Search results for: Power plant modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5508

Search results for: Power plant modeling

948 Effect of Variable viscosity on Convective Heat Transfer along an Inclined Plate Embedded in Porous Medium with an Applied Magnetic Field

Authors: N.S. Tomer, Phool Singh, Manoj Kumar

Abstract:

The flow and heat transfer characteristics for natural convection along an inclined plate in a saturated porous medium with an applied magnetic field have been studied. The fluid viscosity has been assumed to be an inverse function of temperature. Assuming temperature vary as a power function of distance. The transformed ordinary differential equations have solved by numerical integration using Runge-Kutta method. The velocity and temperature profile components on the plate are computed and discussed in detail for various values of the variable viscosity parameter, inclination angle, magnetic field parameter, and real constant (λ). The results have also been interpreted with the aid of tables and graphs. The numerical values of Nusselt number have been calculated for the mentioned parameters.

Keywords: Heat Transfer, Magnetic Field, Porosity, Viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
947 Discrete Element Modeling of the Effect of Particle Shape on Creep Behavior of Rockfills

Authors: Yunjia Wang, Zhihong Zhao, Erxiang Song

Abstract:

Rockfills are widely used in civil engineering, such as dams, railways, and airport foundations in mountain areas. A significant long-term post-construction settlement may affect the serviceability or even the safety of rockfill infrastructures. The creep behavior of rockfills is influenced by a number of factors, such as particle size, strength and shape, water condition and stress level. However, the effect of particle shape on rockfill creep still remains poorly understood, which deserves a careful investigation. Particle-based discrete element method (DEM) was used to simulate the creep behavior of rockfills under different boundary conditions. Both angular and rounded particles were considered in this numerical study, in order to investigate the influence of particle shape. The preliminary results showed that angular particles experience more breakages and larger creep strains under one-dimensional compression than rounded particles. On the contrary, larger creep strains were observed in he rounded specimens in the direct shear test. The mechanism responsible for this difference is that the possibility of the existence of key particle in rounded particles is higher than that in angular particles. The above simulations demonstrate that the influence of particle shape on the creep behavior of rockfills can be simulated by DEM properly. The method of DEM simulation may facilitate our understanding of deformation properties of rockfill materials.

Keywords: Rockfills, creep behavior, particle crushing, discrete element method, boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
946 Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model

Authors: J. Hey, D. A. Howey, R. Martinez-Botas, M. Lamperth

Abstract:

This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.

Keywords: Electric vehicle, hybrid thermal model, transient temperature prediction, Axial Flux Permanent Magnet machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
945 The Preparation of Silicon and Aluminum Extracts from Tuncbilek and Orhaneli Fly Ashes by Alkali Fusion

Authors: M. Sari Yilmaz, N. Karamahmut Mermer

Abstract:

Coal fly ash is formed as a solid waste product from the combustion of coal in coal fired power stations. Huge amounts of fly ash are produced globally every year and are predicted to increase. Nowadays, less than half of the fly ash is used as a raw material for cement manufacturing, construction and the rest of it is disposed as a waste causing yet another environmental concern. For this reason, the recycling of this kind of slurries into useful materials is quite important in terms of economical and environmental aspects. The purpose of this study is to evaluate the Orhaneli and Tuncbilek coal fly ashes for utilization in some industrial applications. Therefore the mineralogical and chemical compositions of these fly ashes were analyzed by X-ray fluorescence spectroscopy, ourier-transform infrared spectrometer, and X-ray diffraction. The silicon (Si) and aluminum (Al) in the fly ashes were activated by alkali fusion technique with sodium hydroxide. The obtained extracts were analyzed for Si and Al content by inductively coupled plasma optical emission spectrometry.

