Search results for: poisson random measures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1545

Search results for: poisson random measures

1125 Assessment of Analytical Equations for the Derivation of Young’s Modulus of Bonded Rubber Materials

Authors: Z. N. Haji, S. O. Oyadiji, H. Samami, O. Farrell

Abstract:

The prediction of the vibration response of rubber products by analytical or numerical method depends mainly on the predefined intrinsic material properties such as Young’s modulus, damping factor and Poisson’s ratio. Such intrinsic properties are determined experimentally by subjecting a bonded rubber sample to compression tests. The compression tests on such a sample yield an apparent Young’s modulus which is greater in magnitude than the intrinsic Young’s modulus of the rubber. As a result, many analytical equations have been developed to determine Young’s modulus from an apparent Young’s modulus of bonded rubber materials. In this work, the applicability of some of these analytical equations is assessed via experimental testing. The assessment is based on testing of vulcanized nitrile butadiene rubber (NBR70) samples using tensile test and compression test methods. The analytical equations are used to determine the intrinsic Young’s modulus from the apparent modulus that is derived from the compression test data of the bonded rubber samples. Then, these Young’s moduli are compared with the actual Young’s modulus that is derived from the tensile test data. The results show significant discrepancy between the Young’s modulus derived using the analytical equations and the actual Young’s modulus.

Keywords: Bonded rubber, quasi-static test, shape factor, apparent Young’s modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748
1124 Disciplinary Procedures Used by Secondary School Teachers in Calabar Municipality, Nigeria

Authors: N. N. Nkomo, M. L. Mayanchi

Abstract:

The present study investigated various forms of disciplinary procedures or punishment used by teachers in secondary schools in Calabar Municipality, Nigera. There are agitations amongst parents and educators on the use of corporal punishment as a disciplinary measure against children. Those against the use of corporal punishment argue that this form of punishment does not teach, it only terminates behaviour temporarily and inculcates violence. Those in support are of the view that corporal punishment serves as a deterrent to others. This study sought to find out the most common measure of discipline employed by teachers in private and public schools. The study had three objectives, three research questions and two hypotheses. The design of the present study was the ex-post facto descriptive survey, since variables under study were not manipulated by the researcher. Teachers in Calabar Municipal Secondary Schools formed the population. A sample of 160 teachers was used for the study. The data collection instrument was a facts finding questionnaire titled Disciplinary Procedures Inventory. Data collected were analyzed using simple percentages and chi-square. The major findings were that physical measures such as flogging, exercise/drills, and painful postures were commonly used by teachers in secondary schools. It was also found that these measures were more often used in public schools. It was recommended that teachers should rather employ non-violent techniques of discipline than physical punishment.

Keywords: Discipline, non-violent punishment, physical punishment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
1123 A Smart Monitoring System for Preventing Gas Risks in Indoor

Authors: Gyoutae Park, Geunjun Lyu, Yeonjae Lee, Wooksuk Kim, Jaheon Gu, Sanguk Ahn, Hiesik Kim

Abstract:

In this paper, we propose a system for preventing gas risks through the use of wireless communication modules and intelligent gas safety appliances. Our system configuration consists of an automatic extinguishing system, detectors, a wall-pad, and a microcomputer controlled micom gas meter to monitor gas flow and pressure as well as the occurrence of earthquakes. The automatic fire extinguishing system checks for both combustible gaseous leaks and monitors the environmental temperature, while the detector array measures smoke and CO gas concentrations. Depending on detected conditions, the micom gas meter cuts off an inner valve and generates a warning, the automatic fire-extinguishing system cuts off an external valve and sprays extinguishing materials, or the sensors generate signals and take further action when smoke or CO are detected. Information on intelligent measures taken by the gas safety appliances and sensors are transmitted to the wall-pad, which in turn relays this as real time data to a server that can be monitored via an external network (BcN) connection to a web or mobile application for the management of gas safety. To validate this smart-home gas management system, we field-tested its suitability for use in Korean apartments under several scenarios.

