Search results for: dynamics
455 Fractional Order Feedback Control of a Ball and Beam System
Authors: Santosh Kr. Choudhary
Abstract:
In this paper, fractional order feedback control of a ball beam model is investigated. The ball beam model is a particular example of the double Integrator system having strongly nonlinear characteristics and unstable dynamics which make the control of such system a challenging task. Most of the work in fractional order control systems are in theoretical nature and controller design and its implementation in practice is very small. In this work, a successful attempt has been made to design a fractional order PIλDμcontroller for a benchmark laboratory ball and beam model. Better performance can be achieved using a fractional order PID controller and it is demonstrated through simulations results with a comparison to the classic PID controller.
Keywords: Fractional order calculus, fractional order controller, fractional order system, ball and beam system, PIλDμ controller, modelling, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3554454 Adaptive Neural Network Control of Autonomous Underwater Vehicles
Authors: Ahmad Forouzantabar, Babak Gholami, Mohammad Azadi
Abstract:
An adaptive neural network controller for autonomous underwater vehicles (AUVs) is presented in this paper. The AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. In this regards, a nonlinear neural network is used to approximate the nonlinear uncertainties of AUV dynamics, thus overcoming some limitations of conventional controllers and ensure good performance. The uniform ultimate boundedness of AUV tracking errors and the stability of the proposed control system are guaranteed based on Lyapunov theory. Numerical simulation studies for motion control of an AUV are performed to demonstrate the effectiveness of the proposed controller.Keywords: Autonomous Underwater Vehicle (AUV), Neural Network Controller, Composite Adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2527453 Sloshing Control in Tilting Phases of the Pouring Process
Authors: Maria P. Tzamtzi, Fotis N. Koumboulis
Abstract:
We propose a control design scheme that aims to prevent undesirable liquid outpouring and suppress sloshing during the forward and backward tilting phases of the pouring process, for the case of liquid containers carried by manipulators. The proposed scheme combines a partial inverse dynamics controller with a PID controller, tuned with the use of a “metaheuristic" search algorithm. The “metaheuristic" search algorithm tunes the PID controller based on simulation results of the plant-s linearization around the operating point corresponding to the critical tilting angle, where outpouring initiates. Liquid motion is modeled using the well-known pendulumtype model. However, the proposed controller does not require measurements of the liquid-s motion within the tank.Keywords: Robotic systems, Controller design, Sloshingsuppression, Metaheuristic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955452 Coil and Jacket's Effects on Internal Flow Behavior and Heat Transfer in Stirred Tanks
Authors: B. Lakghomi, E. Kolahchian, A. Jalali, F. Farhadi
Abstract:
Different approaches for heating\cooling of stirred tanks, coils and jackets, are investigated using computational fluid dynamics (CFD).A time-dependant sliding mesh approach is applied to simulate the flow in both conditions. The investigations are carried out under the turbulent flow conditions for a Rushton impeller and heating elements are considered isothermal. The flow behavior and temperature distribution are studied for each case and heat transfer coefficient is calculated. Results show different velocity profiles for each case. Unsteady temperature distribution is not similar for different cases .In the case of the coiled stirred vessel more uniform temperature and higher heat transfer coefficient is resulted.
Keywords: CFD, coil and jacket, heat transfer, stirred tank.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4908451 CFD Simulation of SO2 Removal from Gas Mixtures using Ceramic Membranes
Authors: Azam Marjani, Saeed Shirazian
Abstract:
This work deals with modeling and simulation of SO2 removal in a ceramic membrane by means of FEM. A mass transfer model was developed to predict the performance of SO2 absorption in a chemical solvent. The model was based on solving conservation equations for gas component in the membrane. Computational fluid dynamics (CFD) of mass and momentum were used to solve the model equations. The simulations aimed to obtain the distribution of gas concentration in the absorption process. The effect of the operating parameters on the efficiency of the ceramic membrane was evaluated. The modeling findings showed that the gas phase velocity has significant effect on the removal of gas whereas the liquid phase does not affect the SO2 removal significantly. It is also indicated that the main mass transfer resistance is placed in the membrane and gas phase because of high tortuosity of the ceramic membrane.
Keywords: Gas separation, finite element, ceramic, sulphur dioxide, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278450 Evaluation of Dynamic Behavior of a Rotor-Bearing System in Operating Conditions
Authors: Mohammad Hadi Jalali, Behrooz Shahriari, Mostafa Ghayour, Saeed Ziaei-Rad, Shahram Yousefi
Abstract:
Most flexible rotors can be considered as beam-like structures. In many cases, rotors are modeled as one-dimensional bodies, made basically of beam-like shafts with rigid bodies attached to them. This approach is typical of rotor dynamics, both analytical and numerical, and several rotor dynamic codes, based on the finite element method, follow this trend. In this paper, a finite element model based on Timoshenko beam elements is utilized to analyze the lateral dynamic behavior of a certain rotor-bearing system in operating conditions.
