
 

 
Abstract—The prediction of the vibration response of rubber 

products by analytical or numerical method depends mainly on the 
predefined intrinsic material properties such as Young’s modulus, 
damping factor and Poisson’s ratio. Such intrinsic properties are 
determined experimentally by subjecting a bonded rubber sample to 
compression tests. The compression tests on such a sample yield an 
apparent Young’s modulus which is greater in magnitude than the 
intrinsic Young’s modulus of the rubber. As a result, many analytical 
equations have been developed to determine Young’s modulus from 
an apparent Young’s modulus of bonded rubber materials. In this 
work, the applicability of some of these analytical equations is 
assessed via experimental testing. The assessment is based on testing 
of vulcanized nitrile butadiene rubber (NBR70) samples using tensile 
test and compression test methods. The analytical equations are used 
to determine the intrinsic Young’s modulus from the apparent 
modulus that is derived from the compression test data of the bonded 
rubber samples. Then, these Young’s moduli are compared with the 
actual Young’s modulus that is derived from the tensile test data. The 
results show significant discrepancy between the Young’s modulus 
derived using the analytical equations and the actual Young’s 
modulus.  

 
Keywords—Bonded rubber, quasi-static test, shape factor, 

apparent Young’s modulus.  

I. INTRODUCTION 

UBBER materials are considerably used as engineering 
materials in mechanical, civil, and aerospace engineering 

applications to control vibrations and noise. This is not only 
due to their capability to extend (or compress) hyperelastically 
to high strain, but also due to their ability to dissipate energy 
owing to their viscoelastic characteristics. 

In principle, the properties of rubber products, such as 
rubber isolators and seals, can be controlled (or improved) in 
two ways: chemically by creating a rubber compound, which 
involves mixing and heating various ingredients together and 
mechanically by geometrical design of the product according 
to the required specifications for an application. However, the 
flexibility of controlling properties chemically is limited 
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because it depends on the percentage of added ingredients 
which produces a desirable change in a property but often has 
a negative effect on other properties. Therefore, engineers 
have headed for changing the physical properties of rubber 
products through geometrical and boundary conditions of 
rubber products in applications as a second way of modifying 
rubber properties. For instance, bonding a layer of rubber 
between rigid surfaces changes the compression stiffness by 
orders of magnitude. 

The knowledge of the intrinsic material properties, namely 
Young’s modulus, damping factor and Poisson’s ratio, is 
fundamental in predicting the vibration response of rubber 
products using analytical or numerical method. These 
properties need to be determined experimentally. One of the 
common experimental test procedures uses a bonded rubber 
sample in which a layer of the rubber material is bonded to 
rigid metal end plates. Compression tests on such a sample 
yield an apparent Young’s modulus which is greater in 
magnitude than the intrinsic Young’s modulus of the rubber 
material because of the restrained motion of the upper and 
lower bonded plate surfaces [1]-[8]. As a result, many studies 
have been carried out to produce an applicable mathematical 
model for the bonded rubber layers [3]-[12], [14].  

Theoretical relationships, which are based on the theory of a 
train-independent Young’s modulus and the theory of bonded 
rubber at a small strain, have been applied to the 
characterization of the load-deflection compression of rubbers 
at high strains. The mathematical expressions cover various 
rubber geometries such as rubber blocks, rings, spheres and 
rollers [5], [6]. In [9] the linear theory of elasticity was used to 
predict the behavior of constrained elastic cylinders under 
axial loads. A set of infinite orthogonal Bessel and 
trigonometric functions was used. The presented solutions and 
analysis satisfied all boundary conditions of constrained 
elastic cylinders.  

For a bonded rubber with a circular cross-section between 
rigid plates, an analytical equation was derived in [5] in the 
form: 

 
 𝐸 𝐸 1 𝛽𝑆  (1) 
 
where Ea is apparent modulus without bulk modulus effect, E 
is Young’s modulus, β is a numerical constant and S is the 
ratio of one loaded surface to the force-free surface, so called 
shape factor. The shape factor of a cylindrical rubber of 
diameter d and height l is equal to d/4l; the shape factor of a 
rectangular rubber block with sides a and b and thickness t is 
equal to ab/2t(a +b). 
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The contribution of the bulk modulus to the total 
deformation of the compressed bonded rubber becomes 
noticeable when the shape factors S becomes very large. 
Therefore, [5] derived an equation to account for this effect: 

