Search results for: multi-channel measurements
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 889

Search results for: multi-channel measurements

469 Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain

Authors: Sergio Pissanetzky

Abstract:

The ability of the brain to organize information and generate the functional structures we use to act, think and communicate, is a common and easily observable natural phenomenon. In object-oriented analysis, these structures are represented by objects. Objects have been extensively studied and documented, but the process that creates them is not understood. In this work, a new class of discrete, deterministic, dissipative, host-guest dynamical systems is introduced. The new systems have extraordinary self-organizing properties. They can host information representing other physical systems and generate the same functional structures as the brain does. A simple mathematical model is proposed. The new systems are easy to simulate by computer, and measurements needed to confirm the assumptions are abundant and readily available. Experimental results presented here confirm the findings. Applications are many, but among the most immediate are object-oriented engineering, image and voice recognition, search engines, and Neuroscience.

Keywords: AI, artificial intelligence, complex system, object oriented, OO, refactoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
468 Contribution to the Study of Thermal Conductivity of Porous Silicon Used In Thermal Sensors

Authors: A. Ould-Abbas, M. Bouchaour, , M. Madani, D. Trari, O. Zeggai, M. Boukais, N.-E.Chabane-Sari

Abstract:

The porous silicon (PS), formed from the anodization of a p+ type substrate silicon, consists of a network organized in a pseudo-column as structure of multiple side ramifications. Structural micro-topology can be interpreted as the fraction of the interconnected solid phase contributing to thermal transport. The reduction of dimensions of silicon of each nanocristallite during the oxidation induced a reduction in thermal conductivity. Integration of thermal sensors in the Microsystems silicon requires an effective insulation of the sensor element. Indeed, the low thermal conductivity of PS consists in a very promising way in the fabrication of integrated thermal Microsystems.In this work we are interesting in the measurements of thermal conductivity (on the surface and in depth) of PS by the micro-Raman spectroscopy. The thermal conductivity is studied according to the parameters of anodization (initial doping and current density. We also, determine porosity of samples by spectroellipsometry.

Keywords: micro-Raman spectroscopy, mono-crysatl silicon, porous silicon, thermal conductivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
467 Experimental and Numerical Analysis of a Historical Bell Tower

Authors: Milorad Pavlovic, Sebastiano Trevisani, Antonella Cecchi

Abstract:

In this paper, a procedure for the evaluation of seismic behavior of slender masonry structures (towers, bell towers, chimneys, minarets, etc.) is presented. The presented procedure is based on a full three-dimensional modal analyses and frequency measurements. As well-known, masonry is a composite material formed by bricks, or stone blocks, and mortar arranged more or less regularly and adopted for many centuries as structural material. Dynamic actions may represent the major risk of collapse of brickworks, and despite the progress achieved so far in science and mechanics; the assessment of their seismic performance remains a challenging task. Then, reliable physical and numerical models are worthy of recommendation. In this paper, attention is paid to the historical bell tower of the Basilica of Santa Maria Gloriosa dei Frari - usually called Frari - one of the greatest churches in Venice, Italy.

Keywords: Bell tower, FEM, masonry, modal analysis, non-destructive testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
466 Identification of Ductile Damage Parameters for Austenitic Steel

Authors: J. Dzugan, M. Spaniel, P. Konopík, J. Ruzicka, J. Kuzelka

Abstract:

The modeling of inelastic behavior of plastic materials requires measurements providing information on material response to different multiaxial loading conditions. Different triaxiality conditions and values of Lode parameters have to be covered for complex description of the material plastic behavior. Samples geometries providing material plastic behavoiur over the range of interest are proposed with the use of FEM analysis. Round samples with 3 different notches and smooth surface are used together with butterfly type of samples tested at angle ranging for 0 to 90°. Identification of ductile damage parameters is carried out on the basis of obtained experimental data for austenitic stainless steel. The obtained material plastic damage parameters are subsequently applied to FEM simulation of notched CT normally samples used for fracture mechanics testing and results from the simulation are compared with real tests.

