Search results for: optical musical recognition.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1439

Search results for: optical musical recognition.

1019 Effect of Silver Nanoparticles Size Prepared by Photoreduction Method on Optical Absorption Spectra of TiO2/Ag/N719 Dye Composite Films

Authors: C. Photiphitak, P. Rakkwamsuk, P. Muthitamongkol, C. Sae-Kung, C. Thanachayanont

Abstract:

TiO2/Ag composite films were prepared by incorporating Ag in the pores of mesoporous TiO2 films using a photoreduction method. The Ag nanoparticle sizes were in a range of 3.66-38.56 nm. The TiO2/Ag composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscropy (TEM). The TiO2 films and TiO2/Ag composite films were immersed in a 0.3 mM N719 dye solution and characterized by UV-Vis spectrophotometer. The TiO2/Ag/N719 composite film showed that an optimal size of Ag nanoparticles was 19.12 nm and, hence, gave the maximum optical absorption spectra. The improved absorption was due to surface plasmon resonance induced by the Ag nanoparticles to enhance the absorption coefficient of the dye.

Keywords: Silver nanoparticle, TiO2/Ag composite films, Optical properties, surface plasmon resonance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603
1018 A Smart-Visio Microphone for Audio-Visual Speech Recognition “Vmike“

Authors: Y. Ni, K. Sebri

Abstract:

The practical implementation of audio-video coupled speech recognition systems is mainly limited by the hardware complexity to integrate two radically different information capturing devices with good temporal synchronisation. In this paper, we propose a solution based on a smart CMOS image sensor in order to simplify the hardware integration difficulties. By using on-chip image processing, this smart sensor can calculate in real time the X/Y projections of the captured image. This on-chip projection reduces considerably the volume of the output data. This data-volume reduction permits a transmission of the condensed visual information via the same audio channel by using a stereophonic input available on most of the standard computation devices such as PC, PDA and mobile phones. A prototype called VMIKE (Visio-Microphone) has been designed and realised by using standard 0.35um CMOS technology. A preliminary experiment gives encouraged results. Its efficiency will be further investigated in a large variety of applications such as biometrics, speech recognition in noisy environments, and vocal control for military or disabled persons, etc.

Keywords: Audio-Visual Speech recognition, CMOS Smartsensor, On-Chip image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
1017 Feature's Extraction of Human Body Composition in Images by Segmentation Method

Authors: Mousa Mojarrad, Mashallah Abbasi Dezfouli, Amir Masoud Rahmani

Abstract:

Detection and recognition of the Human Body Composition and extraction their measures (width and length of human body) in images are a major issue in detecting objects and the important field in Image, Signal and Vision Computing in recent years. Finding people and extraction their features in Images are particularly important problem of object recognition, because people can have high variability in the appearance. This variability may be due to the configuration of a person (e.g., standing vs. sitting vs. jogging), the pose (e.g. frontal vs. lateral view), clothing, and variations in illumination. In this study, first, Human Body is being recognized in image then the measures of Human Body extract from the image.

Keywords: Analysis of image processing, canny edge detection, classification, feature extraction, human body recognition, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2771
1016 Optical Flow Based Moving Object Detection and Tracking for Traffic Surveillance

Authors: Sepehr Aslani, Homayoun Mahdavi-Nasab

Abstract:

Automated motion detection and tracking is a challenging task in traffic surveillance. In this paper, a system is developed to gather useful information from stationary cameras for detecting moving objects in digital videos. The moving detection and tracking system is developed based on optical flow estimation together with application and combination of various relevant computer vision and image processing techniques to enhance the process. To remove noises, median filter is used and the unwanted objects are removed by applying thresholding algorithms in morphological operations. Also the object type restrictions are set using blob analysis. The results show that the proposed system successfully detects and tracks moving objects in urban videos.