Keywords: Extraction, Fly ash, Fusion, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
944 Research on the Aeration Systems’ Efficiency of a Lab-Scale Wastewater Treatment Plant

Authors: Oliver Marunțălu, Elena Elisabeta Manea, Lăcrămioara Diana Robescu, Mihai Necșoiu, Gheorghe Lăzăroiu, Dana Andreya Bondrea

Abstract:

In order to obtain efficient pollutants removal in small-scale wastewater treatment plants, uniform water flow has to be achieved. The experimental setup, designed for treating high-load wastewater (leachate), consists of two aerobic biological reactors and a lamellar settler. Both biological tanks were aerated by using three different types of aeration systems - perforated pipes, membrane air diffusers and tube ceramic diffusers. The possibility of homogenizing the water mass with each of the air diffusion systems was evaluated comparatively. The oxygen concentration was determined by optical sensors with data logging. The experimental data was analyzed comparatively for all three different air dispersion systems aiming to identify the oxygen concentration variation during different operational conditions. The Oxygenation Capacity was calculated for each of the three systems and used as performance and selection parameter. The global mass transfer coefficients were also evaluated as important tools in designing the aeration system. Even though using the tubular porous diffusers leads to higher oxygen concentration compared to the perforated pipe system (which provides medium-sized bubbles in the aqueous solution), it doesn’t achieve the threshold limit of 80% oxygen saturation in less than 30 minutes. The study has shown that the optimal solution for the studied configuration was the radial air diffusers which ensure an oxygen saturation of 80% in 20 minutes. An increment of the values was identified when the air flow was increased.

Keywords: Flow, aeration, bioreactor, oxygen concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2457
943 A New Model for Question Answering Systems

Authors: Mohammad Reza Kangavari, Samira Ghandchi, Manak Golpour

Abstract:

Most of the Question Answering systems composed of three main modules: question processing, document processing and answer processing. Question processing module plays an important role in QA systems. If this module doesn't work properly, it will make problems for other sections. Moreover answer processing module is an emerging topic in Question Answering, where these systems are often required to rank and validate candidate answers. These techniques aiming at finding short and precise answers are often based on the semantic classification. This paper discussed about a new model for question answering which improved two main modules, question processing and answer processing. There are two important components which are the bases of the question processing. First component is question classification that specifies types of question and answer. Second one is reformulation which converts the user's question into an understandable question by QA system in a specific domain. Answer processing module, consists of candidate answer filtering, candidate answer ordering components and also it has a validation section for interacting with user. This module makes it more suitable to find exact answer. In this paper we have described question and answer processing modules with modeling, implementing and evaluating the system. System implemented in two versions. Results show that 'Version No.1' gave correct answer to 70% of questions (30 correct answers to 50 asked questions) and 'version No.2' gave correct answers to 94% of questions (47 correct answers to 50 asked questions).

Keywords: Answer Processing, Classification, QuestionAnswering and Query Reformulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
942 Seismic Assessment of an Existing Dual System RC Buildings in Madinah City

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

A 15-storey RC building, studied in this paper, is representative of modern building type constructed in Madina City in Saudi Arabia before 10 years ago. These buildings are almost consisting of reinforced concrete skeleton i.e. columns, beams and flat slab as well as shear walls in the stairs and elevator areas arranged in the way to have a resistance system for lateral loads (wind – earthquake loads). In this study, the dynamic properties of the 15-storey RC building were identified using ambient motions recorded at several, spatially-distributed locations within each building. Three dimensional pushover analysis (Nonlinear static analysis) was carried out using SAP2000 software incorporating inelastic material properties for concrete, infill and steel. The effect of modeling the building with and without infill walls, on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madina area has been investigated. ATC- 40 capacity and demand spectra are utilized to get the modification factor (R) for the studied building. The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.

Keywords: Seismic assessment, pushover analysis, ambient vibration, modal update.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
941 Optimal Dynamic Economic Load Dispatch Using Artificial Immune System

Authors: I. A. Farhat

Abstract:

The The dynamic economic dispatch (DED) problem is one of the complex constrained optimization problems that have nonlinear, con-convex and non-smooth objective functions. The purpose of the DED is to determine the optimal economic operation of the committed units while meeting the load demand. Associated to this constrained problem there exist highly nonlinear and non-convex practical constraints to be satisfied. Therefore, classical and derivative-based methods are likely not to converge to an optimal or near optimal solution to such a dynamic and large-scale problem. In this paper, an Artificial Immune System technique (AIS) is implemented and applied to solve the DED problem considering the transmission power losses and the valve-point effects in addition to the other operational constraints. To demonstrate the effectiveness of the proposed technique, two case studies are considered. The results obtained using the AIS are compared to those obtained by other methods reported in the literature and found better.