Keywords: Gas sensor, leak, gas safety, gas meter, gas risk, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2719
1122 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer Aljohani

Abstract:

The COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred as corona virus which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as Omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. Numerous COVID-19 cases have produced a huge burden on hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease based on the symptoms and medical history of the patient. As machine learning is a widely accepted area and gives promising results for healthcare, this research presents an architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard University of California Irvine (UCI) dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques on the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and Principal Component Analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, Receiver Operating Characteristic (ROC) and Area under Curve (AUC). The results depict that Decision tree, Random Forest and neural networks outperform all other state-of-the-art ML techniques. This result can be used to effectively identify COVID-19 infection cases.

Keywords: Supervised machine learning, COVID-19 prediction, healthcare analytics, Random Forest, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384
1121 ALD HfO2 Based RRAM with Ti Capping

Authors: B. B. Weng, Z. Fang, Z. X. Chen, X. P. Wang, G. Q. Lo, D. L. Kwong

Abstract:

HfOx based Resistive Random Access Memory (RRAM) is one of the most widely studied material stack due to its promising performances as an emerging memory technology. In this work, we systematically investigated the effect of metal capping layer by preparing sample devices with varying thickness of Ti cap and comparing their operating parameters with the help of an Agilent-B1500A analyzer.

Keywords: HfOx, resistive switching, RRAM, metal capping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
1120 Democratization, Market Liberalization and the Raise of Vested Interests and Its Impacts on Anti-Corruption Reform in Indonesia

Authors: Ahmad Khoirul Umam

Abstract:

This paper investigates the role of vested interests and its impacts on anti-corruption agenda in Indonesia following the collapse of authoritarian regime in 1998. A pervasive and rampant corruption has been believed as the main cause of the state economy’s fragility. Hence, anti-corruption measures were implemented by applying democratization and market liberalization since the establishment of a consolidated democracy which go hand in hand with a liberal market economy is convinced to be an efficacious prescription for effective anti-corruption. The reform movement has also mandated the establishment of the independent, neutral and professional special anti-corruption agency namely Corruption Eradication Commission (KPK) to more intensify the fight against the systemic corruption. This paper will examine whether these anti-corruption measures have been effective to combat corruption, and investigate to what extend have the anti-corruption efforts, especially those conducted by KPK, been impeded by the emergence of a nexus of vested interests as the side-effect of democratization and market liberalization. Based on interviews with key stakeholders from KPK, other law enforcement agencies, government, prominent scholars, journalists and NGOs in Indonesia, it is found that since the overthrow of Soeharto, anti-corruption movement in the country have become more active and serious. After gradually winning the hearth of people, KPK successfully touched the untouchable corruption perpetrators who were previously protected by political immunity, legal protection and bureaucratic barriers. However, these changes have not necessarily reduced systemic and structural corruption practices. Ironically, intensive and devastating counterattacks were frequently posed by the alignment of business actors, elites of political parties, government, and also law enforcement agencies by hijacking state’s instruments to make KPK deflated, powerless, and surrender. This paper concludes that attempts of democratization, market liberalization and the establishment of anti-corruption agency may have helped Indonesia to reduce corruption. However, it is still difficult to imply that such anti-corruption measures have fostered the more effective anti-corruption works in the newly democratized and weakly regulated liberal economic system.

Keywords: Vested interests, democratization, market liberalization, anti-corruption, leadership.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
1119 Packet Reserving and Clogging Control via Routing Aware Packet Reserving Framework in MANET

Authors: C. Sathiyakumar, K. Duraiswamy

Abstract:

In MANET, mobile nodes communicate with each other using the wireless channel where transmission takes place with significant interference. The wireless medium used in MANET is a shared resource used by all the nodes available in MANET. Packet reserving is one important resource management scheme which controls the allocation of bandwidth among multiple flows through node cooperation in MANET. This paper proposes packet reserving and clogging control via Routing Aware Packet Reserving (RAPR) framework in MANET. It mainly focuses the end-to-end routing condition with maximal throughput. RAPR is complimentary system where the packet reserving utilizes local routing information available in each node. Path setup in RAPR estimates the security level of the system, and symbolizes the end-to-end routing by controlling the clogging. RAPR reaches the packet to the destination with high probability ratio and minimal delay count. The standard performance measures such as network security level, communication overhead, end-to-end throughput, resource utilization efficiency and delay measure are considered in this work. The results reveals that the proposed packet reservation and clogging control via Routing Aware Packet Reserving (RAPR) framework performs well for the above said performance measures compare to the existing methods.