Keywords: baqus, austenitic steel, computer simulation, ductile damage, triaxiality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3707
465 Optical and Dielectric Properties of Self-Assembled 0D Hybrid Organic-Inorganic Insulator

Authors: S. Kassou, R. El Mrabet, A. Belaaraj, P. Guionneau, N. Hadi, T. Lamcharfi

Abstract:

The organic–inorganic hybrid perovskite-like [C6H5C2H4NH3]2ZnCl4 (PEA-ZnCl4) was synthesized by saturated solutions method. X-ray powder diffraction, Raman spectroscopy, UV-visible transmittance, and capacitance meter measurements have been used to characterize the structure, the functional groups, the optical parameters, and the dielectric constants of the material. The material has a layered structure. The optical transmittance (T %) was recorded and applied to deduce the absorption coefficient (α) and optical band gap (Eg). The hybrid shows an insulator character with a direct band gap about 4.46 eV, and presents high dielectric constants up to a frequency of about 105 Hz, which suggests a ferroelectric behavior. The reported optical and dielectric properties can help to understand the fundamental properties of perovskite materials and also to be used for optimizing or designing new devices.

Keywords: Dielectric constants, optical band gap (Eg), optical parameters, Raman spectroscopy, self-assembly organic inorganic hybrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
464 Arabic Word Semantic Similarity

Authors: Faaza A, Almarsoomi, James D, O'Shea, Zuhair A, Bandar, Keeley A, Crockett

Abstract:

This paper is concerned with the production of an Arabic word semantic similarity benchmark dataset. It is the first of its kind for Arabic which was particularly developed to assess the accuracy of word semantic similarity measurements. Semantic similarity is an essential component to numerous applications in fields such as natural language processing, artificial intelligence, linguistics, and psychology. Most of the reported work has been done for English. To the best of our knowledge, there is no word similarity measure developed specifically for Arabic. In this paper, an Arabic benchmark dataset of 70 word pairs is presented. New methods and best possible available techniques have been used in this study to produce the Arabic dataset. This includes selecting and creating materials, collecting human ratings from a representative sample of participants, and calculating the overall ratings. This dataset will make a substantial contribution to future work in the field of Arabic WSS and hopefully it will be considered as a reference basis from which to evaluate and compare different methodologies in the field.

Keywords: Arabic categories, benchmark dataset, semantic similarity, word pair, stimulus Arabic words

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3063
463 Identification of LTI Autonomous All Pole System Using Eigenvector Algorithm

Authors: Sudipta Majumdar

Abstract:

This paper presents a method for identification of a linear time invariant (LTI) autonomous all pole system using singular value decomposition. The novelty of this paper is two fold: First, MUSIC algorithm for estimating complex frequencies from real measurements is proposed. Secondly, using the proposed algorithm, we can identify the coefficients of differential equation that determines the LTI system by switching off our input signal. For this purpose, we need only to switch off the input, apply our complex MUSIC algorithm and determine the coefficients as symmetric polynomials in the complex frequencies. This method can be applied to unstable system and has higher resolution as compared to time series solution when, noisy data are used. The classical performance bound, Cramer Rao bound (CRB), has been used as a basis for performance comparison of the proposed method for multiple poles estimation in noisy exponential signal.

Keywords: MUSIC algorithm, Cramer Rao bound, frequency estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
462 Effectiveness of Earthing System in Vertical Configurations

Authors: S. Yunus, A. Suratman, N. Mohamad Nor, M. Othman

Abstract:

This paper presents the measurement and simulation results by Finite Element Method (FEM) for earth resistance (RDC) for interconnected vertical ground rod configurations. The soil resistivity was measured using the Wenner four-pin Method, and RDC was measured using the Fall of Potential (FOP) method, as outlined in the standard. Genetic Algorithm (GA) is employed to interpret the soil resistivity to that of a 2-layer soil model. The same soil resistivity data that were obtained by Wenner four-pin method were used in FEM for simulation. This paper compares the results of RDC obtained by FEM simulation with the real measurement at field site. A good agreement was seen for RDC obtained by measurements and FEM. This shows that FEM is a reliable software to be used for design of earthing systems. It is also found that the parallel rod system has a better performance compared to a similar setup using a grid layout.

