Search results for: jute fiber
68 Effect of Coupling Media on Ultrasonic Pulse Velocity in Concrete: A Preliminary Investigation
Authors: Sura Al-Khafaji, Phil Purnell
Abstract:
Measurement of the ultrasonic pulse velocity (UPV) is an important tool in diagnostic examination of concrete. In this method piezoelectric transducers are normally held in direct contact with the concrete surface. The current study aims to test the hypothesis that a preferential coupling effect might exist i.e. that the speed of sound measured depends on the couplant used. In this study, different coupling media of varying acoustic impedance were placed between the transducers and concrete samples made with constant aggregate content but with different compressive strengths. The preliminary results show that using coupling materials (both solid and a range of liquid substances) has an effect on the pulse velocity measured in a given concrete. The effect varies depending on the material used. The UPV measurements with solid coupling were higher than these from the liquid coupling at all strength levels. The tests using couplants generally recorded lower UPV values than the conventional test, except when carbon fiber composite was used, which retuned higher values. Analysis of variances (ANOVA) was performed to confirm that there are statistically significant differences between the measurements recorded using a conventional system and a coupled system.
Keywords: Compressive strength, coupling effect, statistical analysis, ultrasonic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178167 Effect of Support Distance on Damage of Drilled Thin CFRP Laminates
Authors: Jean François Chatelain, Imed Zaghbani, Gilbert Lebrun, Kaml Hasni
Abstract:
Severe damages may occur during the drilling of carbon fiber reinforced plastics (CFRP). In practice, this damage is limited by adding a backup support to the drilled parts. For some aeronautical parts with curvatures, backing up parts is a demanding process. In order to simplify the operation, this research studies the effect of using a configurable setup to support parts on the resulting quality of drilled holes. The test coupons referenced in this study are twenty four-plies unidirectional laminates made of carbon fibers and epoxy resin. Different signals were measured during the drilling process for these laminates, including the thrust force, the displacement and the acceleration. The processing of these signals demonstrated that the damage is due to the combination of two main factors: the spring-back of the thin part and the thrust force. The results found were confirmed for different feeds and speeds. When the distance between supports is increased, it is observed that the spring-back increases but the thrust force decreases. The study proves the feasibility of unsupported drilling of thin CFRP laminates without creating any observable damage.
Keywords: CFRP, Damage, Drilling, Flexible setup.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179666 Fracture Characterization of Plain Woven Fabric Glass-Epoxy Composites
Authors: Sabita Rani Sahoo, A.Mishra
Abstract:
Delamination between layers in composite materials is a major structural failure. The delamination resistance is quantified by the critical strain energy release rate (SERR). The present investigation deals with the strain energy release rate of two woven fabric composites. Materials used are made of two types of glass fiber (360 gsm and 600 gsm) of plain weave and epoxy as matrix. The fracture behavior is studied using the mode I, double cantilever beam test and the mode II, end notched flexure test, in order to determine the energy required for the initiation and growth of an artificial crack. The delamination energy of these two materials is compared in order to study the effect of weave and reinforcement on mechanical properties. The fracture mechanism is also analyzed by means of scanning electron microscopy (SEM). It is observed that the plain weave fabric composite with lesser strand width has higher inter laminar fracture properties compared to the plain weave fabric composite with more strand width.