Keywords: Optical flow estimation, moving object detection, tracking, morphological operation, blob analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10156
1015 Shift Invariant Support Vector Machines Face Recognition System

Authors: J. Ruiz-Pinales, J. J. Acosta-Reyes, A. Salazar-Garibay, R. Jaime-Rivas

Abstract:

In this paper, we present a new method for incorporating global shift invariance in support vector machines. Unlike other approaches which incorporate a feature extraction stage, we first scale the image and then classify it by using the modified support vector machines classifier. Shift invariance is achieved by replacing dot products between patterns used by the SVM classifier with the maximum cross-correlation value between them. Unlike the normal approach, in which the patterns are treated as vectors, in our approach the patterns are treated as matrices (or images). Crosscorrelation is computed by using computationally efficient techniques such as the fast Fourier transform. The method has been tested on the ORL face database. The tests indicate that this method can improve the recognition rate of an SVM classifier.

Keywords: Face recognition, support vector machines, shiftinvariance, image registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
1014 Towards an Understanding of Social Capital in an Online Community of Filipino Music Artists

Authors: Jerome V. Cleofas

Abstract:

Cyberspace has become a more viable arena for budding artists to share musical acts through digital forms. The increasing relevance of online communities has attracted scholars from various fields demonstrating its influence on social capital. This paper extends this understanding of social capital among Filipino music artists belonging to the SoundCloud Philippines Facebook Group. The study makes use of various qualitative data obtained from key-informant interviews and participant observation of online and physical encounters, analyzed using the case study approach. Soundcloud Philippines has over seven-hundred members and is composed of Filipino singers, instrumentalists, composers, arrangers, producers, multimedia artists and event managers. Group interactions are a mix of online encounters based on Facebook and SoundCloud and physical encounters through meet-ups and events. Benefits reaped from the community are informational, technical, instrumental, promotional, motivational and social support. Under the guidance of online group administrators, collaborative activities such as music productions, concerts and events transpire. Most conflicts and problems arising are resolved peacefully. Social capital in SoundCloud Philippines is mobilized through recognition, respect and reciprocity.

Keywords: Facebook, music artists, online communities, social capital.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
1013 New Method for Determining the Distribution of Birefringence and Linear Dichroism in Polymer Materials Based On Polarization-Holographic Grating

Authors: Barbara Kilosanidze, George Kakauridze, Levan Nadareishvili, Yuri Mshvenieradze

Abstract:

A new method for determining the distribution of birefringence and linear dichroism in optical polymer materials is presented. The method is based on the use of polarizationholographic diffraction grating that forms an orthogonal circular basis in the process of diffraction of probing laser beam on the grating. The intensities ratio of the orders of diffraction on this grating enables the value of birefringence and linear dichroism in the sample to be determined. The distribution of birefringence in the sample is determined by scanning with a circularly polarized beam with a wavelength far from the absorption band of the material. If the scanning is carried out by probing beam with the wavelength near to a maximum of the absorption band of the chromophore then the distribution of linear dichroism can be determined. An appropriate theoretical model of this method is presented. A laboratory setup was created for the proposed method. An optical scheme of the laboratory setup is presented. The results of measurement in polymer films with two-dimensional gradient distribution of birefringence and linear dichroism are discussed.

Keywords: Birefringence, graded oriented polymers, linear dichroism, optical polymers, optical anisotropy, polarization-holographic grating,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
1012 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping

Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton

Abstract:

Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.

Keywords: Pollen recognition, logistic model tree, expectation-maximization, local binary pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
1011 Non-negative Principal Component Analysis for Face Recognition

Authors: Zhang Yan, Yu Bin

Abstract:

Principle component analysis is often combined with the state-of-art classification algorithms to recognize human faces. However, principle component analysis can only capture these features contributing to the global characteristics of data because it is a global feature selection algorithm. It misses those features contributing to the local characteristics of data because each principal component only contains some levels of global characteristics of data. In this study, we present a novel face recognition approach using non-negative principal component analysis which is added with the constraint of non-negative to improve data locality and contribute to elucidating latent data structures. Experiments are performed on the Cambridge ORL face database. We demonstrate the strong performances of the algorithm in recognizing human faces in comparison with PCA and NREMF approaches.