Keywords: Earthing systems, earth electrodes, Finite Element Method, FEM, Genetic Algorithm, GA, earth resistances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 572
461 Location Detection of Vehicular Accident Using Global Navigation Satellite Systems/Inertial Measurement Units Navigator

Authors: Neda Navidi, Rene Jr. Landry

Abstract:

Vehicle tracking and accident recognizing are considered by many industries like insurance and vehicle rental companies. The main goal of this paper is to detect the location of a car accident by combining different methods. The methods, which are considered in this paper, are Global Navigation Satellite Systems/Inertial Measurement Units (GNSS/IMU)-based navigation and vehicle accident detection algorithms. They are expressed by a set of raw measurements, which are obtained from a designed integrator black box using GNSS and inertial sensors. Another concern of this paper is the definition of accident detection algorithm based on its jerk to identify the position of that accident. In fact, the results convinced us that, even in GNSS blockage areas, the position of the accident could be detected by GNSS/INS integration with 50% improvement compared to GNSS stand alone.

Keywords: Driving behavior, integration, IMU, GNSS, monitoring, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
460 Approach of Measuring System Analyses for Automotive Part Manufacturing

Authors: S. Homrossukon, S. Sansureerungsigun

Abstract:

This work aims to introduce an efficient and to standardize the measuring system analyses for automotive industrial. The study started by literature reviewing about the management and analyses measurement system. The approach of measuring system management, then, was constructed. Such approach was validated by collecting the current measuring system data using the equipments of interest including vernier caliper and micrometer. Their accuracy and precision of measurements were analyzed. Finally, the measuring system was improved and evaluated. The study showed that vernier did not meet its measuring characteristics based on the linearity whereas all equipments were lacking of the measuring precision characteristics. Consequently, the causes of measuring variation via the equipments of interest were declared. After the improvement, it was found that their measuring performance could be accepted as the standard required. Finally, the standardized approach for analyzing the measuring system of automotive was concluded.

Keywords: Automotive part manufacturing measurement, measuring accuracy, measuring precision, measurement system analyses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
459 A Study on Energy-efficient Temperature Control

Authors: Mitsuyuki Kawakami, Kimihiro Yamanaka

Abstract:

The top-heavy demographic of low birth-rate and longer lifespan is a growing social problem, and one of its expected effects will be a shortage of young workers and a growing reliance on a workforce of middle-aged and older people. However, the environment of today's industrial workplace is not particularly suited to middle-aged and older workers, one notable problem being temperature control. Higher temperatures can cause health problems such as heat stroke, and the number of cases increases sharply in people over 65. Moreover, in conditions above 33°C, older people can develop circulatory system disorders, and also have a higher chance of suffering a fatal heart attack. We therefore propose a new method for controlling temperature in the indoor workplace. In this study two different verification experiments were conducted, with the proposed temperature control method being tested in cargo containers and conventional houses. The method's effectiveness was apparent in measurements of temperature and electricity consumption

Keywords: CO2 reduction, Energy saving, Temperature control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
458 Wireless Distributed Load-Shedding Management System for Non-Emergency Cases

Authors: Taha Landolsi, A. R. Al-Ali, Tarik Ozkul, Mohammad A. Al-Rousan

Abstract:

In this paper, we present a cost-effective wireless distributed load shedding system for non-emergency scenarios. In power transformer locations where SCADA system cannot be used, the proposed solution provides a reasonable alternative that combines the use of microcontrollers and existing GSM infrastructure to send early warning SMS messages to users advising them to proactively reduce their power consumption before system capacity is reached and systematic power shutdown takes place. A novel communication protocol and message set have been devised to handle the messaging between the transformer sites, where the microcontrollers are located and where the measurements take place, and the central processing site where the database server is hosted. Moreover, the system sends warning messages to the endusers mobile devices that are used as communication terminals. The system has been implemented and tested via different experimental results.