Keywords: Glass- epoxy composites, Fracture Tests: mode I (DCB) and mode II (ENF), Delamination, Calculation of strain energy release rate, SEM Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 325365 Differentiation of Cancerous Prostate tissue from Non-Cancerous Prostate tissue by using Elastic Light Single-Scattering Spectroscopy: A Feasibility Study
Authors: T. Denkçeken, M. Canpolat, Đ. Bassorgun, S. Yücel, M.A. Çiftçioğlu, M. Baykara Murat Canpolat , Tuba Denkçeken , Đbrahim Bassorgun , Selçuk Yücel , M. Akif Çiftçioğlu , Mehmet Baykara
Abstract:
Elastic light single-scattering spectroscopy system with a single optical fiber probe was employed to differentiate cancerous prostate tissue from non-cancerous prostate tissue ex-vivo just after radical prostatectomy. First, ELSSS spectra were acquired from cancerous prostate tissue to define its spectral features. Then, spectra were acquired from normal prostate tissue to define difference in spectral features between the cancerous and normal prostate tissues. Of the total 66 tissue samples were evaluated from nine patients by ELSSS system. Comparing of histopathology results and ELSSS measurements revealed that sign of the spectral slopes of cancerous prostate tissue is negative and non-cancerous tissue is positive in the wavelength range from 450 to 750 nm. Based on the correlation between histopathology results and sign of the spectral slopes, ELSSS system differentiates cancerous prostate tissue from non- cancerous with a sensitivity of 0.95 and a specificity of 0.94.Keywords: Diagnosis, prostatic neoplasm, prostatectomy, spectrum analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152264 OXADM Asymmetrical Optical Device: Extending the Application to FTTH System
Authors: Mohammad Syuhaimi Ab-Rahman, Mohd. Saiful Dzulkefly Zan, Mohd Taufiq Mohd Yusof
Abstract:
With the drastically growth in optical communication technology, a lossless, low-crosstalk and multifunction optical switch is most desirable for large-scale photonic network. To realize such a switch, we have introduced the new architecture of optical switch that embedded many functions on single device. The asymmetrical architecture of OXADM consists of 3 parts; selective port, add/drop operation, and path routing. Selective port permits only the interest wavelength pass through and acts as a filter. While add and drop function can be implemented in second part of OXADM architecture. The signals can then be re-routed to any output port or/and perform an accumulation function which multiplex all signals onto single path and then exit to any interest output port. This will be done by path routing operation. The unique features offered by OXADM has extended its application to Fiber to-the Home Technology (FTTH), here the OXADM is used as a wavelength management element in Optical Line Terminal (OLT). Each port is assigned specifically with the operating wavelengths and with the dynamic routing management to ensure no traffic combustion occurs in OLT.Keywords: OXADM, asymmetrical architecture, optical switch, OLT, FTTH.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154963 A New Perturbation Technique in Numerical Study on Buckling of Composite Shells under Axial Compression
Authors: Zia R. Tahir, P. Mandal
Abstract:
A numerical study is presented on buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shells under axial compression using asymmetric meshing technique (AMT). Asymmetric meshing technique is a perturbation technique to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects predicted buckling load, buckling mode shape and post-buckling behaviour. Linear (eigenvalue) and nonlinear (Riks) analyses have been performed to study the effect of asymmetric meshing in the form of a patch on buckling behaviour. The reduction in the buckling load using Asymmetric meshing technique was observed to be about 15%. An isolated dimple formed near the bifurcation point and the size of which increased to reach a stable state in the post-buckling region. The load-displacement curve behaviour applying asymmetric meshing is quite similar to the curve obtained using initial geometric imperfection in the shell model.Keywords: CFRP Composite Cylindrical Shell, Finite Element Analysis, Perturbation Technique, Asymmetric Meshing Technique, Linear Eigenvalue analysis, Non-linear Riks Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 237662 Effect of Nanofibers on the Behavior of Cement Mortar and Concrete
Authors: Mostafa Osman, Ata El-kareim Shoeib
Abstract:
The main objective of this paper is study the influence of carbon nano-tubes fibers and nano silica fibers on the characteristic compressive strength and flexural strength on concrete and cement mortar. Twelve tested specimens were tested with square section its dimensions (4040 160) mm, divided into four groups. The first and second group studied the effect of carbon nano-tubes (CNTs) fibers with different percentage equal to 0.0, 0.11%, 0.22%, and 0.33% by weight of cement and effect of nano-silica (nS) fibers with different percentages equal to 0.0, 1.0%, 2.0%, and 3.0% by weight of cement on the cement mortar. The third and fourth groups studied the effect of CNTs fiber with different percentage equal to 0.0%, 0.11%, and 0.22% by weight of cement, and effect of nS fibers with different percentages were equal to 0.0%, 1.0%, and 2.0% by weight of cement on the concrete. The compressive strength and flexural strength at 7, 28, and 90 days is determined. From analysis of tested results concluded that the nano-fibers is more effective when used with cement mortar more than used with concrete because of increasing the surface area, decreasing the pore and the collection of nano-fibers. And also by adding nano-fibers the improvement of flexural strength of concrete and cement mortar is more than improvement of compressive strength.