  
   (2) 

 
where K is the Bulk modulus and 𝐸  is apparent modulus with 
bulk modulus effect  

Reference [5] derived (1) and (2) based on the assumptions 
that: (a) the material is virtually incompressible in terms of 
volume, (b) the cross-section of the block is normal to the 
direction of the applied load and remains plane and horizontal 
through the deformation, (c) the free surfaces bulge in 
parabolic forms. However, Horton et al. omitted the 
assumption that the free vertical surfaces manifest parabolic 
profile and developed a new expression as [10], [11]: 

 
 

1 𝑆 tanh   (3) 

 
Then, Horton et al. [10] found a satisfactory agreement 
between the results of (3) and its approximated expression: 
 

 
.

  (4) 

 
For B = ∞ and incompressible rubber block with circular or 
square shape, (3) can be expressed as:  
 
 𝐸

 
   (5) 

 
and (4) thus: 
 𝐸 𝐸 1.2 2𝑆  (6) 

 
In the context of Poisson’s ratio influence, Williams and 

Gamonpilas [12] derived analytical equations with Poisson’s 
ratio and shape factor parameters. The derivation of the 
equation was based on the Timoshenko and Goodier 
equilibrium equations [13]. This equation has the form:  

 
 

  (7) 

 
Reference [7] investigated the aforementioned theoretical 

equation and evaluated the Young’s modulus of rubber-like 
materials bonded to rigid surfaces. The investigation was 
carried out theoretically using finite element method (FEM) to 
predict the frequency response functions (FRFs) of the rubber-
like bonded sample. The results showed a significant 
difference between the Young’s modulus determined from the 
FRFs, predicted by the FEM, and the actual Young’s modulus 
that was used in the FEM analysis.  

In this work, the analytical equations (1), (5) and (6) are 
assessed for the vulcanized nitrile butadiene rubber NBR70. A 
cylindrical sample of the material is bonded to steel plates and 

subjected to quasi static compression test. Also, the material is 
subjected to a tensile test. The analytical equations are used to 
determine the intrinsic Young’s modulus from the apparent 
Young’s modulus derived from the compression test results of 
the bonded rubber samples which include the effects of shape 
factor. Then, these values are compared with the intrinsic 
Young’s modulus derived from the tensile test results which 
have no shape factor effect. The results show significant 
discrepancy between the Young’s modulus derived using the 
analytical equations and the actual Young’s modulus, which is 
determined from the experimental tensile test results. 

II. EXPERIMENTAL PROCEDURES  

This investigation is based on testing a vulcanised nitrile 
butadiene rubber (NBR70) of hardness 70 IRHD under static 
compression and tensile test deformation methods. All test 
pieces were cut from the vulcanised rubber NBR70 which 
comprises of the following ingredients by weight (phr): 
polymer 41.77, carbon black 41.77, plasticiser 9.86, anti-
degradants/activators 3.34, and curatives 3.26.  

 

 
Fig. 1 Compression sample test set-up: (a) a bonded compression 

sample, (b) Sample set up in Material Testing Machine (MTS) 
 

For the compression test, four samples of size 30 mm 
diameter and 40 mm length, in cylindrical shape, were cut 
from the vulcanized rubber. The samples were tightly glued to 
cylindrical steel end plates as shown in Fig. 1 (a). To avoid 
scragging effect contribution, the samples were mechanically 
preconditioned up to strain of 30% for 8 consecutive cycles 
with velocity of 10 mm/min using the MTS at Farrat Isolevel 
Company (see Fig. 1 (b)). 

For the tensile test, four strips each of size 140 mm total 
length, 100 mm gauge length, 6.2 mm width and 2.2 mm 
thickness were cut from the vulcanized rubber NBR70 and 
tested using the tensile test machine type Zwick/Roell -Z010 
at the university of Manchester (see Fig. 2). The samples were 
tested up to 30% strain with velocity 10 mm/min. All the 
samples for both tensile and compression were cut from one 
batch in order to eliminate inconsistency that results from 

(a) (b) 
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using different batches. 
 