Keywords: Packet reserving, Clogging control, Packet reservation in MANET, RAPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
1118 The Concept of an Agile Enterprise Research Model

Authors: Maja Sajdak

Abstract:

The aim of this paper is to present the concept of an agile enterprise model and to initiate discussion on the research assumptions of the model presented. The implementation of the research project "The agility of enterprises in the process of adapting to the environment and its changes" began in August 2014 and is planned to last three years. The article has the form of a work-inprogress paper which aims to verify and initiate a debate over the proposed research model. In the literature there are very few publications relating to research into agility; it can be concluded that the most controversial issue in this regard is the method of measuring agility. In previous studies the operationalization of agility was often fragmentary, focusing only on selected areas of agility, for example manufacturing, or analysing only selected sectors. As a result the measures created to date can only be treated as contributory to the development of precise measurement tools. This research project aims to fill a cognitive gap in the literature with regard to the conceptualization and operationalization of an agile company. Thus, the original contribution of the author of this project is the construction of a theoretical model that integrates manufacturing agility (consisting mainly in adaptation to the environment) and strategic agility (based on proactive measures). The author of this research project is primarily interested in the attributes of an agile enterprise which indicate that the company is able to rapidly adapt to changing circumstances and behave pro-actively.

Keywords: Agile company, acuity, entrepreneurship, flexibility, research model, strategic leadership.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488
1117 Assessing the Impact of High Fidelity Human Patient Simulation on Teamwork among Nursing, Medicine and Pharmacy Undergraduate Students

Authors: S. MacDonald, A. Manuel, R. Law, N. Bandruak, A. Dubrowski, V. Curran, J. Smith-Young, K. Simmons, A. Warren

Abstract:

High fidelity human patient simulation has been used for many years by health sciences education programs to foster critical thinking, engage learners, improve confidence, improve communication, and enhance psychomotor skills. Unfortunately, there is a paucity of research on the use of high fidelity human patient simulation to foster teamwork among nursing, medicine and pharmacy undergraduate students. This study compared the impact of high fidelity and low fidelity simulation education on teamwork among nursing, medicine and pharmacy students. For the purpose of this study, two innovative teaching scenarios were developed based on the care of an adult patient experiencing acute anaphylaxis: one high fidelity using a human patient simulator and one low fidelity using case based discussions. A within subjects, pretest-posttest, repeated measures design was used with two-treatment levels and random assignment of individual subjects to teams of two or more professions. A convenience sample of twenty-four (n=24) undergraduate students participated, including: nursing (n=11), medicine (n=9), and pharmacy (n=4). The Interprofessional Teamwork Questionnaire was used to assess for changes in students’ perception of their functionality within the team, importance of interprofessional collaboration, comprehension of roles, and confidence in communication and collaboration. Student satisfaction was also assessed. Students reported significant improvements in their understanding of the importance of interprofessional teamwork and of the roles of nursing and medicine on the team after participation in both the high fidelity and the low fidelity simulation. However, only participants in the high fidelity simulation reported a significant improvement in their ability to function effectively as a member of the team. All students reported that both simulations were a meaningful learning experience and all students would recommend both experiences to other students. These findings suggest there is merit in both high fidelity and low fidelity simulation as a teaching and learning approach to foster teamwork among undergraduate nursing, medicine and pharmacy students. However, participation in high fidelity simulation may provide a more realistic opportunity to practice and function as an effective member of the interprofessional health care team.

Keywords: Acute anaphylaxis, high fidelity human patient simulation, low fidelity simulation, interprofessional education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 954
1116 Emotion Classification for Students with Autism in Mathematics E-learning using Physiological and Facial Expression Measures

Authors: Hui-Chuan Chu, Min-Ju Liao, Wei-Kai Cheng, William Wei-Jen Tsai, Yuh-Min Chen

Abstract:

Avoiding learning failures in mathematics e-learning environments caused by emotional problems in students with autism has become an important topic for combining of special education with information and communications technology. This study presents an adaptive emotional adjustment model in mathematics e-learning for students with autism, emphasizing the lack of emotional perception in mathematics e-learning systems. In addition, an emotion classification for students with autism was developed by inducing emotions in mathematical learning environments to record changes in the physiological signals and facial expressions of students. Using these methods, 58 emotional features were obtained. These features were then processed using one-way ANOVA and information gain (IG). After reducing the feature dimension, methods of support vector machines (SVM), k-nearest neighbors (KNN), and classification and regression trees (CART) were used to classify four emotional categories: baseline, happy, angry, and anxious. After testing and comparisons, in a situation without feature selection, the accuracy rate of the SVM classification can reach as high as 79.3-%. After using IG to reduce the feature dimension, with only 28 features remaining, SVM still has a classification accuracy of 78.2-%. The results of this research could enhance the effectiveness of eLearning in special education.