Keywords: Carbon nano-tubes fibers, nano-silica (nS) fibers, compressive strength, flexural.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 271961 Importance of E-Participation by U-Society in the Development of the U-City
Authors: Jalaluddin Abdul Malek, Mohd Asruladlyi Ibrahim, Zurinah Tahir
Abstract:
This paper is to reveal developments in the areas of urban technology in Malaysia. Developments occur intend to add value intelligent city development to the ubiquitous city (U-city) or smart city. The phenomenon of change is called the development of post intelligent cities. U-City development discourse is seen from the perspective of the philosophy of the virtuous city organized by al-Farabi. The prosperity and perfection of a city is mainly caused by human personality factors, as well as its relationship with material and technological aspects of the city. The question is, to what extent to which human factors are taken into account in the concept of U-City as an added value to the intelligent city concept to realize the prosperity and perfection of the city? Previously, the intelligent city concept was developed based on global change and ICT movement, while the U-city added value to the development of intelligent cities and focused more on the development of information and communications technology (ICT). Value added is defined as the use of fiber optic technology that is wired to the use of wireless technology, such as wireless broadband. In this discourse, the debate on the concept of U-City is to the symbiosis between the U-City and the importance of local human e-participation (U-Society) for prosperity. In the context of virtuous city philosophy, it supports the thought of symbiosis so the concept of U-City can achieve sustainability, prosperity and perfection of the city.
Keywords: Smart city, ubiquitous city, U-Society, e-participation, prosperity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117460 Effect of a Probiotic Compound in Rumen Development, Diarrhea Incidence and Weight Gain in Young Holstein Calves
Authors: Camilo Aldana, Sara Cabra, Carlos A. Ospina, Fredy Carvajal, Fernando Rodríguez
Abstract:
It has been proven that early establishment of microbial flora in digestive tract of ruminants, has a beneficial effect on their health condition and productivity. A probiotic compound, made from five bacteria isolated from adult bovine cattle, was dosed to 15 Holstein newborn calves in order to measure its capacity of improving body weight gain and reduce diarrhea incidence. The test was performed in the municipality of Cajicá (Colombia), at 2580 m.a.s.l., throughout rainy season, with environmental temperature that oscillated between 4 to 25 °C. Five calves were allotted to control (no addition of probiotic). Treatments 1, and 2 (5 calves per group) received 10 ml Probiotic mix 1 and 2, respectively. Probiotic mixes 1 and 2 where similar in microbial composition but different in production process. Probiotics were added to the morning milk and dosed on a daily basis by a month and then on a weekly basis for three additional months. Diarrhea incidence was measured by observance of number of animals affected in each group; each animal was weighed up on a daily basis for obtaining weight gain and rumen fluid samples were extracted with oro-esophageal catheter for determining level of fiber and grain consumption.Keywords: Calve, diarrhea, probiotic, rumen microorganisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 234459 Efficacy of Polyfluoroalkyl Substances Filtration with Low-Cost Organic Fiber Filter
Authors: Gautham Das, Edward Morrone, Erik Treble, Clinton Binder
Abstract:
The purpose of this study was to evaluate the efficacy of a low-cost filter regarding per- and polyfluoroalkyl substances (PFAS). PFAS is a commonly used man-made chemical that can be found in a variety of household and industrial products with deleterious effects on humans. The filter consists of a combination of low-cost materials which could be locally procured. Water testing results for 4 different PFAS contaminants indicated that for Perfluorooctane sulfonic acid (PFOS), the Agency for Toxic Substances and Disease Registry (ATSDR) regulation is 7 ppt, the initial concentration was 15 ppt, and the final concentration was 3.9 ppt. For Perfluorononanoic acid (PFNA), the ATSDR regulation is 10.5 ppt, the initial concentration was 15 ppt, and the final concentration was 3.9 ppt. For Perfluorooctanoic acid (PFOA), the ATSDR regulation is 11 ppt, the initial concentration was 15 ppt, and the final concentration was 3.9 ppt. For Perfluorohexane sulfonic acid (PFHxS), the ATSDR regulation is 70 ppt, the initial concentration was 15 ppt, and the final concentration was 3.9 ppt. The results indicated a 74% reduction in PFAS concentration in filtered samples. Statistical data through regression analysis showed 0.9 validity of the sample data. Initial tests show the efficiency of the proposed filter described could be far greater if tested at a greater scale. It is highly recommended further testing to be conducted to validate the data for an innovative solution to a ubiquitous problem.