Keywords: Artificial Immune System (AIS), Dynamic Economic Dispatch (DED).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
940 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

Authors: F. Al-Mufadi, F. Djavanroodi

Abstract:

During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of Standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67HV from 21HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.

Keywords: SPD, ECAP, FEM, Pure Al, Mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510
939 The Cadmium Adsorption Study by Using Seyitomer Fly Ash, Diatomite and Molasses in Wastewater

Authors: N. Tugrul, E. Moroydor Derun, E. Cinar, A. S. Kipcak, N. Baran Acarali, S. Piskin

Abstract:

Fly ash is an important waste, produced in thermal power plants which causes very important environmental pollutions. For this reason the usage and evaluation the fly ash in various areas are very important. Nearly, 15 million tons/year of fly ash is produced in Turkey. In this study, usage of fly ash with diatomite and molasses for heavy metal (Cd) adsorption from wastewater is investigated. The samples of Seyitomer region fly ash were analyzed by X-ray fluorescence (XRF) and Scanning Electron Microscope (SEM) then diatomite (0 and 1% in terms of fly ash, w/w) and molasses (0-0.75 mL) were pelletized under 30 MPa of pressure for the usage of cadmium (Cd) adsorption in wastewater. After the adsorption process, samples of Seyitomer were analyzed using Optical Emission Spectroscopy (ICP-OES). As a result, it is seen that the usage of Seyitomer fly ash is proper for cadmium (Cd) adsorption and an optimum adsorption yield with 52% is found at a compound with Seyitomer fly ash (10 g), diatomite (0.5 g) and molasses (0.75 mL) at 2.5 h of reaction time, pH:4, 20ºC of reaction temperature and 300 rpm of stirring rate.

Keywords: Heavy metal, fly ash, molasses, diatomite, adsorption, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
938 A Hybrid Approach for Selection of Relevant Features for Microarray Datasets

Authors: R. K. Agrawal, Rajni Bala

Abstract:

Developing an accurate classifier for high dimensional microarray datasets is a challenging task due to availability of small sample size. Therefore, it is important to determine a set of relevant genes that classify the data well. Traditionally, gene selection method often selects the top ranked genes according to their discriminatory power. Often these genes are correlated with each other resulting in redundancy. In this paper, we have proposed a hybrid method using feature ranking and wrapper method (Genetic Algorithm with multiclass SVM) to identify a set of relevant genes that classify the data more accurately. A new fitness function for genetic algorithm is defined that focuses on selecting the smallest set of genes that provides maximum accuracy. Experiments have been carried on four well-known datasets1. The proposed method provides better results in comparison to the results found in the literature in terms of both classification accuracy and number of genes selected.

Keywords: Gene selection, genetic algorithm, microarray datasets, multi-class SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
937 The Effect of Dispersed MWCNTs Using SDBS Surfactant on Bacterial Growth

Authors: J.E. Park, G.R. Kim, D.J. Yoon, C.H. Sin, I.S. Park, T.S. Bea, M.H. Lee

Abstract:

Carbon nanotubes (CNTs) are attractive because of their excellent chemical durability mechanical strength and electrical properties. Therefore there is interest in CNTs for not only electrical and mechanical application, but also biological and medical application. In this study, the dispersion power of surfactant-treated multiwalled carbon nanotubes (MWCNTs) and their effect on the antibacterial activity were examined. Surfactant was used sodium dodecyl-benzenesulfonate (SDBS). UV-vis absorbance and transmission electron microscopy(TEM) were used to characterize the dispersion of MWCNTs in the aqueous phase, showing that the surfactant molecules had been adsorbed onto the MWCNTs surface. The surfactant-treated MWCNTs exhibited antimicrobial activities to streptococcus mutans. The optical density growth curves and viable cell number determined by the plating method suggested that the antimicrobial activity of surfactant-treated MWCNTs was both concentration and treatment time-dependent.