Keywords: classification, face recognition, non-negativeprinciple component analysis (NPCA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
1010 Local Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition

Authors: Mohammed Rziza, Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Driss Aboutajdine

Abstract:

In this paper, an efficient local appearance feature extraction method based the multi-resolution Curvelet transform is proposed in order to further enhance the performance of the well known Linear Discriminant Analysis(LDA) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based Curvelet coefficients. These coefficients characterize the face texture and a set of simple statistical measures allows us to form compact and meaningful feature vectors. The proposed method is compared with some related feature extraction methods such as Principal component analysis (PCA), as well as Linear Discriminant Analysis LDA, and independent component Analysis (ICA). Two different muti-resolution transforms, Wavelet (DWT) and Contourlet, were also compared against the Block Based Curvelet-LDA algorithm. Experimental results on ORL, YALE and FERET face databases convince us that the proposed method provides a better representation of the class information and obtains much higher recognition accuracies.

Keywords: Curvelet, Linear Discriminant Analysis (LDA) , Contourlet, Discreet Wavelet Transform, DWT, Block-based analysis, face recognition (FR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
1009 High Optical Properties and Rectifying Behavior of ZnO (Nano and Microstructures)/Si Heterostructures

Authors: Ramin Yousefi, Muhamad. Rasat. Muhamad

Abstract:

We investigated a modified thermal evaporation method in the growth process of ZnO nanowires. ZnO nanowires were fabricated on p-type silicon substrates without using a metal catalyst. A simple horizontal double-tube system along with chemical vapor diffusion of the precursor was used to grow the ZnO nanowires. The substrates were placed in different temperature zones, and ZnO nanowires with different diameters were obtained for the different substrate temperatures. In addition to the nanowires, ZnO microdiscs with different diameters were obtained on another substrate, which was placed at a lower temperature than the other substrates. The optical properties and crystalline quality of the ZnO nanowires and microdiscs were characterized by room temperature photoluminescence (PL) and Raman spectrometers. The PL and Raman studies demonstrated that the ZnO nanowires and microdiscs grown using such set-up had good crystallinity with excellent optical properties. Rectifying behavior of ZnO/Si heterostructures was characterized by a simple DC circuit.

Keywords: ZnO nano and microstructures, Photoluminescence, Raman, Rectifying behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
1008 Pattern Recognition Techniques Applied to Biomedical Patterns

Authors: Giovanni Luca Masala

Abstract:

Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.

Keywords: Computer Aided Detection, mammary tumor, pattern recognition, dissimilarity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360
1007 Using Data Fusion for Biometric Verification

Authors: Richard A. Wasniowski

Abstract:

A wide spectrum of systems require reliable personal recognition schemes to either confirm or determine the identity of an individual person. This paper considers multimodal biometric system and their applicability to access control, authentication and security applications. Strategies for feature extraction and sensor fusion are considered and contrasted. Issues related to performance assessment, deployment and standardization are discussed. Finally future directions of biometric systems development are discussed.

Keywords: Multimodal, biometric, recognition, fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
1006 Modeling of Silicon Solar Cell with Anti-Reflecting Coating

Authors: Ankita Gaur, Mouli Karmakar, Shyam

Abstract:

In this study, a silicon solar cell has been modeled and analyzed to enhance its performance by improving the optical properties using an anti-reflecting coating (ARC). The dynamic optical reflectance, transmittance along with the net transmissivity absorptivity product of each layer are assessed as per the diurnal variation of the angle of incidence using MATLAB 2019. The model is tested with various anti-reflective coatings and the performance has also been compared with uncoated cells. ARC improves the optical transmittance of the photon. Higher transmittance of ⁓96.57% with lowest reflectance of ⁓ 1.74% at 12.00 hours was obtained with MgF2 coated silicon cells. The electrical efficiency of the configured solar cell was evaluated for a composite climate of New Delhi, India, for all weather conditions. The annual electricity generation for anti-reflective coated and uncoated crystalline silicon PV Module was observed to be 103.14 KWh and 99.51 KWh, respectively.