Keywords: PFAS, PFOS, PFOA, PFHxS, low-cost filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65358 Numerical Simulation of unsteady MHD Flow and Heat Transfer of a Second Grade Fluid with Viscous Dissipation and Joule Heating using Meshfree Approach
Authors: R. Bhargava, Sonam Singh
Abstract:
In the present study, a numerical analysis is carried out to investigate unsteady MHD (magneto-hydrodynamic) flow and heat transfer of a non-Newtonian second grade viscoelastic fluid over an oscillatory stretching sheet. The flow is induced due to an infinite elastic sheet which is stretched oscillatory (back and forth) in its own plane. Effect of viscous dissipation and joule heating are taken into account. The non-linear differential equations governing the problem are transformed into system of non-dimensional differential equations using similarity transformations. A newly developed meshfree numerical technique Element free Galerkin method (EFGM) is employed to solve the coupled non linear differential equations. The results illustrating the effect of various parameters like viscoelastic parameter, Hartman number, relative frequency amplitude of the oscillatory sheet to the stretching rate and Eckert number on velocity and temperature field are reported in terms of graphs and tables. The present model finds its application in polymer extrusion, drawing of plastic films and wires, glass, fiber and paper production etc.Keywords: EFGM, MHD, Oscillatory stretching sheet, Unsteady, Viscoelastic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189857 Continuous Flow Experimental Set-Up for Fouling Deposit Study
Authors: A. L. Ho, N. Ab. Aziz, F. S. Taip, M. N. Ibrahim
Abstract:
The study of the fouling deposition of pink guava juice (PGJ) is relatively new research compared to milk fouling deposit. In this work, a new experimental set-up was developed to imitate the fouling formation in heat exchanger, namely a continuous flow experimental set-up heat exchanger. The new experimental setup was operated under industrial pasteurization temperature of PGJ, which was at 93°C. While the flow rate and pasteurization period were based on the experimental capacity, which were 0.5 and 1 liter/min for the flow rate and the pasteurization period was set for 1 hour. Characterization of the fouling deposit was determined by using various methods. Microstructure of the deposits was carried out using ESEM. Proximate analyses were performed to determine the composition of moisture, fat, protein, fiber, ash and carbohydrate content. A study on the hardness and stickiness of the fouling deposit was done using a texture analyzer. The presence of seedstone in pink guava juice was also analyzed using a particle analyzer. The findings shown that seedstone from pink guava juice ranging from 168 to 200μm and carbohydrate was found to be a major composition (47.7% of fouling deposit consists of carbohydrate). Comparison between the hardness and stickiness of the deposits at two different flow rates showed that fouling deposits were harder and denser at higher flow rate. Findings from this work provide basis knowledge for further study on fouling and cleaning of PGJ.Keywords: Pink guava juice, fouling deposit, heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162456 Protein Quality of Game Meat Hunted in Latvia
Authors: Vita Strazdina, Aleksandrs Jemeljanovs, Vita Sterna
Abstract:
Not all proteins have the same nutritional value, since protein quality strongly depends on its amino acid composition and digestibility. The meat of game animals could be a high protein source because of its well-balanced essential amino acids composition. Investigations about biochemical composition of game meat such as wild boar (Sus scrofa scrofa), roe deer (Capreolus capreolus) and beaver (Castor fiber) are not very much. Therefore, the aim of the investigation was evaluate protein composition of game meat hunted in Latvia. The biochemical analysis, evaluation of connective tissue and essential amino acids in meat samples were done, the amino acids score were calculate. Results of analysis showed that protein content 20.88-22.05% of all types of meat samples is not different statistically. The content of connective tissue from 1.3% in roe deer till 1.5% in beaver meat allowed classified game animal as high quality meat. The sum of essential amino acids in game meat samples were determined 7.05–8.26g100g-1. Roe deer meat has highest protein content and lowest content of connective tissues among game meat hunted in Latvia. Concluded that amino acid score for limiting amino acids phenylalanine and tyrosine is high and shows high biological value of game meat.Keywords: Dietic product, game meat, amino acids, scores.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145555 An Enhanced SAR-Based Tsunami Detection System
Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah
Abstract:
Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.