Keywords: MWCNT, SDBS, surfactant, antibacterial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3037
936 Online Structural Health Monitoring of Ball Bearings

Authors: Matta S. N. S. Kiran, Manikantadhar Maheswaram, Akshat Upadhyay, Rohit Mishra, Bhagat Singh

Abstract:

A bearing is a very common and useful component of mechanical systems in order to transfer power from one end to another. Therefore, to ensure the accountability and robustness of the rotating mechanical systems, the bearing part's health condition must be checked at regular intervals, also known as preventive maintenance. This condition may lead to unnecessary higher maintenance costs and later result in higher production costs. These costs can be minimized by diagnosing the faulty bearing in its incipient stage. This paper describes an approach to detect rolling bearing defects based on Empirical Mode Decomposition. The novelty of the proposed methodology is validated experimentally using Case Western Reserve University bearing's data sets. The selected data sets comprise the two vibration signals, i.e., inner race and outer, for healthy and faulty conditions.

Keywords: Ball bearing, denoising, signal processing, statistical indicators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495
935 Effect of Reynolds Number on Wall-normal Turbulence Intensity in a Smooth and Rough Open Channel Using both Outer and Inner Scaling

Authors: Md Abdullah Al Faruque, Ram Balachandar

Abstract:

Sudden change of bed condition is frequent in open channel flow. Change of bed condition affects the turbulence characteristics in both streamwise and wall-normal direction. Understanding the turbulence intensity in open channel flow is of vital importance to the modeling of sediment transport and resuspension, bed formation, entrainment, and the exchange of energy and momentum. A comprehensive study was carried out to understand the extent of the effect of Reynolds number and bed roughness on different turbulence characteristics in an open channel flow. Four different bed conditions (impervious smooth bed, impervious continuous rough bed, pervious rough sand bed, and impervious distributed roughness) and two different Reynolds numbers were adopted for this cause. The effect of bed roughness on different turbulence characteristics is seen to be prevalent for most of the flow depth. Effect of Reynolds number on different turbulence characteristics is also evident for flow over different bed, but the extent varies on bed condition. Although the same sand grain is used to create the different rough bed conditions, the difference in turbulence characteristics is an indication that specific geometry of the roughness has an influence on turbulence characteristics. Roughness increases the contribution of the extreme turbulent events which produces very large instantaneous Reynolds shear stress and can potentially influence the sediment transport, resuspension of pollutant from bed and alter the nutrient composition, which eventually affect the sustainability of benthic organisms.

Keywords: Open channel flow, Reynolds Number, roughness, turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079
934 The Study on the Development of Ornamentation in the Architecture of Safavid Dynasty

Authors: N. Utaberta, H. Mamamni, M. Surat, A. I. Che-Ani, N.A.G. Abdullah

Abstract:

The architecture of Safavid Dynasty can be considered the epitome of Iranian architectural beauty. Safavid dynasty (1501- 1722 AC) along with Ottoman in Turkey and Mughal Empire in India were the three great Islamic nations of their time (1500 AC) often known as the last Islamic countries with international authority up to the 20th Century. This era approximately coincide with Renaissance in Europe. In this era, large European countries begin amassing power thanks to significant scientific, cultural and religious revolutions of that time and colonizing nations such as England, Spain and Portugal began to influence international trends with in an increasing while other non-industrial nations diminished. The main objective of this paper is to give a typological overview of the development of decoration and ornament in the architecture of Safafid Dynasty in Iran. It is expected that it can start a wider discussion to enrich this nation-s heritage and contribute to the development of Islamic ornament in general.

Keywords: Ornamentation, Architecture in Iran, Safavid Dynasty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3566
933 Detection of Transgenes in Cotton (Gossypium hirsutum L.) by Using Biotechnology/Molecular Biological Techniques

Authors: Ahmad Ali Shahid, Muhammad Shakil Shaukat, Kamran Shehzad Bajwa, Abdul Qayyum Rao, Tayyab Husnain

Abstract:

Agriculture is the backbone of economy of Pakistan and cotton is the major agricultural export and supreme source of raw fiber for our textile industry. To combat severe problems of insect and weed, combination of three genes namely Cry1Ac, Cry2A and EPSPS genes was transferred in locally cultivated cotton variety MNH-786 with the use of Agrobacterium mediated genetic transformation. The present study focused on the molecular screening of transgenic cotton plants at T3 generation in order to confirm integration and expression of all three genes (Cry1Ac, Cry2A and EPSP synthase) into the cotton genome. Initially, glyphosate spray assay was used for screening of transgenic cotton plants containing EPSP synthase gene at T3 generation. Transgenic cotton plants which were healthy and showed no damage on leaves were selected after 07 days of spray. For molecular analysis of transgenic cotton plants in the laboratory, the genomic DNA of these transgenic cotton plants were isolated and subjected to amplification of the three genes. Thus, seventeen out of twenty (Cry1Ac gene), ten out of twenty (Cry2A gene) and all twenty (EPSP synthase gene) were produced positive amplification. On the base of PCR amplification, ten transgenic plant samples were subjected to protein expression analysis through ELISA. The results showed that eight out of ten plants were actively expressing the three transgenes. Real-time PCR was also done to quantify the mRNA expression levels of Cry1Ac and EPSP synthase gene. Finally, eight plants were confirmed for the presence and active expression of all three genes at T3 generation.

Keywords: Agriculture, Cotton, Transformation, Cry Genes, ELISA and PCR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3135
932 Impact of Weather Conditions on Generalized Frequency Division Multiplexing over Gamma Gamma Channel

Authors: Muhammad Sameer Ahmed, Piotr Remlein, Tansal Gucluoglu

Abstract:

The technique called as Generalized frequency division multiplexing (GFDM) used in the free space optical channel can be a good option for implementation free space optical communication systems. This technique has several strengths e.g. good spectral efficiency, low peak-to-average power ratio (PAPR), adaptability and low co-channel interference. In this paper, the impact of weather conditions such as haze, rain and fog on GFDM over the gamma-gamma channel model is discussed. A Trade off between link distance and system performance under intense weather conditions is also analysed. The symbol error probability (SEP) of GFDM over the gamma-gamma turbulence channel is derived and verified with the computer simulations.

Keywords: Free space optics, generalized frequency division multiplexing, weather conditions, gamma gamma distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 680
931 Socio-Economic Influences on Soilless Agriculture

Authors: G. V. Byrd, B. B. Ghaley, E. Hayashi

Abstract:

In urban farming, research and innovation are taking place at an unprecedented pace, and soilless growing technologies are emerging at different rates motivated by different objectives in various parts of the world. Local food production is ultimately a main objective everywhere, but adoption rates and expressions vary with socio-economic drivers. Herein, the status of hydroponics and aquaponics is summarized for four countries with diverse socio-economic settings: Europe (Denmark), Asia (Japan and Nepal) and North America (US). In Denmark, with a strong environmental ethic, soilless growing is increasing in urban agriculture because it is considered environmentally friendly. In Japan, soil-based farming is being replaced with commercial plant factories using advanced technology such as complete environmental control and computer monitoring. In Nepal, where rapid loss of agricultural land is occurring near cities, dozens of hydroponics and aquaponics systems have been built in the past decade, particularly in “non-traditional” sites such as roof tops to supplement family food. In the US, where there is also strong interest in locally grown fresh food, backyard and commercial systems have proliferated. Nevertheless, soilless growing is still in the research and development and early adopter stages, and the broad contribution of hydroponics and aquaponics to food security is yet to be fully determined. Nevertheless, current adoption of these technologies in diverse environments in different socio-economic settings highlights the potential contribution to food security with social and environmental benefits which contribute to several Sustainable Development Goals.

Keywords: Aquaponics, hydroponics, soilless agriculture, urban agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191
930 Microbubbles Enhanced Synthetic Phorbol Ester Degradation by Ozonolysis

Authors: Kuvshinov, D., Siswanto, A., Zimmerman, W. B.

Abstract:

A phorbol-12-myristate-13-acetate (TPA) is a synthetic analogue of phorbol ester (PE), a natural toxic compound of Euphorbiaceae plant. The oil extracted from plants of this family is useful source for primarily biofuel. However this oil might also be used as a foodstuff due to its significant nutrition content. The limitations for utilizing the oil as a foodstuff are mainly due to a toxicity of PE. Currently, a majority of PE detoxification processes are expensive as include multi steps alcohol extraction sequence.

Ozone is considered as a strong oxidative agent. It reacts with PE by attacking the carbon-carbon double bond of PE. This modification of PE molecular structure yields a non toxic ester with high lipid content.

This report presents data on development of simple and cheap PE detoxification process with water application as a buffer and ozone as reactive component. The core of this new technique is an application for a new microscale plasma unit to ozone production and the technology permits ozone injection to the water-TPA mixture in form of microbubbles.