 
Fig. 2 Tensile sample test set-up: (a) A tensile sample, (b) Sample set 

up in tensile testing machine Zwick/Roell - Z010 

III. METHODOLOGY 

The average force-deformation curves of four tested 
samples in each of compression test and tensile test were 
determined. The Young’s modulus was evaluated from 
apparent compression modules of bonded rubber samples 
using (1), (5) and (6) of Gent & Lindley [5], Horton et al. [10] 
and Horton approximated [10], [11], respectively. The 
calculations of measurements were based on one shape factor 
value and no bulk modulus contribution. The derived Young’s 
moduli from the analytical equations were compared with the 
tensile Young’s moduli in order to assess the applicability of 
each of the analytical equation to produce realistic Young’s 
modulus as an intrinsic property. The determination of 
intrinsic property of rubber materials, namely Young’s 
modulus, using the tensile test is more realistic than using the 
compression test because the latter is affected by geometrical 
shape and boundary conditions which produces an apparent 
Young’s modulus that is higher in magnitude than the true 
Young’s modulus. 

IV. RESULTS AND DISCUSSIONS 

A.  Stress-Strain Characteristics 

To understand the strength and stiffness of a sample of a 
material, the stress-strain curve is required which is created 
from the force and the corresponding measured deformation of 
the sample of the material during a test. The stress and strain 
are determined by dividing force by unstrained cross-section 
area (original area) and change in length by original length, 
respectively. These are called engineering stress-strain, 
whereas using strained cross-section area (instantaneous area) 
results in true stress-strain relationship. Based on the classical 

elasticity theory, which is specified for small strain limits, the 
difference between engineering and true stresses is not 
important since the area does not change notably. In rubber, 
however, the difference between engineering stress and true 
stress is very significant [14], [15].      

The engineering and true stress-strain curves of both the 
compression and tensile tests are shown in Figs. 3 and 4 
respectively. The data are derived based on the rubber 
elasticity theory. The expression in the form [14]   

 
 𝜎 𝜆 𝜆   (8) 
 
is used for engineering compression stress, where compression 
extension ratio λ = 1- e and e is the engineering strain.  

For the true compression stress, (8) is multiplied by λ and 
gives: 

 
 𝜎 𝜆 𝜆   (9) 
 
where, σo and σt are the engineering and true stress, 
respectively.  

 

 

Fig. 3 Engineering and true compression stress- strain relationship 
 

Similarly, (8) and (9) are used for determining tensile 
engineering and trues stress considering the sign convention 
rule (also, use Young’s modulus, E, rather than apparent 
modulus Ea , the latter only for the bonded compression test). 
Herein, the material is assumed to be incompressible with the 
theoretical Poison’s ratio ν = 0.5. 

Fig 3 shows that the engineering and true compression 
stresses have no difference until 4% compression strain which 
agrees with the aforementioned states of the classical elasticity 
theory for small strains. The difference becomes significant 
beyond 4% strain and increases with strain. Also, the figure 
shows that the nonlinear effect becomes prominent after 24% 
strain. This behaviour can be explained by the fact that when 
the sample is compressed, the height decreases which gives 
rise to non-homogenous uniaxial compression distribution in 
the bonded sample and the influence of the shear and bulk 
moduli becomes significant. Furthermore, the values of true 

(a) (b) 
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stresses are less than the engineering stress, which proves that 
the area of the rubber material changes dramatically when it is 
subjected to a force. 

In the case of tensile test, the results in Fig. 4 show that the 
tensile stress-strain curves have the same linear trend up to 
strain of 4%. Then, the curves start diverging from each other 
so that the true stress varies linearly with the strain, and the 
engineering stress varies nonlinearly with strain. The figure, in 
addition, indicates that the stress is uniformly distributed 
throughout the sample in uniaxial tension over whole range of 
strain. That is, no effect of the clamped ends on the stress 
distribution along the sample. The results also prove that area 
of rubber samples changes substantially under loading because 
the true stress values are higher than the engineering stress 
values. 

 

 

Fig. 4 Engineering and true tensile stress – strain relationship 

B. Derived Young’s Modulus Properties 

The Young’s modulus derived using (1), (5) and (6) in 
Section I and the apparent compression modulus (or effective 
compression modulus), which was determined from the 
average engineering stress-strain curves of the compression 
test, are shown in Fig. 5. The figure shows that all the 
analytical equations produced a Young’s modulus which is 
less than the apparent modulus. This agrees with the literature 
that indicates that bonding an elastomer layer to rigid plates 
increases the stiffness to order of magnitude [1]-[13]. The 
Young’s moduli derived from the analytical equations follow 
the behaviour of the apparent modulus; it decreases when 
strain increases up to engineering strain of 28%. Beyond 28% 
strain, the Young’s moduli increased sharply with engineering 
strain. This is because of the reason that has been mentioned 
previously: The height of the sample decreases with 
compression deformation and thereby results in non-
homogenous compression distribution throughout the 
compressed sample. Surprisingly, the discrepancy between the 
values of compression Young’s moduli derived using the 
analytical equations is very remarkable and creates an 
ambiguous situation where the correct value of compression 
Young’s modulus is uncertain. This unacceptable difference 
between the Young’s modulus derived using the analytical 

equations gives rise to an important question to consider: 
Which of these analytical equations produces the correct 
Young’s modulus? 