Keywords: Emotion classification, Physiological and facial Expression measures, Students with autism, Mathematics e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
1115 Learning to Order Terms: Supervised Interestingness Measures in Terminology Extraction

Authors: Jérôme Azé, Mathieu Roche, Yves Kodratoff, Michèle Sebag

Abstract:

Term Extraction, a key data preparation step in Text Mining, extracts the terms, i.e. relevant collocation of words, attached to specific concepts (e.g. genetic-algorithms and decisiontrees are terms associated to the concept “Machine Learning" ). In this paper, the task of extracting interesting collocations is achieved through a supervised learning algorithm, exploiting a few collocations manually labelled as interesting/not interesting. From these examples, the ROGER algorithm learns a numerical function, inducing some ranking on the collocations. This ranking is optimized using genetic algorithms, maximizing the trade-off between the false positive and true positive rates (Area Under the ROC curve). This approach uses a particular representation for the word collocations, namely the vector of values corresponding to the standard statistical interestingness measures attached to this collocation. As this representation is general (over corpora and natural languages), generality tests were performed by experimenting the ranking function learned from an English corpus in Biology, onto a French corpus of Curriculum Vitae, and vice versa, showing a good robustness of the approaches compared to the state-of-the-art Support Vector Machine (SVM).

Keywords: Text-mining, Terminology Extraction, Evolutionary algorithm, ROC Curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
1114 Data-driven Multiscale Tsallis Complexity: Application to EEG Analysis

Authors: Young-Seok Choi

Abstract:

This work proposes a data-driven multiscale based quantitative measures to reveal the underlying complexity of electroencephalogram (EEG), applying to a rodent model of hypoxic-ischemic brain injury and recovery. Motivated by that real EEG recording is nonlinear and non-stationary over different frequencies or scales, there is a need of more suitable approach over the conventional single scale based tools for analyzing the EEG data. Here, we present a new framework of complexity measures considering changing dynamics over multiple oscillatory scales. The proposed multiscale complexity is obtained by calculating entropies of the probability distributions of the intrinsic mode functions extracted by the empirical mode decomposition (EMD) of EEG. To quantify EEG recording of a rat model of hypoxic-ischemic brain injury following cardiac arrest, the multiscale version of Tsallis entropy is examined. To validate the proposed complexity measure, actual EEG recordings from rats (n=9) experiencing 7 min cardiac arrest followed by resuscitation were analyzed. Experimental results demonstrate that the use of the multiscale Tsallis entropy leads to better discrimination of the injury levels and improved correlations with the neurological deficit evaluation after 72 hours after cardiac arrest, thus suggesting an effective metric as a prognostic tool.

Keywords: Electroencephalogram (EEG), multiscale complexity, empirical mode decomposition, Tsallis entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
1113 Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites

Authors: Rui Magalhães, Sohel Rana, Raul Fangueiro, Clara Gonçalves, Pedro Nunes, Gustavo Dias

Abstract:

Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications.

Keywords: Auxetic fabrics, high performance, composites, impact resistance, energy absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791
1112 Statistical Measures and Optimization Algorithms for Gene Selection in Lung and Ovarian Tumor

Authors: C. Gunavathi, K. Premalatha

Abstract:

Microarray technology is universally used in the study of disease diagnosis using gene expression levels. The main shortcoming of gene expression data is that it includes thousands of genes and a small number of samples. Abundant methods and techniques have been proposed for tumor classification using microarray gene expression data. Feature or gene selection methods can be used to mine the genes that directly involve in the classification and to eliminate irrelevant genes. In this paper statistical measures like T-Statistics, Signal-to-Noise Ratio (SNR) and F-Statistics are used to rank the genes. The ranked genes are used for further classification. Particle Swarm Optimization (PSO) algorithm and Shuffled Frog Leaping (SFL) algorithm are used to find the significant genes from the top-m ranked genes. The Naïve Bayes Classifier (NBC) is used to classify the samples based on the significant genes. The proposed work is applied on Lung and Ovarian datasets. The experimental results show that the proposed method achieves 100% accuracy in all the three datasets and the results are compared with previous works.