The efficacy of a heterogeneous process depends on the diffusion coefficient which can be controlled by contact time and interfacial area. The low velocity of rising microbubbles and high surface to volume ratio allow efficient mass transfer to be achieved during the process. Direct injection of ozone is the most efficient way to process with such highly reactive and short lived chemical.

Data on the plasma unit behavior are presented and the influence of gas oscillation technology on the microbubble production mechanism has been discussed. Data on overall process efficacy for TPA degradation is shown.

Keywords: Microbubble, ozonolysis, synthetic phorbol ester.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
929 Integration of Acceleration Feedback Control with Automatic Generation Control in Intelligent Load Frequency Control

Authors: H. Zainuddin, F. Hanafi, M. H. Hairi, A. Aman, M.H.N. Talib

Abstract:

This paper investigates the effects of knowledge-based acceleration feedback control integrated with Automatic Generation Control (AGC) to enhance the quality of frequency control of governing system. The Intelligent Acceleration Feedback Controller (IAFC) is proposed to counter the over and under frequency occurrences due to major load change in power system network. Therefore, generator tripping and load shedding operations can be reduced. Meanwhile, the integration of IAFC with AGC, a well known Load-Frequency Control (LFC) is essential to ensure the system frequency is restored to the nominal value. Computer simulations of frequency response of governing system are used to optimize the parameters of IAFC. As a result, there is substantial improvement on the LFC of governing system that employing the proposed control strategy.

Keywords: Knowledge-based Supplementary Control, Acceleration Feedback, Load Frequency Control, Automatic Generation Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
928 Grouping-Based Job Scheduling Model In Grid Computing

Authors: Vishnu Kant Soni, Raksha Sharma, Manoj Kumar Mishra

Abstract:

Grid computing is a high performance computing environment to solve larger scale computational applications. Grid computing contains resource management, job scheduling, security problems, information management and so on. Job scheduling is a fundamental and important issue in achieving high performance in grid computing systems. However, it is a big challenge to design an efficient scheduler and its implementation. In Grid Computing, there is a need of further improvement in Job Scheduling algorithm to schedule the light-weight or small jobs into a coarse-grained or group of jobs, which will reduce the communication time, processing time and enhance resource utilization. This Grouping strategy considers the processing power, memory-size and bandwidth requirements of each job to realize the real grid system. The experimental results demonstrate that the proposed scheduling algorithm efficiently reduces the processing time of jobs in comparison to others.

Keywords: Grid computing, Job grouping and Jobscheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
927 Effect of Infill Walls on Response of Multi Storey Reinforced Concrete Structure

Authors: Ayman Abd-Elhamed, Sayed Mahmoud

Abstract:

The present research work investigates the seismic response of reinforced concrete (RC) frame building considering the effect of modeling masonry infill (MI) walls. The seismic behavior of a residential 6-storey RC frame building, considering and ignoring the effect of masonry, is numerically investigated using response spectrum (RS) analysis. The considered herein building is designed as a moment resisting frame (MRF) system following the Egyptian code (EC) requirements. Two developed models in terms of bare frame and infill walls frame are used in the study. Equivalent diagonal strut methodology is used to represent the behavior of infill walls, whilst the well-known software package ETABS is used for implementing all frame models and performing the analysis. The results of the numerical simulations such as base shear, displacements, and internal forces for the bare frame as well as the infill wall frame are presented in a comparative way. The results of the study indicate that the interaction between infill walls and frames significantly change the responses of buildings during earthquakes compared to the results of bare frame building model. Specifically, the seismic analysis of RC bare frame structure leads to underestimation of base shear and consequently damage or even collapse of buildings may occur under strong shakings. On the other hand, considering infill walls significantly decrease the peak floor displacements and drifts in both X and Y-directions.