Keywords: Finite element method, Operational deflection shape, Timoshenko beam elements, Unbalance response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008449 A Stable Pose Estimation Method for the Biped Robot using Image Information
Authors: Sangbum Park, Youngjoon Han
Abstract:
This paper proposes a balance control scheme for a biped robot to trace an arbitrary path using image information. While moving, it estimates the zero moment point(ZMP) of the biped robot in the next step using a Kalman filter and renders an appropriate balanced pose of the robot. The ZMP can be calculated from the robot's pose, which is measured from the reference object image acquired by a CCD camera on the robot's head. For simplifying the kinematical model, the coordinates systems of individual joints of each leg are aligned and the robot motion is approximated as an inverted pendulum so that a simple linear dynamics, 3D-LIPM(3D-Linear Inverted Pendulum Mode) can be applied. The efficiency of the proposed algorithm has been proven by the experiments performed on unknown trajectory.
Keywords: Biped robot, Zero moment point, Balance control, Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404448 Numerical Investigation of the Flow Characteristics inside the Scrubber Unit
Authors: Kumaresh Selvakumar, Man Young Kim
Abstract:
Wet scrubbers have found widespread use in cleaning contaminated gas streams because of their ability to remove particulates and based on the applications of scrubbing of marine engine exhaust gases by spraying sea-water. In order to examine the flow characteristics inside the scrubber, the model is designated with flow properties of hot air and water sprayer. The flow dynamics of evaporation of hot air by the injection of water droplets is the key factor considered in this paper. The flow behavior inside the scrubber was investigated from the previous works and to sum up the evaporation rate with respect to the concentration of water droplets are predicted to bring out the competent modelling. The numerical analysis using CFD facilitates in understanding the problem better and empathies the behavior of the model over its entire operating envelope.
Keywords: Concentration of water droplets, Evaporation rate, Scrubber, Water sprayer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3293447 Bio-mechanical Analysis of Human Joints and Extension of the Study to Robot
Authors: S. Parasuraman, Ler Shiaw Pei
Abstract:
In this paper, the bio-mechanical analysis of human joints is carried out and the study is extended to the robot manipulator. This study will first focus on the kinematics of human arm which include the movement of each joint in shoulder, wrist, elbow and finger complexes. Those analyses are then extended to the design of a human robot manipulator. A simulator is built for Direct Kinematics and Inverse Kinematics of human arm. In the simulation of Direct Kinematics, the human joint angles can be inserted, while the position and orientation of each finger tips (end-effector) are shown. Inverse Kinematics does the reverse of the Direct Kinematics. Based on previous materials obtained from kinematics analysis, the human manipulator joints can be designed to follow prescribed position trajectories.
Keywords: Kinematics, Human Joints, Robotics, Robot Dynamics, Manipulators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010446 Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter
Authors: H. Bouadi, M. Tadjine
Abstract:
In this paper; we are interested in dynamic modelling of quadrotor while taking into account the high-order nonholonomic constraints as well as the various physical phenomena, which can influence the dynamics of a flying structure. These permit us to introduce a new state-space representation and new control scheme. We present after the development and the synthesis of a stabilizing control laws design based on sliding mode in order to perform best tracking results. It ensures locally asymptotic stability and desired tracking trajectories. Nonlinear observer is then synthesized in order to estimate the unmeasured states and the effects of the external disturbances such as wind and noise. Finally simulation results are also provided in order to illustrate the performances of the proposed controllers.
Keywords: Dynamic modelling, nonholonomic constraints, sliding mode, nonlinear observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2958445 Coupling Concept of two Parallel Research Codes for Two and Three Dimensional Fluid Structure Interaction Analysis
Authors: Luciano Garelli, Marco Schauer, Jorge D’Elia, Mario A. Storti, Sabine C. Langer
Abstract:
This paper discuss a coupling strategy of two different software packages to provide fluid structure interaction (FSI) analysis. The basic idea is to combine the advantages of the two codes to create a powerful FSI solver for two and three dimensional analysis. The fluid part is computed by a program called PETSc-FEM a software developed at Centro de Investigaci´on de M´etodos Computacionales –CIMEC. The structural part of the coupled process is computed by the research code elementary Parallel Solver – (ELPASO) of the Technische Universit¨at Braunschweig, Institut f¨ur Konstruktionstechnik (IK).
Keywords: Computational Fluid Dynamics (CFD), Fluid Structure Interaction (FSI), Finite Element Method (FEM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942444 Neural Network Motion Control of VTAV by NARMA-L2 Controller for Enhanced Situational Awareness
Authors: Igor Astrov, Natalya Berezovski
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a neural network motion control procedure to address the dynamics variation and performance requirement difference of flight trajectory for a VTAV. This control strategy with using of NARMAL2 neurocontroller for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.Keywords: NARMA-L2 neurocontroller, situational awareness, vectored thrust aerial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029443 CFD Simulation of Hydrodynamic Behaviors and Gas-Liquid Mass Transfer in a Stirred Airlift Bioreactor
Authors: Sérgio S. de Jesus, Edgar Leonardo Martínez, Aulus R.R. Binelli, Aline Santana, Rubens Maciel Filho
Abstract:
The speed profiles, gas holdup (eG) and global oxygen transfer coefficient (kLa) from a stirred airlift bioreactor using water as the fluid model, was investigated by computational fluid dynamics modeling. The parameters predicted by the computer model were validated with the experimental dates. The CFD results were very close to those obtained experimentally. During the simulation it was verified a prevalent impeller effect at low speeds, propelling a large volume of fluid against the walls of the vessel, which without recirculation, results in low values of eG and kLa; however, by increasing air velocity, the impeller effect is smaller with the air flow being greater, in the region of the riser, causing fluid recirculation, which explains the increase in eG and kLa.