Keywords: Smart Grid, Load shedding, Demand SideManagement, GSM Wireless Networks, SCADA systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
457 Learning a Song: an ACT-R Model

Authors: Belkacem Chikhaoui, Helene Pigot, Mathieu Beaudoin, Guillaume Pratte, Philippe Bellefeuille, Fernando Laudares

Abstract:

The way music is interpreted by the human brain is a very interesting topic, but also an intricate one. Although this domain has been studied for over a century, many gray areas remain in the understanding of music. Recent advances have enabled us to perform accurate measurements of the time taken by the human brain to interpret and assimilate a sound. Cognitive computing provides tools and development environments that facilitate human cognition simulation. ACT-R is a cognitive architecture which offers an environment for implementing human cognitive tasks. This project combines our understanding of the music interpretation by a human listener and the ACT-R cognitive architecture to build SINGER, a computerized simulation for listening and recalling songs. The results are similar to human experimental data. Simulation results also show how it is easier to remember short melodies than long melodies which require more trials to be recalled correctly.

Keywords: Computational model, cognitive modeling, simulation, learning, song, music.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
456 A Comparison between Hybrid and Experimental Extended Polars for the Numerical Prediction of Vertical-Axis Wind Turbine Performance using Blade Element-Momentum Algorithm

Authors: Gabriele Bedon, Marco Raciti Castelli, Ernesto Benini

Abstract:

A dynamic stall-corrected Blade Element-Momentum algorithm based on a hybrid polar is validated through the comparison with Sandia experimental measurements on a 5-m diameter wind turbine of Troposkien shape. Different dynamic stall models are evaluated. The numerical predictions obtained using the extended aerodynamic coefficients provided by both Sheldal and Klimas and Raciti Castelli et al. are compared to experimental data, determining the potential of the hybrid database for the numerical prediction of vertical-axis wind turbine performances.

Keywords: Darrieus wind turbine, Blade Element-Momentum Theory, extended airfoil database, hybrid database, Sandia 5-m wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530
455 Onset Velocity Profiles Evolution in Microchannels

Authors: Cătălin Mărculescu, Andrei Avram, Cătălin Pârvulescu, Marioara Avram, Cătălin Mihai Bălan

Abstract:

The present microfluidic study is emphasizing the flow behavior within a Y shape micro-bifurcation in two similar flow configurations. We report here a numerical and experimental investigation on the velocity profiles evolution and secondary flows, manifested at different Reynolds numbers (Re) and for two different boundary conditions. The experiments are performed using special designed setup based on optical microscopic devices. With this setup, direct visualizations and quantitative measurements of the path-lines are obtained. A Micro-PIV measurement system is used to obtain velocity profiles distributions in a spatial evolution in the main flows domains. The experimental data is compared with numerical simulations performed with commercial computational code FLUENT in a 3D geometry with the same dimensions as the experimental one. The numerical flow patterns are found to be in good agreement with the experimental manifestations.

Keywords: Micro-PIV, numerical investigations, secondary flows, velocity profiles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
454 Extracts of Cola acuminata, Lupinus arboreus and Bougainvillea spectabilis as Natural Photosensitizers for Dye-Sensitized Solar Cells

Authors: M. L. Akinyemi, T. J. Abodurin, A. O. Boyo, J. A. O. Olugbuyiro

Abstract:

Organic dyes from Cola acuminata (C. acuminata), Lupinus arboreus (L. arboreus) and Bougainvillea spectabilis (B. spectabilis) leaves and their mixtures were used as sensitizers to manufacture dye-sensitized solar cells (DSSC). Photoelectric measurements of C. acuminata showed a short circuit current (Jsc) of 0.027 mA/ cm2, 0.026 mA/ cm2 and 0.018 mA/ cm2 with a mixture of mercury chloride and iodine (Hgcl2 + I); potassium bromide and iodine (KBr + I); and potassium chloride and iodine (KCl + I) respectively. The open circuit voltage (Voc) was 24 mV, 25 mV and 20 mV for the three dyes respectively. L. arboreus had Jsc of 0.034 mA/ cm2, 0.021 mA/ cm2 and 0.013 mA/ cm2; and corresponding Voc of 28 mV, 14.2 mV and 15 mV for the three electrolytes respectively. B. spectabilis recorded Jsc 0.023 mA/ cm2, 0.026 mA/ cm2 and 0.015 mA/ cm2; and corresponding Voc values of 6.2 mV, 14.3 mV and 4.0 mV for the three electrolytes respectively. It was observed that the fill factor (FF) was 0.140 for C. acuminata, 0.3198 for L. arboreus and 0.1138 for B. spectabilis. Internal conversions of 0.096%, 0.056% and 0.063% were recorded for three dyes when combined with (KBr + I) electrolyte. The internal efficiency of C. acuminata DSSC was highest in value.

Keywords: Dye-sensitized Solar Cells, Organic dye, C. acuminate, L. arboreus, B. spectabilis, Dye Mixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
453 Operational Modal Analysis Implementation on a Hybrid Composite Plate

Authors: Z. A. C. Saffry, D. L. Majid, N. H. M. Haidzir

Abstract:

In aerospace applications, interactions of airflow with aircraft structures can result in undesirable structural deformations. This structural deformation in turn, can be predicted if the natural modes of the structure are known. This can be achieved through conventional modal testing that requires a known excitation force in order to extract these dynamic properties. This technique can be experimentally complex because of the need for artificial excitation and it is also does not represent actual operational condition. The current work presents part of research work that address the practical implementation of operational modal analysis (OMA) applied to a cantilevered hybrid composite plate employing single contactless sensing system via laser vibrometer. OMA technique extracts the modal parameters based only on the measurements of the dynamic response. The OMA results were verified with impact hammer modal testing and good agreement was obtained.

Keywords: Hybrid Kevlar composite, Laser Vibrometer, modal parameters, Operational Modal Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
452 Electrochemical Performance of Al-Mn2O3 Based Electrode Materials

Authors: Noor Ul Ain Bhatti, M. Junaid Khan, Javed Ahmad, Murtaza Saleem, Shahid M. Ramay, Saadat A. Siddiqi

Abstract:

Manganese oxide is being recently used as electrode material for rechargeable batteries. In this study, Al incorporated Mn2O3 compositions were synthesized to study the effect of Al doping on electrochemical performance of host material. Structural studies were carried out using X-ray diffraction analysis to confirm the phase stability and explore the lattice parameters, crystallite size, lattice strain, density and cell volume. Morphology and composition were analyzed using field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Dynamic light scattering analysis was performed to observe the average particle size of the compositions. FTIR measurements exhibit the O-Al-O and O-Mn-O and Al-O bonding and with increasing the concentration of Al, the vibrational peaks of Mn-O become sharper. An enhanced electrochemical performance was observed in compositions with higher Al content.

Keywords: Mn2O3, electrode materials, energy storage and conversion, electrochemical performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
451 A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model

Authors: M. Brandt, A. Peniak, J. Makarovič, P. Rafajdus

Abstract:

This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.

Keywords: Fault, finite element method, parametrical model of transformer, sweep frequency response analysis, transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
450 Negative Temperature Dependence of a Gravity - A Reality

Authors: Alexander L. Dmitriev, Sophia A. Bulgakova

Abstract:

Temperature dependence of force of gravitation is one of the fundamental problems of physics. This problem has got special value in connection with that the general theory of relativity, supposing the weakest positive influence of a body temperature on its weight, actually rejects an opportunity of measurement of negative influence of temperature on gravity in laboratory conditions. Really, the recognition of negative temperature dependence of gravitation, for example, means basic impossibility of achievement of a singularity («a black hole») at a gravitational collapse. Laboratory experiments with exact weighing the heated up metal samples, indicating negative influence temperatures of bodies on their physical weight are described. Influence of mistakes of measurements is analyzed. Calculations of distribution of temperature in volume of the bar, agreed with experimental data of time dependence of weight of samples are executed. The physical substantiation of negative temperature dependence of weight of the bodies, based on correlation of acceleration at thermal movement of micro-particles of a body and its absolute temperature, are given.