Keywords: Detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217554 Lagrangian Flow Skeletons Captured in the Wake of a Swimming Nematode C. elegans Using an Immersed Boundary Fluid-Structure Interaction Approach
Authors: Arash Taheri
Abstract:
In this paper, Lagrangian coherent structure (LCS) concept is applied to wake flows generated in the up/down-stream of a swimming nematode C. elegans in an intermediate Re number range, i.e., 250-1200. It materializes Lagrangian hidden structures depicting flow transport barriers. To pursue the goals, nematode swimming in a quiescent fluid flow environment is numerically simulated by a two-way fluid-structure interaction (FSI) approach with the aid of immersed boundary method (IBM). In this regard, incompressible Navier-Stokes equations, fully-coupled with Lagrangian deformation equations for the immersed body, are solved using IB2d code. For all simulations, nematode’s body is modeled with a parametrized spring-fiber built-in case available in the computational code. Reverse von-Kármán vortex street formation and vortex shedding characteristics are studied and discussed in details via LCS approach, including grid resolution, integration time and Reynolds number effects. Results unveil presence of different flow regions with distinct fluid particle fates in the swimming animal’s wake and formation of so-called ‘mushroom-shaped’ structures in attracting LCS identities.
Keywords: Lagrangian coherent structure, nematode swimming, fluid-structure interaction, immersed boundary method, bionics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99453 Solar Calculations of Modified Arch (Semi Spherical) Type Greenhouse System for Bayburt City
Authors: Uğur Çakır, Erol Sahin, Kemal Çomaklı, Aysegül Çokgez Kus
Abstract:
Greenhouses offer us suitable conditions which can be controlled easily for the growth of the plant and they are made by using a covering material that allows the sun light entering into the system. Covering material can be glass, fiber glass, plastic or another transparent element. This study investigates the solar energy usability rates and solar energy benefitting rates of a semi-spherical (modified arch) type greenhouse system according to different orientations and positions which exists under climatic conditions of Bayburt. In the concept of this study it is tried to determine the best direction and best sizes of a semi-spherical greenhouse to get best solar benefit from the sun. To achieve this aim a modeling study is made by using MATLAB. However, this modeling study is run for some determined shapes and greenhouses it can be used for different shaped greenhouses or buildings. The basic parameters are determined as greenhouse azimuth angle, the rate of size of long edge to short and seasonal solar energy gaining of greenhouse. The optimum azimuth angles of 400, 300, 250, 200, 150, 100, 50 m2 modified arch greenhouse are 90o, 90o, 35o, 35o, 34o, 33o and 22o while their optimum k values (ratio of length to width) are 10, 10, 10, 10, 6, 4 and 4 respectively. Positioning the buildings in order to get more solar heat energy in winter and less in summer brings out energy and money savings and increases the comfort.Keywords: Greenhousing, solar energy, direct radiation, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174252 Shear Behaviour of RC Deep Beams with Openings Strengthened with Carbon Fiber Reinforced Polymer
Authors: Mannal Tariq
Abstract:
Construction industry is making progress at a high pace. The trend of the world is getting more biased towards the high rise buildings. Deep beams are one of the most common elements in modern construction having small span to depth ratio. Deep beams are mostly used as transfer girders. This experimental study consists of 16 reinforced concrete (RC) deep beams. These beams were divided into two groups; A and B. Groups A and B consist of eight beams each, having 381 mm (15 in) and 457 mm (18 in) depth respectively. Each group was further subdivided into four sub groups each consisting of two identical beams. Each subgroup was comprised of solid/control beam (without opening), opening above neutral axis (NA), at NA and below NA. Except for control beams, all beams with openings were strengthened with carbon fibre reinforced polymer (CFRP) vertical strips. These eight groups differ from each other based on depth and location of openings. For testing sake, all beams have been loaded with two symmetrical point loads. All beams have been designed based on strut and tie model concept. The outcome of experimental investigation elaborates the difference in the shear behaviour of deep beams based on depth and location of circular openings variation. 457 mm (18 in) deep beam with openings above NA show the highest strength and 381 mm (15 in) deep beam with openings below NA show the least strength. CFRP sheets played a vital role in increasing the shear capacity of beams.