Keywords: Anti-reflecting coating, electrical efficiency, reflectance, solar cell, transmittance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 532
1005 Neural Network Based Approach for Face Detection cum Face Recognition

Authors: Kesari Verma, Aniruddha S. Thoke, Pritam Singh

Abstract:

Automatic face detection is a complex problem in image processing. Many methods exist to solve this problem such as template matching, Fisher Linear Discriminate, Neural Networks, SVM, and MRC. Success has been achieved with each method to varying degrees and complexities. In proposed algorithm we used upright, frontal faces for single gray scale images with decent resolution and under good lighting condition. In the field of face recognition technique the single face is matched with single face from the training dataset. The author proposed a neural network based face detection algorithm from the photographs as well as if any test data appears it check from the online scanned training dataset. Experimental result shows that the algorithm detected up to 95% accuracy for any image.

Keywords: Face Detection, Face Recognition, NN Approach, PCA Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
1004 On the Network Packet Loss Tolerance of SVM Based Activity Recognition

Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir

Abstract:

In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces  high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.

Keywords: Activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2871
1003 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: Deep-learning, image classification, image identification, industrial engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
1002 Stereotypical Motor Movement Recognition Using Microsoft Kinect with Artificial Neural Network

Authors: M. Jazouli, S. Elhoufi, A. Majda, A. Zarghili, R. Aalouane

Abstract:

Autism spectrum disorder is a complex developmental disability. It is defined by a certain set of behaviors. Persons with Autism Spectrum Disorders (ASD) frequently engage in stereotyped and repetitive motor movements. The objective of this article is to propose a method to automatically detect this unusual behavior. Our study provides a clinical tool which facilitates for doctors the diagnosis of ASD. We focus on automatic identification of five repetitive gestures among autistic children in real time: body rocking, hand flapping, fingers flapping, hand on the face and hands behind back. In this paper, we present a gesture recognition system for children with autism, which consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using artificial neural network (ANN). The first one uses the Microsoft Kinect sensor, the second one chooses points of interest from the 3D skeleton to characterize the gestures, and the last one proposes a neural connectionist model to perform the supervised classification of data. The experimental results show that our system can achieve above 93.3% recognition rate.

Keywords: ASD, stereotypical motor movements, repetitive gesture, kinect, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
1001 An Automatic Pipeline Monitoring System Based on PCA and SVM

Authors: C. Wan, A. Mita

Abstract:

This paper proposes a novel system for monitoring the health of underground pipelines. Some of these pipelines transport dangerous contents and any damage incurred might have catastrophic consequences. However, most of these damage are unintentional and usually a result of surrounding construction activities. In order to prevent these potential damages, monitoring systems are indispensable. This paper focuses on acoustically recognizing road cutters since they prelude most construction activities in modern cities. Acoustic recognition can be easily achieved by installing a distributed computing sensor network along the pipelines and using smart sensors to “listen" for potential threat; if there is a real threat, raise some form of alarm. For efficient pipeline monitoring, a novel monitoring approach is proposed. Principal Component Analysis (PCA) was studied and applied. Eigenvalues were regarded as the special signature that could characterize a sound sample, and were thus used for the feature vector for sound recognition. The denoising ability of PCA could make it robust to noise interference. One class SVM was used for classifier. On-site experiment results show that the proposed PCA and SVM based acoustic recognition system will be very effective with a low tendency for raising false alarms.

Keywords: One class SVM, pipeline monitoring system, principal component analysis, sound recognition, third party damage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
1000 2.5D Face Recognition Using Gabor Discrete Cosine Transform

Authors: Ali Cheraghian, Farshid Hajati, Soheila Gheisari, Yongsheng Gao

Abstract:

In this paper, we present a novel 2.5D face recognition method based on Gabor Discrete Cosine Transform (GDCT). In the proposed method, the Gabor filter is applied to extract feature vectors from the texture and the depth information. Then, Discrete Cosine Transform (DCT) is used for dimensionality and redundancy reduction to improve computational efficiency. The system is combined texture and depth information in the decision level, which presents higher performance compared to methods, which use texture and depth information, separately. The proposed algorithm is examined on publically available Bosphorus database including models with pose variation. The experimental results show that the proposed method has a higher performance compared to the benchmark.