Keywords: Microarray, T-Statistics, Signal-to-Noise Ratio, FStatistics, Particle Swarm Optimization, Shuffled Frog Leaping, Naïve Bayes Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
1111 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction

Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota

Abstract:

Understanding the causes of a road accident and predicting their occurrence is key to prevent deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network. 

Keywords: Accident risks estimation, artificial neural network, deep learning, K-mean, road safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
1110 Survivability of Verhulst-free Populations under Mutation Accumulation

Authors: Chrysline Margus N. Piñol, Jenifer DP. De Maligaya, Ahl G. Balitaon

Abstract:

Stable nonzero populations without random deaths caused by the Verhulst factor (Verhulst-free) are a rarity. Majority either grow without bounds or die of excessive harmful mutations. To delay the accumulation of bad genes or diseases, a new environmental parameter Γ is introduced in the simulation. Current results demonstrate that stability may be achieved by setting Γ = 0.1. These steady states approach a maximum size that scales inversely with reproduction age.

Keywords: Aging, mutation accumulation, population dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
1109 Compression and Filtering of Random Signals under Constraint of Variable Memory

Authors: Anatoli Torokhti, Stan Miklavcic

Abstract:

We study a new technique for optimal data compression subject to conditions of causality and different types of memory. The technique is based on the assumption that some information about compressed data can be obtained from a solution of the associated problem without constraints of causality and memory. This allows us to consider two separate problem related to compression and decompression subject to those constraints. Their solutions are given and the analysis of the associated errors is provided.

Keywords: stochastic signals, optimization problems in signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
1108 Network Effects and QoS as Determining Factors in Selection of Mobile Operator: A Case Study from Higher Learning Institution in Dodoma Municipality in Tanzania

Authors: Justinian Anatory, Ekael Stephen Manase

Abstract:

The use of mobile phones is growing tremendously all over the world. In Tanzania there are a number of operators licensed by Tanzania Communications Regulatory Authority (TCRA) aiming at attracting customers into their networks. So far telecommunications market competition has been very stiff. Various measures are being taken by mobile operators to survive in the market. Such measure include introducing of different air time bundles on daily, weekly and monthly at lower tariffs. Other measures include the introduction of normal tariff, tourist package and one network. Despite of all these strategies, there is a dynamic competition in the market which needs to be explored. Some influences which attract customers to choose a certain mobile operator are of particular interest. This paper is investigating if the network effects and Quality of Services (QoS) influence mobile customers in selection of their mobile network operators. Seventy seven students from high learning institutions in Dodoma Municipality in Tanzania participated in responding to prepared questionnaires. The data was analyzed using Statistical Package for Social Science (SPSS) Software. The results indicate that, network coverage does influence customers in selection of mobile operators. In addition, this paper proposes further research in some areas especially where the study came up with different findings from what the theory has in place.

Keywords: Network effects, Quality of services, Consumer Buying, mobile operators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
1107 Scenarios for a Sustainable Energy Supply Results of a Case Study for Austria

Authors: Petra Wächter

Abstract:

A comprehensive discussion of feasible strategies for sustainable energy supply is urgently needed to achieve a turnaround of the current energy situation. The necessary fundamentals required for the development of a long term energy vision are lacking to a great extent due to the absence of reasonable long term scenarios that fulfill the requirements of climate protection and sustainable energy use. The contribution of the study is based on a search for sustainable energy paths in the long run for Austria. The analysis makes use of secondary data predominantly. The measures developed to avoid CO2 emissions and other ecological risk factors vary to a great extent among all economic sectors. This is shown by the calculation of CO2 cost of abatement curves. In this study it is demonstrated that the most effective technical measures with the lowest CO2 abatement costs yield solutions to the current energy problems. Various scenarios are presented concerning the question how the technological and environmental options for a sustainable energy system for Austria could look like in the long run. It is shown how sustainable energy can be supplied even with today-s technological knowledge and options available. The scenarios developed include an evaluation of the economic costs and ecological impacts. The results are not only applicable to Austria but demonstrate feasible and cost efficient ways towards a sustainable future.