Keywords: CFRP, deep beams, openings in deep beams, strut and tie model, shear behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135851 Durability Study of Pultruded CFRP Plates under Sustained Bending in Distilled Water and Seawater Immersions: Effects on the Visco-Elastic Properties
Authors: Innocent Kafodya, Guijun Xian
Abstract:
This paper presents effects of distilled water, seawater and sustained bending strains of 30% and 50% ultimate strain at room temperature, on the durability of unidirectional pultruded carbon fiber reinforced polymer (CFRP) plates. In this study, dynamic mechanical analyzer (DMA) was used to investigate the synergic effects of the immersions and bending strains on the viscoelastic properties of (CFRP) such as storage modulus, tan delta and glass transition temperature. The study reveals that the storage modulus and glass transition temperature increase while tan delta peak decreases in the initial stage of both immersions due to the progression of curing. The storage modulus and Tg subsequently decrease and tan delta increases due to the matrix plasticization. The blister induced damages in the unstrained seawater samples enhance water uptake and cause more serious degradation of Tg and storage modulus than in water immersion. Increasing sustained bending decreases Tg and storage modulus in a long run for both immersions due to resin matrix cracking and debonding. The combined effects of immersions and strains are not clearly reflected due to the statistical effects of DMA sample sizes and competing processes of molecular reorientation and postcuring.
Keywords: Pultruded CFRP plate, bending strain, glass transition temperature, storage modulus, tan delta.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188650 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures
Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha
Abstract:
5In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.
Keywords: Concrete beam, FRP bars, spacing effect, thermal deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63249 Investigation of Anti-diabetic and Hypocholesterolemic Potential of Psyllium Husk Fiber (Plantago psyllium) in Diabetic and Hypercholesterolemic Albino Rats
Authors: Ishtiaq Ahmed, Muhammad Naeem, Abdul Shakoor, Zaheer Ahmed, Hafiz Muhammad Nasir Iqbal
Abstract:
The present study was conducted to observe the effect of Plantago psyllium on blood glucose and cholesterol levels in normal and alloxan induced diabetic rats. To investigate the effect of Plantago psyllium 40 rats were included in this study divided into four groups of ten rats in each group. One group A was normal, second group B was diabetic, third group C was non diabetic and hypercholesterolemic and fourth group D was diabetic and hypercholesterolemic. Two groups B and D were made diabetic by intraperitonial injection of alloxan dissolved in 1mL distilled water at a dose of 125mg/Kg of body weight. Two groups C and D were made hypercholesterolemic by oral administration of powder cholesterol (1g/Kg of body weight). The blood samples from all the rats were collected from coccygial vein on 1st day, then on 21st and 42nd day respectively. All the samples were analyzed for blood glucose and cholesterol level by using enzymatic kits. The blood glucose and cholesterol levels of treated groups of rats showed significant reduction after 7 weeks of treatment with Plantago psyllium. By statistical analysis of results it was found that Plantago psyllium has anti-diabetic and hypocholesterolemic activity in diabetic and hypercholesterolemic albino rats.Keywords: Albino rats, alloxan, Plantago psyllium, statistical analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216448 Laxative Potential of The Konjac Flour (Amorphophallus muelleri Blume) in Treatment of Loperamide Induced Constipation on Sprague Dawley Rats
Authors: Simon Bambang Widjanarko, Novita Wijayanti, Aji Sutrisno
Abstract:
There is long history of konjac tubers being used as a cure for certain diseases in China and Japan. Konjac flour is prepared from konjac tubers and it contains high concentration of glucomannan. Konjac Glucomannan (KGM) is dietary fiber and the role of which has been demonstrated in weight reduction, lowering blood cholesterol and sugar level, promoting intestinal activity etc. Konjac glucomanan has a property of swelling by absorbing water, more than a hundred times its own weight. Therefore it helps increasing weight of feces, water content of feces, and promotes satiety feeling. Mode of actions of dietary fibre as laxatives agents includes holding water inside the bowel lumen, inhibition of water absorption in the colon and stimulating colonic motility. Number of fecal pellets did not effected in rats were fed on 300 and 600 mg/kg of konjac flour, as well as constipated control and Dulcolax treatment. Water content, weight of fecal pellets and gastrointestinal transit ratio were higher in rats treated with 600 mg/kg than 300 mg/kg of konjac flour. Rats were administered with Dulcolax showed the highest gastrointestinal transit ratio, followed by 600 mg/kg konjac flour. The lowest feed consumption was noted in 600 mg/kg konjac flour diet group.