Keywords: Gabor filter, discrete cosine transform, 2.5D face recognition, pose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
999 Efficient Iris Recognition Method for Human Identification

Authors: A. Basit, M. Y. Javed, M. A. Anjum

Abstract:

In this paper, an efficient method for personal identification based on the pattern of human iris is proposed. It is composed of image acquisition, image preprocessing to make a flat iris then it is converted into eigeniris and decision is carried out using only reduction of iris in one dimension. By comparing the eigenirises it is determined whether two irises are similar. The results show that proposed method is quite effective.

Keywords: Biometrics, Canny Operator, Eigeniris, Iris Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
998 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach

Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh

Abstract:

Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system.  This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.

Keywords: Handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
997 Photograph Based Pair-matching Recognition of Human Faces

Authors: Min Yao, Kota Aoki, Hiroshi Nagahashi

Abstract:

In this paper, a novel system recognition of human faces without using face different color photographs is proposed. It mainly in face detection, normalization and recognition. Foot method of combination of Haar-like face determined segmentation and region-based histogram stretchi (RHST) is proposed to achieve more accurate perf using Haar. Apart from an effective angle norm side-face (pose) normalization, which is almost a might be important and beneficial for the prepr introduced. Then histogram-based and photom normalization methods are investigated and ada retinex (ASR) is selected for its satisfactory illumin Finally, weighted multi-block local binary pattern with 3 distance measures is applied for pair-mat Experimental results show its advantageous perfo with PCA and multi-block LBP, based on a principle.

Keywords: Face detection, pair-matching rec normalization, skin color segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
996 The Analysis of Nanoptenna for Extreme Fast Communication (XFC) over Short Distance

Authors: Shruti Taksali

Abstract:

This paper focuses on the analysis of Nanoptenna for extreme fast communication. The Nanoptenna is basically a nano antenna designed for communication at optical range of frequencies. Since, this range of frequencies includes the visible spectrum of the light, so there is a high possibility of the data transfer at high rates and extreme fast communication (XFC). The shape chosen for the analysis is a bow tie structure due to its various characteristics of electric field enhancement.

Keywords: Nanoptenna, communication, optical range, XFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
995 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System

Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas

Abstract:

Paper presents an comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in speaker dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signal to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients gives best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfy the real-time requirements and is suitable for applications in embedded systems.

Keywords: Isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3540
994 OHASD: The First On-Line Arabic Sentence Database Handwritten on Tablet PC

Authors: Randa I. M. Elanwar, Mohsen A. Rashwan, Samia A. Mashali

Abstract:

In this paper we present the first Arabic sentence dataset for on-line handwriting recognition written on tablet pc. The dataset is natural, simple and clear. Texts are sampled from daily newspapers. To collect naturally written handwriting, forms are dictated to writers. The current version of our dataset includes 154 paragraphs written by 48 writers. It contains more than 3800 words and more than 19,400 characters. Handwritten texts are mainly written by researchers from different research centers. In order to use this dataset in a recognition system word extraction is needed. In this paper a new word extraction technique based on the Arabic handwriting cursive nature is also presented. The technique is applied to this dataset and good results are obtained. The results can be considered as a bench mark for future research to be compared with.