Keywords: Gravitation, temperature, weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
449 Effect of Calcium Chloride on Rheological Properties and Structure of Inulin - Whey Protein Gels

Authors: Pawel Glibowski, Agnieszka Glibowska

Abstract:

The rheological properties, structure and potential synergistic interactions of whey proteins (1-6%) and inulin (20%) in mixed gels in the presence of CaCl2 was the aim of this study. Whey proteins have a strong influence on inulin gel formation. At low concentrations (2%) whey proteins did not impair in inulin gel formation. At higher concentration (4%) whey proteins impaired inulin gelation and inulin impaired the formation of a Ca2+-induced whey protein network. The presence of whey proteins at a level allowing for protein gel network formation (6%) significantly increased the rheological parameters values of the gels. SEM micrographs showed that whey protein structure was coated by inulin moieties which could make the mixed gels firmer. The protein surface hydrophobicity measurements did not exclude synergistic interactions between inulin and whey proteins, however. The use of an electrophoretic technique did not show any stable inulin-whey protein complexes.

Keywords: gels, hydrophobicity, inulin, SEM, whey proteins.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
448 Finite Element Modeling of Heat and Moisture Transfer in Porous Material

Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume

Abstract:

This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.

Keywords: Finite element method, heat transfer, moisture transfer, porous materials, wood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
447 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos

Abstract:

A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.

Keywords: Layered Structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502
446 Computer-aided Lenke Classification of Scoliotic Spines

Authors: Neila Mezghani, Philippe Phan, Hubert Labelle, Carl Eric Aubin, Jacques de Guise

Abstract:

The identification and classification of the spine deformity play an important role when considering surgical planning for adolescent patients with idiopathic scoliosis. The subject of this article is the Lenke classification of scoliotic spines using Cobb angle measurements. The purpose is two-fold: (1) design a rulebased diagram to assist clinicians in the classification process and (2) investigate a computer classifier which improves the classification time and accuracy. The rule-based diagram efficiency was evaluated in a series of scoliotic classifications by 10 clinicians. The computer classifier was tested on a radiographic measurement database of 603 patients. Classification accuracy was 93% using the rule-based diagram and 99% for the computer classifier. Both the computer classifier and the rule based diagram can efficiently assist clinicians in their Lenke classification of spine scoliosis.

Keywords: Scoliosis, Lenke model, decision-rules, computer aided classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
445 Inverse Problem Methodology for the Measurement of the Electromagnetic Parameters Using MLP Neural Network

Authors: T. Hacib, M. R. Mekideche, N. Ferkha

Abstract:

This paper presents an approach which is based on the use of supervised feed forward neural network, namely multilayer perceptron (MLP) neural network and finite element method (FEM) to solve the inverse problem of parameters identification. The approach is used to identify unknown parameters of ferromagnetic materials. The methodology used in this study consists in the simulation of a large number of parameters in a material under test, using the finite element method (FEM). Both variations in relative magnetic permeability and electrical conductivity of the material under test are considered. Then, the obtained results are used to generate a set of vectors for the training of MLP neural network. Finally, the obtained neural network is used to evaluate a group of new materials, simulated by the FEM, but not belonging to the original dataset. Noisy data, added to the probe measurements is used to enhance the robustness of the method. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.

Keywords: Inverse problem, MLP neural network, parametersidentification, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
444 Measurement and Estimation of Evaporation from Water Surfaces: Application to Dams in Arid and Semi Arid Areas in Algeria

Authors: Malika Fekih, Mohamed Saighi

Abstract:

Many methods exist for either measuring or estimating evaporation from free water surfaces. Evaporation pans provide one of the simplest, inexpensive, and most widely used methods of estimating evaporative losses. In this study, the rate of evaporation starting from a water surface was calculated by modeling with application to dams in wet, arid and semi arid areas in Algeria. We calculate the evaporation rate from the pan using the energy budget equation, which offers the advantage of an ease of use, but our results do not agree completely with the measurements taken by the National Agency of areas carried out using dams located in areas of different climates. For that, we develop a mathematical model to simulate evaporation. This simulation uses an energy budget on the level of a vat of measurement and a Computational Fluid Dynamics (Fluent). Our calculation of evaporation rate is compared then by the two methods and with the measures of areas in situ.