Keywords: Laxative, konjac flour, Amorphophallus muelleri Blume, glucomannan, constipation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 304747 Statistical Analysis of Parameters Effects on Maximum Strain and Torsion Angle of FRP Honeycomb Sandwich Panels Subjected to Torsion
Authors: Mehdi Modabberifar, Milad Roodi, Ehsan Souri
Abstract:
In recent years, honeycomb fiber reinforced plastic (FRP) sandwich panels have been increasingly used in various industries. Low weight, low price and high mechanical strength are the benefits of these structures. However, their mechanical properties and behavior have not been fully explored. The objective of this study is to conduct a combined numerical-statistical investigation of honeycomb FRP sandwich beams subject to torsion load. In this paper, the effect of geometric parameters of sandwich panel on maximum shear strain in both face and core and angle of torsion in a honeycomb FRP sandwich structures in torsion is investigated. The effect of Parameters including core thickness, face skin thickness, cell shape, cell size, and cell thickness on mechanical behavior of the structure were numerically investigated. Main effects of factors were considered in this paper and regression equations were derived. Taguchi method was employed as experimental design and an optimum parameter combination for the maximum structure stiffness has been obtained. The results showed that cell size and face skin thickness have the most significant impacts on torsion angle, maximum shear strain in face and core.Keywords: Finite element, honeycomb FRP sandwich panel, torsion, civil engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 261946 Spiral Cuff for Fiber-Diameter Selective VNS
Abstract:
In this paper we present the modeling, design, and experimental testing of a nerve cuff multi-electrode system for diameter-selective vagus nerve stimulation. The multi-electrode system contained ninety-nine platinum electrodes embedded within a self-curling spiral silicone sheet. The electrodes were organized in a matrix having nine parallel groups, each containing eleven electrodes. Preliminary testing of the nerve cuff was performed in an isolated segment of a swinish left cervical vagus nerve. For selective vagus nerve stimulation, precisely defined current quasitrapezoidal, asymmetric and biphasic stimulating pulses were applied to preselected locations along the left vagus segment via appointed group of three electrodes within the cuff. Selective stimulation was obtained by anodal block. However, these pulses may not be safe for a long-term application because of a frequently used high imbalance between the cathodic and anodic part of the stimulating pulse. Preliminary results show that the cuff was capable of exciting A and B-fibres, and, that for a certain range of parameters used in stimulating pulses, the contribution of A-fibres to the CAP was slightly reduced and the contribution of B-fibres was slightly larger. Results also showed that measured CAPs are not greatly influenced by the imbalance between a charge Qc injected in cathodic and Qa in anodic phase of quasitrapezoidal, asymmetric and biphasic pulses.Keywords: Vagus nerve stimulation, multi-electrode nerve cuff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167945 Post Elevated Temperature Effect on the Strength and Microstructure of Thin High Performance Cementitious Composites (THPCC)
Authors: A. Q. Sobia, A. Shyzleen, M. S. Hamidah, I. Azmi, S. F. A. Rafeeqi, S. Ahmad
Abstract:
Reinforced Concrete (RC) structures strengthened with fiber reinforced polymer (FRP) lack in thermal resistance under elevated temperatures in the event of fire. This phenomenon led to the lining of strengthened concrete with thin high performance cementitious composites (THPCC) to protect the substrate against elevated temperature. Elevated temperature effects on THPCC, based on different cementitious materials have been studied in the past but high-alumina cement (HAC)-based THPCC have not been well characterized. This research study will focus on the THPCC based on HAC replaced by 60%, 70%, 80% and 85% of ground granulated blast furnace slag (GGBS). Samples were evaluated by the measurement of their mechanical strength (28 & 56 days of curing) after exposed to 400°C, 600°C and 28°C of room temperature for comparison and corroborated by their microstructure study. Results showed that among all mixtures, the mix containing only HAC showed the highest compressive strength after exposed to 600°C as compared to other mixtures. However, the tensile strength of THPCC made of HAC and 60% GGBS content was comparable to the THPCC with HAC only after exposed to 600°C. Field emission scanning electron microscopy (FESEM) images of THPCC accompanying Energy Dispersive X-ray (EDX) microanalysis revealed that the microstructure deteriorated considerably after exposure to elevated temperatures which led to the decrease in mechanical strength.Keywords: Ground granulated blast furnace slag, high aluminacement, microstructure at elevated temperature and residual strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 237644 Structural Assessment of Low-rise Reinforced Concrete Frames under Tsunami Loads