Keywords: Cost of CO2 Abatement, Energy Economics, Energy Efficiency, Renewable Energy Technologies, Sustainable Energy and Development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
1106 Development of State Model Theory for External Exclusive NOR Type LFSR Structures

Authors: Afaq Ahmad

Abstract:

Using state space technique and GF(2) theory, a simulation model for external exclusive NOR type LFSR structures is developed. Through this tool a systematic procedure is devised for computing pseudo-random binary sequences from such structures.

Keywords: LFSR, external exclusive NOR type, recursivebinary sequence, initial state - next state, state transition matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
1105 An Algorithm of Finite Capacity Material Requirement Planning System for Multi-stage Assembly Flow Shop

Authors: T. Wuttipornpun, U. Wangrakdiskul, W. Songserm

Abstract:

This paper aims to develop an algorithm of finite capacity material requirement planning (FCMRP) system for a multistage assembly flow shop. The developed FCMRP system has two main stages. The first stage is to allocate operations to the first and second priority work centers and also determine the sequence of the operations on each work center. The second stage is to determine the optimal start time of each operation by using a linear programming model. Real data from a factory is used to analyze and evaluate the effectiveness of the proposed FCMRP system and also to guarantee a practical solution to the user. There are five performance measures, namely, the total tardiness, the number of tardy orders, the total earliness, the number of early orders, and the average flow-time. The proposed FCMRP system offers an adjustable solution which is a compromised solution among the conflicting performance measures. The user can adjust the weight of each performance measure to obtain the desired performance. The result shows that the combination of FCMRP NP3 and EDD outperforms other combinations in term of overall performance index. The calculation time for the proposed FCMRP system is about 10 minutes which is practical for the planners of the factory.

Keywords: Material requirement planning, Finite capacity, Linear programming, Permutation, Application in industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
1104 Impact of Ownership Structure on Provision of Staff and Infrastructure for Implementing Computer Aided Design Curriculum in Universities in South-East Nigeria

Authors: Kelechi E. Ezeji

Abstract:

Instruction towards acquiring skills in the use of Computer Aided Design technologies has become a vital part of architectural education curriculum in the digital era. Its implementation, however, requires deployment of extra resources to build new infrastructure, acquisition and maintenance of new equipment, retraining of staff and recruitment of new ones who are knowledgeable in this area. This study sought to examine the impact that ownership structure of Nigerian universities had on provision of staff and infrastructure for implementing computer aided design curriculum with a view to developing a framework for the evaluation for appropriate implementation by the institutions. Survey research design was employed. The focus was on departments of architecture in universities in south-east Nigeria accredited by the National Universities Commission. Data were obtained in the areas of infrastructure and personnel for CAD implementation. A multi-stage stratified random sampling method was adopted. The first stage of stratification involved the accredited departments. Random sampling by balloting was then carried out. At the second stage, sampling size formulae was applied to obtain respondents’ number. For data analysis, analysis of variance tool for testing differences of means was used. With ρ < 0.5, the study found that there was significant difference between private-funded, state-funded and federal-funded departments of architecture in the provision of personnel and infrastructure. The implications of these findings were that for successful implementation leading to attainment of CAD proficiency to occur in every institution regardless of ownership structure, minimum evaluation guidelines needed to be set. A regular comparison of implementation in institutions was recommended as a means of rating performance. This will inform better interaction with those who consistently show weakness to challenge them towards improvement.

Keywords: Computer-aided design, curriculum, funding, infrastructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
1103 Performance Evaluation of Prioritized Limited Processor-Sharing System

Authors: Yoshiaki Shikata, Wataru Katagiri, Yoshitaka Takahashi

Abstract:

We propose a novel prioritized limited processor-sharing (PS) rule and a simulation algorithm for the performance evaluation of this rule. The performance measures of practical interest are evaluated using this algorithm. Suppose that there are two classes and that an arriving (class-1 or class-2) request encounters n1 class-1 and n2 class-2 requests (including the arriving one) in a single-server system. According to the proposed rule, class-1 requests individually and simultaneously receive m / (m * n1+ n2) of the service-facility capacity, whereas class-2 requests receive 1 / (m *n1 + n2) of it, if m * n1 + n2 ≤ C. Otherwise (m * n1 + n2 > C), the arriving request will be queued in the corresponding class waiting room or rejected. Here, m (1) denotes the priority ratio, and C ( ∞), the service-facility capacity. In this rule, when a request arrives at [or departs from] the system, the extension [shortening] of the remaining sojourn time of each request receiving service can be calculated using the number of requests of each class and the priority ratio. Employing a simulation program to execute these events and calculations enables us to analyze the performance of the proposed prioritized limited PS rule, which is realistic in a time-sharing system (TSS) with a sufficiently small time slot. Moreover, this simulation algorithm is expanded for the evaluation of the prioritized limited PS system with N  3 priority classes.