Keywords: Arabic, Handwriting recognition, on-line dataset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
993 Enhanced Clustering Analysis and Visualization Using Kohonen's Self-Organizing Feature Map Networks

Authors: Kasthurirangan Gopalakrishnan, Siddhartha Khaitan, Anshu Manik

Abstract:

Cluster analysis is the name given to a diverse collection of techniques that can be used to classify objects (e.g. individuals, quadrats, species etc). While Kohonen's Self-Organizing Feature Map (SOFM) or Self-Organizing Map (SOM) networks have been successfully applied as a classification tool to various problem domains, including speech recognition, image data compression, image or character recognition, robot control and medical diagnosis, its potential as a robust substitute for clustering analysis remains relatively unresearched. SOM networks combine competitive learning with dimensionality reduction by smoothing the clusters with respect to an a priori grid and provide a powerful tool for data visualization. In this paper, SOM is used for creating a toroidal mapping of two-dimensional lattice to perform cluster analysis on results of a chemical analysis of wines produced in the same region in Italy but derived from three different cultivators, referred to as the “wine recognition data" located in the University of California-Irvine database. The results are encouraging and it is believed that SOM would make an appealing and powerful decision-support system tool for clustering tasks and for data visualization.

Keywords: Artificial neural networks, cluster analysis, Kohonen maps, wine recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
992 Surveillance of Super-Extended Objects: Bimodal Approach

Authors: Andrey V. Timofeev, Dmitry Egorov

Abstract:

This paper describes an effective solution to the task of a remote monitoring of super-extended objects (oil and gas pipeline, railways, national frontier). The suggested solution is based on the principle of simultaneously monitoring of seismoacoustic and optical/infrared physical fields. The principle of simultaneous monitoring of those fields is not new but in contrast to the known solutions the suggested approach allows to control super-extended objects with very limited operational costs. So-called C-OTDR (Coherent Optical Time Domain Reflectometer) systems are used to monitor the seismoacoustic field. Far-CCTV systems are used to monitor the optical/infrared field. A simultaneous data processing provided by both systems allows effectively detecting and classifying target activities, which appear in the monitored objects vicinity. The results of practical usage had shown high effectiveness of the suggested approach.

Keywords: Bimodal processing, C-OTDR monitoring system, LPboost, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
991 Speech Activated Automation

Authors: Rui Antunes

Abstract:

This article presents a simple way to perform programmed voice commands for the interface with commercial Digital and Analogue Input/Output PCI cards, used in Robotics and Automation applications. Robots and Automation equipment can "listen" to voice commands and perform several different tasks, approaching to the human behavior, and improving the human- machine interfaces for the Automation Industry. Since most PCI Digital and Analogue Input/Output cards are sold with several DLLs included (for use with different programming languages), it is possible to add speech recognition capability, using a standard speech recognition engine, compatible with the programming languages used. It was created in this work a Visual Basic 6 (the world's most popular language) application, that listens to several voice commands, and is capable to communicate directly with several standard 128 Digital I/O PCI Cards, used to control complete Automation Systems, with up to (number of boards used) x 128 Sensors and/or Actuators.

Keywords: Speech Recognition, Automation, Robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
990 Illumination Invariant Face Recognition using Supervised and Unsupervised Learning Algorithms

Authors: Shashank N. Mathur, Anil K. Ahlawat, Virendra P. Vishwakarma

Abstract:

In this paper, a comparative study of application of supervised and unsupervised learning algorithms on illumination invariant face recognition has been carried out. The supervised learning has been carried out with the help of using a bi-layered artificial neural network having one input, two hidden and one output layer. The gradient descent with momentum and adaptive learning rate back propagation learning algorithm has been used to implement the supervised learning in a way that both the inputs and corresponding outputs are provided at the time of training the network, thus here is an inherent clustering and optimized learning of weights which provide us with efficient results.. The unsupervised learning has been implemented with the help of a modified Counterpropagation network. The Counterpropagation network involves the process of clustering followed by application of Outstar rule to obtain the recognized face. The face recognition system has been developed for recognizing faces which have varying illumination intensities, where the database images vary in lighting with respect to angle of illumination with horizontal and vertical planes. The supervised and unsupervised learning algorithms have been implemented and have been tested exhaustively, with and without application of histogram equalization to get efficient results.

Keywords: Artificial Neural Networks, back propagation, Counterpropagation networks, face recognition, learning algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686