 

 

Fig. 5 Comparison of derived Young’s moduli with the apparent 
compression modulus. The results are based on the engineering 

compression stress – strain data 
 
In order to obtain an answer, tensile test was carried out to 

produce actual Young’s modulus. It is known that tensile test 
is not severely influenced by geometrical shape and boundary 
conditions as is the case with compression tests. Fig. 5 shows 
the comparison of the Young’s modulus derived from 
engineering tensile test data with those derived from 
engineering compression test data using the analytical 
equations (hereinafter, the tensile Young’s modulus is 
regarded as the actual Young’s modulus). The results show 
that the actual Young’s modulus is less than the apparent 
modulus and continues to decrease with strain increases. The 
actual Young’s modulus did not manifest a change in its trend 
beyond 24% strain, whereas the Young’s moduli that 
analytical equations produced started increasing in magnitude 
after 24% strain. This is because of the boundary conditions of 
the sample and shape factor effects, which are more influence 
in compression test than in tensile test. The figure also shows 
that none of the Young’s moduli derived from the 
compression test data using the analytical equations agreed 
with the actual Young’s modulus except for those derived 
from (6). Even in this case, however, the agreement is not 
fairly satisfied but it is better than (1) and (5) for the 
derivation of Young’s modulus from the apparent modulus of 
the bonded rubber materials.  

Similarly, the true stress-strain data of both compression 
and tensile tests are used to compare the Young’s moduli 
derived from the analytical equations with the actual Young’s 
modulus from tensile test. The results of compression in Fig. 6 
show that there is no much perceptible difference between 
using engineering stress data and true stress data. In addition, 
Figs. 5 and 6 show that Young’s modulus decreases with 
strain even at small strain where Young’s modulus is usually 
quoted for rubbers. This is rather strange. In fact, Fig. 4 shows 
that the true tensile stress-strain behaviour is linear up to 26% 
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strain. This implies that the tensile Young’s modulus should 
remain constant over this range of strain. However, Fig. 5 
shows that the tensile Young’s modulus decreases with strain 
which should not be the case. Therefore, this suggests that 
perhaps the theory of rubber elasticity that was applied in the 
derivations of (8) and (9) may not be applicable when deriving 
Young’s modulus from experimental data. This may be the 
case, since the theory of rubber elasticity is based on the 
micromechanics of rubber. For analysis of real practical 
samples, a micromechanics approach may be necessary.  

 

 

Fig. 6 Comparison of the actual tensile Young’s modulus with the 
derived Young’s moduli, and the apparent compression modulus. The 

results are based on the true stress – strain data 

V. CONCLUSIONS 

The applicability of three analytical equations, which are 
used to derive Young’s modulus from the apparent modulus 
that is obtained from compression tests on bonded rubber, was 
investigated experimentally on compression samples of 
vulcanised rubber NBR70. For comparison, the true (or actual) 
Young’s modulus was derived from experimental tests carried 
out on a tensile sample. All the analytical equations derived 
Young’s modulus values that were less than the apparent 
modulus but with very noticeable differences in values 
between each other. Equation (5) derived the Young’s 
modulus lower than (1) but higher than (6). The derived 
Young’s moduli from all the theoretical equations followed 
the behaviour of the apparent modulus, which decreases when 
strain increases.  

The actual Young’s modulus values that were derived from 
the tensile test are much lower than the Young’s moduli that 
were derived from all the analytical equations. That is, none of 
the analytical equations derived Young’s modulus values that 
were close to the actual Young’s modulus. Generally 
speaking, (6) is better than (1) and (5) for the derivation of the 
Young’s modulus of the bonded rubber materials from the 
apparent compression modulus.  

The results suggest that the Young’s moduli decrease with 
strain. However, this does not seem valid because the true 
tensile stress-strain behaviour is linear up to 26% strain. This 

requires further investigation in future work.  
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