Authors: Hussain Jiffry, Kypros Pilakoutas, Reyes Garcia
Abstract:
This study examines analytically the effect of tsunami loads on reinforced concrete (RC) frame buildings. The impact of tsunami wave loads and waterborne objects are analyzed using a typical substandard full-scale two-story RC frame building tested as part of the EU-funded Ecoleader project. The building was subjected to shake table tests in bare condition, and subsequently strengthened using Carbon Fiber Reinforced Polymers (CFRP) composites and retested. Numerical models of the building in both bare and CFRP-strengthened conditions are calibrated in DRAIN-3DX software to match the test results. To investigate the response of wave loads and impact forces, the numerical models are subjected to nonlinear dynamic analyses using force time-history input records. The analytical results are compared in terms of displacements at the floors and at the “impact point” of a boat. The results show that the roof displacement of the CFRP-strengthened building reduced by 63% when compared to the bare building. The results also indicate that strengthening only the mid-height of the impact column using CFRP is more effective at reducing damage when compared to strengthening other parts of the column. Alternative solutions to mitigate damage due to tsunami loads are suggested.
Keywords: Tsunami loads, hydrodynamic load, impact load, waterborne objects, RC buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193343 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.Keywords: Base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88642 Review of Affected Parameters on Flexural Behavior of Hollow Concrete Beams Reinforced by Steel/GFRP Rebars
Authors: Shahrad Ebrahimzadeh
Abstract:
Nowadays, the main efforts of the researchers aim to constantly evolve new, optimized, and efficient construction materials and methods related to reinforced concrete beams. Due to the fewer applied materials and higher structural efficiency than solid concrete beams with the same concrete area, hollow reinforced concrete beams (HRCBs) internally reinforced with steel rebars have been employed extensively for bridge structural members and high-rise buildings. Many experimental studies have been conducted to investigate the behavior of hollow beams subjected to bending loading and found that the structural performance of HRCBs is critically affected by many design parameters. While the proper design of the HRCBs demonstrated comparable behavior to solid sections, inappropriate design leads beams to be extremely prone to brittle failure. Another potential issue that needs further investigation is replacing steel bars with suitable materials due to their susceptibility to corrosion. Hence, to develop a reliable construction system, the application of Glass Fiber Reinforced Polymer (GFRP) bars as a non-corroding material has been utilized. Furthermore, this study aims to critically review the different design parameters that affect the flexural performance of the HRCBs and recognize the gaps of knowledge in the better design and more effective use of this construction system.
Keywords: Design parameters, experimental investigations, hollow reinforced concrete beams, steel, GFRP, flexural strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26041 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel
Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung
Abstract:
Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.
Keywords: Buckling resistance, GFRP infill panel, stacking sequence, temperature dependent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150040 Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM
Authors: Teerapon Pirom, Ura Pancharoen
Abstract:
Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.Keywords: Aliquat336, amoxicillin, HFSLM, kinetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170039 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization
Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler
Abstract:
In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as representative example of a fiber polymer composite. Such high-performance lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.
Keywords: Digital Linked Process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163