one of the most important factors in designing rotating systems. In this study, linear frequencies and stability of a coupled continuous flexible rotor-disk-blades system are studied. The Euler-Bernoulli beam theory is utilized to model the blade and shaft. The equations of motion are extracted using the extended Hamilton principle. The equations of motion have been simplified using the Coleman and complex transformations method. The natural frequencies of the linear part of the system are extracted, and the effects of various system parameters on the natural frequencies and decay rates (stability condition) are clarified. It can be seen that the centrifugal stiffening effect applied to the blades is the most important parameter for stability of the considered rotating system. This result highlights the importance of considering this stiffing effect in blades equation.Keywords: Rotating shaft, flexible blades, centrifugal stiffening, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15178181 Multiple Model and Neural based Adaptive Multi-loop PID Controller for a CSTR Process
Authors: R.Vinodha S. Abraham Lincoln, J. Prakash
Abstract:
Multi-loop (De-centralized) Proportional-Integral- Derivative (PID) controllers have been used extensively in process industries due to their simple structure for control of multivariable processes. The objective of this work is to design multiple-model adaptive multi-loop PID strategy (Multiple Model Adaptive-PID) and neural network based multi-loop PID strategy (Neural Net Adaptive-PID) for the control of multivariable system. The first method combines the output of multiple linear PID controllers, each describing process dynamics at a specific level of operation. The global output is an interpolation of the individual multi-loop PID controller outputs weighted based on the current value of the measured process variable. In the second method, neural network is used to calculate the PID controller parameters based on the scheduling variable that corresponds to major shift in the process dynamics. The proposed control schemes are simple in structure with less computational complexity. The effectiveness of the proposed control schemes have been demonstrated on the CSTR process, which exhibits dynamic non-linearity.Keywords: Multiple-model Adaptive PID controller, Multivariableprocess, CSTR process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021