Keywords: Masonry infill, bare frame, response spectrum, seismic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3509
926 Spiral Cuff for Fiber-Diameter Selective VNS

Authors: P. Pečlin, J. Rozman

Abstract:

In this paper we present the modeling, design, and experimental testing of a nerve cuff multi-electrode system for diameter-selective vagus nerve stimulation. The multi-electrode system contained ninety-nine platinum electrodes embedded within a self-curling spiral silicone sheet. The electrodes were organized in a matrix having nine parallel groups, each containing eleven electrodes. Preliminary testing of the nerve cuff was performed in an isolated segment of a swinish left cervical vagus nerve. For selective vagus nerve stimulation, precisely defined current quasitrapezoidal, asymmetric and biphasic stimulating pulses were applied to preselected locations along the left vagus segment via appointed group of three electrodes within the cuff. Selective stimulation was obtained by anodal block. However, these pulses may not be safe for a long-term application because of a frequently used high imbalance between the cathodic and anodic part of the stimulating pulse. Preliminary results show that the cuff was capable of exciting A and B-fibres, and, that for a certain range of parameters used in stimulating pulses, the contribution of A-fibres to the CAP was slightly reduced and the contribution of B-fibres was slightly larger. Results also showed that measured CAPs are not greatly influenced by the imbalance between a charge Qc injected in cathodic and Qa in anodic phase of quasitrapezoidal, asymmetric and biphasic pulses.

Keywords: Vagus nerve stimulation, multi-electrode nerve cuff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
925 Design of an Experimental Setup to Study the Drives of Battery Electric Vehicles

Authors: Valery Vodovozov, Zoja Raud, Tõnu Lehtla

Abstract:

This paper describes the design considerations of an experimental setup for research and exploring the drives of batteryfed electric vehicles. Effective setup composition and its components are discussed. With experimental setup described in this paper, durability and functional tests can be procured to the customers. Multiple experiments are performed in the form of steady-state system exploring, acceleration programs, multi-step tests (speed control, torque control), load collectives or close-to-reality driving tests (driving simulation). Main focus of the functional testing is on the measurements of power and energy efficiency and investigations in driving simulation mode, which are used for application purposes. In order to enable the examination of the drive trains beyond standard modes of operation, different other parameters can be studied also.

Keywords: Electric drive, electric vehicle, propulsion, test bench.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2923
924 Gasifier System Identification for Biomass Power Plants using Neural Network

Authors: Jittarat Satonsaowapak, Thanatchai. Kulworawanichpong., Ratchadaporn Oonsivilai, Anant Oonsivilai

Abstract:

The use of renewable energy sources becomes more necessary and interesting. As wider applications of renewable energy devices at domestic, commercial and industrial levels has not only resulted in greater awareness, but also significantly installed capacities. In addition, biomass principally is in the form of woods, which is a form of energy by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasifier models have various operating conditions; the parameters kept in each model are different. This study applied experimental data, which has three inputs, which are; biomass consumption, temperature at combustion zone and ash discharge rate. One output is gas flow rate. For this paper, neural network was used to identify the gasifier system suitable for the experimental data. In the result,neural networkis usable to attain the answer.

Keywords: Gasifier System, Identification, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
923 A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18um CMOS

Authors: Sanaz Haddadian, Rahele Hedayati

Abstract:

A 10bit, 40 MSps, sample and hold, implemented in 0.18-μm CMOS technology with 3.3V supply, is presented for application in the front-end stage of an analog-to-digital converter. Topology selection, biasing, compensation and common mode feedback are discussed. Cascode technique has been used to increase the dc gain. The proposed opamp provides 149MHz unity-gain bandwidth (wu), 80 degree phase margin and a differential peak to peak output swing more than 2.5v. The circuit has 55db Total Harmonic Distortion (THD), using the improved fully differential two stage operational amplifier of 91.7dB gain. The power dissipation of the designed sample and hold is 4.7mw. The designed system demonstrates relatively suitable response in different process, temperature and supply corners (PVT corners).

Keywords: Analog Integrated Circuit Design, Sample & Hold Amplifier and CMOS Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4160
922 A Two-Step, Temperature-Staged Direct Coal Liquefaction Process

Authors: Reyna Singh, David Lokhat, Milan Carsky

Abstract:

The world crude oil demand is projected to rise to 108.5 million bbl/d by the year 2035. With reserves estimated at 869 billion tonnes worldwide, coal remains an abundant resource. The aim of this work was to produce a high value hydrocarbon liquid product using a Direct Coal Liquefaction (DCL) process at, relatively mild operating conditions. Via hydrogenation, the temperature-staged approach was investigated in a dual reactor lab-scale pilot plant facility. The objectives included maximising thermal dissolution of the coal in the presence of tetralin as the hydrogen donor solvent in the first stage with 2:1 and 3:1 solvent: coal ratios. Subsequently, in the second stage, hydrogen saturation, in particular, hydrodesulphurization (HDS) performance was assessed. Two commercial hydrotreating catalysts were investigated viz. NickelMolybdenum (Ni-Mo) and Cobalt-Molybdenum (Co-Mo). GC-MS results identified 77 compounds and various functional groups present in the first and second stage liquid product. In the first stage 3:1 ratios and liquid product yields catalysed by magnetite were favoured. The second stage product distribution showed an increase in the BTX (Benzene, Toluene, Xylene) quality of the liquid product, branched chain alkanes and a reduction in the sulphur concentration. As an HDS performer and selectivity to the production of long and branched chain alkanes, Ni-Mo had an improved performance over Co-Mo. Co-Mo is selective to a higher concentration of cyclohexane. For 16 days on stream each, Ni-Mo had a higher activity than Co-Mo. The potential to cover the demand for low–sulphur, crude diesel and solvents from the production of high value hydrocarbon liquid in the said process, is thus demonstrated. 

Keywords: Catalyst, coal, liquefaction, temperature-staged.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
921 Wavelet Entropy Based Algorithm for Fault Detection and Classification in FACTS Compensated Transmission Line

Authors: Amany M. El-Zonkoly, Hussein Desouki

Abstract:

Distance protection of transmission lines including advanced flexible AC transmission system (FACTS) devices has been a very challenging task. FACTS devices of interest in this paper are static synchronous series compensators (SSSC) and unified power flow controller (UPFC). In this paper, a new algorithm is proposed to detect and classify the fault and identify the fault position in a transmission line with respect to a FACTS device placed in the midpoint of the transmission line. Discrete wavelet transformation and wavelet entropy calculations are used to analyze during fault current and voltage signals of the compensated transmission line. The proposed algorithm is very simple and accurate in fault detection and classification. A variety of fault cases and simulation results are introduced to show the effectiveness of such algorithm.

Keywords: Entropy calculation, FACTS, SSSC, UPFC, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
920 Power Efficient OFDM Signals with Reduced Symbol's Aperiodic Autocorrelation

Authors: Ibrahim M. Hussain

Abstract:

Three new algorithms based on minimization of autocorrelation of transmitted symbols and the SLM approach which are computationally less demanding have been proposed. In the first algorithm, autocorrelation of complex data sequence is minimized to a value of 1 that results in reduction of PAPR. Second algorithm generates multiple random sequences from the sequence generated in the first algorithm with same value of autocorrelation i.e. 1. Out of these, the sequence with minimum PAPR is transmitted. Third algorithm is an extension of the second algorithm and requires minimum side information to be transmitted. Multiple sequences are generated by modifying a fixed number of complex numbers in an OFDM data sequence using only one factor. The multiple sequences represent the same data sequence and the one giving minimum PAPR is transmitted. Simulation results for a 256 subcarrier OFDM system show that significant reduction in PAPR is achieved using the proposed algorithms.

Keywords: Aperiodic autocorrelation, OFDM, PAPR, SLM, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
919 Carbon Nanotubes–A Successful Hydrogen Storage Medium

Authors: Vijaya Ilango, Avika Gupta

Abstract:

Hydrogen fuel is a zero-emission fuel which uses electrochemical cells or combustion in internal engines, to power vehicles and electric devices. Methods of   hydrogen storage for subsequent use span many approaches, including high pressures, cryogenics and chemical compounds that reversibly release H2 upon heating. Most research into hydrogen storage is focused on storing hydrogen as a lightweight, compact energy carrier for mobile applications. With the accelerating demand for cleaner and more efficient energy sources, hydrogen research has attracted more attention in the scientific community. Until now, full implementation of a hydrogen-based energy system has been hindered in part by the challenge of storing hydrogen gas, especially onboard an automobile. New techniques being researched may soon make hydrogen storage more compact, safe and efficient. In   this overview, few hydrogen storage methods and mechanism of hydrogen uptake in carbon nanotubes are summarized.

Keywords: Carbon nanotubes, Chemisorption, Hydrogen storage, Physisorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3152