Keywords: Evaporation, Energy budget, Surface water temperature, CFD, Dams

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5716
443 Influence of Nano-ATH on Electrical Performance of LSR for HVDC Insulation

Authors: Ju-Na Hwang, Yong-Jun Park, Min-Hae Park, Kee-Joe Lim

Abstract:

Many studies have been conducted on DC transmission. Of power apparatus for DC transmission, high voltage direct current (HVDC) cable systems are being evaluated because of the increase in power demand and transmission distance. Therefore, dc insulation characteristics of liquid silicone rubber (LSR), which has various advantages such as short curing time and the ease of maintenance, were investigated to assess its performance as a HVDC insulation material for cable joints. The electrical performance of LSR added to nano-aluminum trihydrate (ATH) were confirmed by measurements of the breakdown strength and electrical conductivity. In addition, field emission scanning electron microscope (FE-SEM) was used as a means of confirmation of nanofiller dispersion state. The LSR nanocomposite was prepared by compounding LSR filled nano-sized ATH filler. The dc insulation properties of LSR added to nano-sized ATH fillers were found to be superior to those of the LSR without a filler. 

Keywords: Liquid silicone rubber, Nanocomposite, Nano-ATH, HVDC insulation, Cable joints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
442 Design and Analysis of Gauge R&R Studies: Making Decisions Based on ANOVA Method

Authors: Afrooz Moatari Kazerouni

Abstract:

In a competitive production environment, critical decision making are based on data resulted by random sampling of product units. Efficiency of these decisions depends on data quality and also their reliability scale. This point leads to the necessity of a reliable measurement system. Therefore, the conjecture process and analysing the errors contributes to a measurement system known as Measurement System Analysis (MSA). The aim of this research is on determining the necessity and assurance of extensive development in analysing measurement systems, particularly with the use of Repeatability and Reproducibility Gages (GR&R) to improve physical measurements. Nowadays in productive industries, repeatability and reproducibility gages released so well but they are not applicable as well as other measurement system analysis methods. To get familiar with this method and gain a feedback in improving measurement systems, this survey would be on “ANOVA" method as the most widespread way of calculating Repeatability and Reproducibility (R&R).

Keywords: Analysis of Variance (ANOVA), MeasurementSystem Analysis (MSA), Part-Operator interaction effect, Repeatability and Reproducibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4639
441 Experimental Measurements of Evacuated Enclosure Thermal Insulation Effectiveness for Vacuum Flat Plate Solar Thermal Collectors

Authors: Paul Henshall, Philip Eames, Roger Moss, Stan Shire, Farid Arya, Trevor Hyde

Abstract:

Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures.

Keywords: Vacuum, thermal, flat-plate solar collector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
440 Verification of the Simultaneous Local Extraction Method of Base and Thermal Resistance of Bipolar Transistors

Authors: Robert Setekera, Luuk Tiemeijer, Ramses van der Toorn

Abstract:

In this paper an extensive verification of the extraction method (published earlier) that consistently accounts for self-heating and Early effect to accurately extract both base and thermal resistance of bipolar junction transistors is presented. The method verification is demonstrated on advanced RF SiGe HBTs were the extracted results for the thermal resistance are compared with those from another published method that ignores the effect of Early effect on internal base-emitter voltage and the extracted results of the base resistance are compared with those determined from noise measurements. A self-consistency of our method in the extracted base resistance and thermal resistance using compact model simulation results is also carried out in order to study the level of accuracy of the method.

Keywords: Avalanche, Base resistance, Bipolar transistor, Compact modeling, Early voltage, Thermal resistance, Self-heating, parameter extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026