Keywords: PS rule, priority ratio, service-facility capacity, simulation algorithm, sojourn time, performance measures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
1102 The Effects of Mirror Therapy on Clinical Improvement in Hemiplegic Lower Extremity Rehabilitation in Subjects with Chronic Stroke

Authors: Hassan M. Abo Salem, Xiaolin Huang

Abstract:

Background: The effectiveness of mirror therapy (MT) has been investigated in acute hemiplegia. The present study examines whether MT, given during chronic stroke, was more effective in promoting motor recovery of the lower extremity and walking speed than standard rehabilitation alone. Methods: The study enrolled 30 patients with chronic stroke. Fifteen patients each were assigned to the treatment group and the control group. All patients received a conventional rehabilitation program for a 4-week period. In addition to this rehabilitation program, patients in the treatment group received mirror therapy for 4 weeks, 5 days a week. Main measures: Passive ankle joint dorsiflexion range of motion, gait speed, Brunnstrom stages of motor recovery, plantar flexor muscle tone by Modified Ashworth Scale. Results: No significant difference was found in the outcome measures among groups before treatment. When compared with standard rehabilitation, mirror therapy improved Ankle ROM, Brunnstrom stages and waking speed (p < 0.05). However, there were no significant differences between two groups on MAS (P > 0.05).Conclusion: Mirror therapy combined with a conventional stroke rehabilitation program enhances lowerextremity motor recovery and walking speed in chronic stroke patients.

Keywords: Mirror therapy, stroke, MAS, walking speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5215
1101 Wildfires Assessed by Remote Sense Images and Burned Land Monitoring

Authors: M. C. Proença

Abstract:

The tools described in this paper enable the location of burned areas where took place the annihilation of natural habitats and establishes a baseline for major changes in forest ecosystems during recovery. Moreover, the result allows the follow up of the surface fuel loading, allowing the evaluation and guidance of restoration measures to remote areas by phased time planning. This case study implements the evaluation of burned areas that suffered successive wildfires in Portugal mainland during the summer of 2017, killing more than 60 people. The goal is to show that this evaluation can be done with remote sense data free of charges in a simple laptop, with open-source software, describing the not-so-simple methodology step by step, to make it accessible for local workers in the areas attained, where the availability of information is essential for the immediate planning of mitigation measures, such as restoring road access, allocate funds for the recovery of human dwellings and assess further needs for restoration of the ecological system. Wildfires also devastate forest ecosystems having a direct impact on vegetation cover and killing or driving away the animal population, besides loss of all crops in rural areas that are essential as local resources. The economic interests are also attained, as the pinewood burned becomes useless for the noblest applications, so its value decreases, and resin extraction ends for several years.

Keywords: Image processing, remote sensing, wildfires, burned areas, SENTINEL-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
1100 Higher-Dimensional Quantum Cryptography

Authors: Bradley Christensen, Kevin T. McCusker, Daniel J. Gauthier, Daniel Kumor, Venkat Chandar, P. G. Kwiat

Abstract:

We report on a high-speed quantum cryptography system that utilizes simultaneous entanglement in polarization and in “time-bins". With multiple degrees of freedom contributing to the secret key, we can achieve over ten bits of random entropy per detected coincidence. In addition, we collect from multiple spots o the downconversion cone to further amplify the data rate, allowing usto achieve over 10 Mbits of secure key per second.

Keywords: Downconversion, Hyper-entanglement, Quantum Cryptography

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
1099 Innovative Activity and Development: Analyzing Firm Data from Eurozone Country-Members

Authors: Ilias A. Makris

Abstract:

In this work, we attempt to associate firm characteristics with innovative activity. We collect microdata from listed firms of selected Eurozone Country-members, after the beginning of 2007 financial crisis. The following literature, several indicators of growth and performance were selected and tested for their ability to interpret innovative activity. The main scope is to examine the possible differences in performance and growth between innovative and non-innovative firms, during a severe recession. Additionally to that, a special focus will be held on whether macroeconomic performance and national innovation system, determines the extent of innovators' performance. Preliminary findings, through correlation matrices and non-parametric tests, strongly indicate the positive relation between innovative activity and most of the measures used (profitability, size, employment), confirming that even during a recessionary period, innovative firms not only survive but also seem to succeed better economic results in almost all indexes relative to non-innovative. However, even though innovators seem to perform better in all economies examined, the extent of that performance seems to be strongly affected by the supportive mechanisms (financial and structural) that their country provides. Thus, it is clear, that the technologically intensive 'gap' between European South and North, during the economic crisis, became chaotic, due to the harsh austerity measures and reduced budgets in those countries, even in sectors with high potentials in economic activity and employment, impairing the effects of crisis and enhancing the vicious circle of recession.

Keywords: Eurozone, innovative activity, development, firm performance, non-parametric tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
1098 Performance Evaluation of a Limited Round-Robin System

Authors: Yoshiaki Shikata

Abstract:

Performance of a limited Round-Robin (RR) rule is studied in order to clarify the characteristics of a realistic sharing model of a processor. Under the limited RR rule, the processor allocates to each request a fixed amount of time, called a quantum, in a fixed order. The sum of the requests being allocated these quanta is kept below a fixed value. Arriving requests that cannot be allocated quanta because of such a restriction are queued or rejected. Practical performance measures, such as the relationship between the mean sojourn time, the mean number of requests, or the loss probability and the quantum size are evaluated via simulation. In the evaluation, the requested service time of an arriving request is converted into a quantum number. One of these quanta is included in an RR cycle, which means a series of quanta allocated to each request in a fixed order. The service time of the arriving request can be evaluated using the number of RR cycles required to complete the service, the number of requests receiving service, and the quantum size. Then an increase or decrease in the number of quanta that are necessary before service is completed is reevaluated at the arrival or departure of other requests. Tracking these events and calculations enables us to analyze the performance of our limited RR rule. In particular, we obtain the most suitable quantum size, which minimizes the mean sojourn time, for the case in which the switching time for each quantum is considered.

Keywords: Limited RR rule, quantum, processor sharing, sojourn time, performance measures, simulation, loss probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
1097 Urban Greenery in the Greatest Polish Cities: Analysis of Spatial Concentration

Authors: Elżbieta Antczak

Abstract:

Cities offer important opportunities for economic development and for expanding access to basic services, including health care and education, for large numbers of people. Moreover, green areas (as an integral part of sustainable urban development) present a major opportunity for improving urban environments, quality of lives and livelihoods. This paper examines, using spatial concentration and spatial taxonomic measures, regional diversification of greenery in the cities of Poland. The analysis includes location quotients, Lorenz curve, Locational Gini Index, and the synthetic index of greenery and spatial statistics tools: (1) To verify the occurrence of strong concentration or dispersion of the phenomenon in time and space depending on the variable category, and, (2) To study if the level of greenery depends on the spatial autocorrelation. The data includes the greatest Polish cities, categories of the urban greenery (parks, lawns, street greenery, and green areas on housing estates, cemeteries, and forests) and the time span 2004-2015. According to the obtained estimations, most of cites in Poland are already taking measures to become greener. However, in the country there are still many barriers to well-balanced urban greenery development (e.g. uncontrolled urban sprawl, poor management as well as lack of spatial urban planning systems).

Keywords: Greenery, urban areas, regional spatial diversification and concentration, spatial taxonomic measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
1096 A Multi-Signature Scheme based on Coding Theory

Authors: Mohammed Meziani, Pierre-Louis Cayrel

Abstract:

In this paper we propose two first non-generic constructions of multisignature scheme based on coding theory. The first system make use of the CFS signature scheme and is secure in random oracle while the second scheme is based on the KKS construction and is a few times. The security of our construction relies on a difficult problems in coding theory: The Syndrome Decoding problem which has been proved NP-complete [4].

Keywords: Post-quantum cryptography, Coding-based cryptography, Digital signature, Multisignature scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880