Keywords: CFD, Hydrodynamics, Mass transfer, Stirred airlift bioreactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3749442 A Numerical Simulation of Arterial Mass Transport in Presence of Magnetic Field-Links to Atherosclerosis
Authors: H. Aminfar, M. Mohammadpourfard, K. Khajeh
Abstract:
This paper has focused on the most important parameters in the LSC uptake; inlet Re number and Sc number in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. Homogeneous porous layer as a arterial wall has been regarded. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 % vol. Fe3O4) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field.
Keywords: LDL Surface Concentration (LSC), Magnetic field, Computational fluid dynamics, Porous wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572441 Dynamic Load Modeling for KHUZESTAN Power System Voltage Stability Studies
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
Based on the component approach, three kinds of dynamic load models, including a single –motor model, a two-motor model and composite load model have been developed for the stability studies of Khuzestan power system. The study results are presented in this paper. Voltage instability is a dynamic phenomenon and therefore requires dynamic representation of the power system components. Industrial loads contain a large fraction of induction machines. Several models of different complexity are available for the description investigations. This study evaluates the dynamic performances of several dynamic load models in combination with the dynamics of a load changing transformer. Case study is steel industrial substation in Khuzestan power systems.Keywords: Dynamic load, modeling, Voltage Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858440 Nonlinear Integral-Type Sliding Surface for Synchronization of Chaotic Systems with Unknown Parameters
Authors: Hongji Tang, Yanbo Gao, Yue Yu
Abstract:
This paper presents a new nonlinear integral-type sliding surface for synchronizing two different chaotic systems with parametric uncertainty. On the basis of Lyapunov theorem and average dwelling time method, we obtain the control gains of controllers which are derived to achieve chaos synchronization. In order to reduce the gains, the error system is modeled as a switching system. We obtain the sufficient condition drawn for the robust stability of the error dynamics by stability analysis. Then we apply it to guide the design of the controllers. Finally, numerical examples are used to show the robustness and effectiveness of the proposed control strategy.
Keywords: Chaos synchronization, Nonlinear sliding surface, Control gains, Sliding mode control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023439 CFD Simulation of Surge Wave Generated by Flow-Like Landslides
Authors: Liu-Chao Qiu
Abstract:
The damage caused by surge waves generated in water bodies by flow-like landslides can be very high in terms of human lives and economic losses. The complicated phenomena occurred in this highly unsteady process are difficult to model because three interacting phases: air, water and sediment are involved. The problem therefore is challenging since the effects of non-Newtonian fluid describing the rheology of the flow-like landslides, multi-phase flow and free surface have to be included in the simulation. In this work, the commercial computational fluid dynamics (CFD) package FLUENT is used to model the surge waves due to flow-like landslides. The comparison between the numerical results and experimental data reported in the literature confirms the accuracy of the method.Keywords: Flow-like landslide, surge wave, VOF, non-Newtonian fluids, multi-phase flows, free surface flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419438 Adaptive PID Control of Wind Energy Conversion Systems Using RASP1 Mother Wavelet Basis Function Networks
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
In this paper a PID control strategy using neural network adaptive RASP1 wavelet for WECS-s control is proposed. It is based on single layer feedforward neural networks with hidden nodes of adaptive RASP1 wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. This particular neuro PID controller assumes a certain model structure to approximately identify the system dynamics of the unknown plant (WECS-s) and generate the control signal. The results are applied to a typical turbine/generator pair, showing the feasibility of the proposed solution.Keywords: Adaptive PID Control, RASP1 Wavelets, WindEnergy Conversion Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002437 A Compact Quasi-Zero Stiffness Vibration Isolator Using Flexure-Based Spring Mechanisms Capable of Tunable Stiffness
Authors: Thanh-Phong Dao, Shyh-Chour Huang
Abstract:
This study presents a quasi-zero stiffness (QZS) vibration isolator using flexure-based spring mechanisms which afford both negative and positive stiffness elements, which enable self-adjustment. The QZS property of the isolator is achieved at the equilibrium position. A nonlinear mathematical model is then developed, based on the pre-compression of the flexure-based spring mechanisms. The dynamics are further analyzed using the Harmonic Balance method. The vibration attention efficiency is illustrated using displacement transmissibility, which is then compared with the corresponding linear isolator. The effects of parameters on performance are also investigated by numerical solutions. The flexure-based spring mechanisms are subsequently designed using the concept of compliant mechanisms, with evaluation by ANSYS software, and simulations of the QZS isolator.Keywords: Vibration isolator, quasi-zero stiffness, flexure-based spring mechanisms, compliant mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147436 Simulations of Cryogenic Cavitation of Low Temperature Fluids with Thermodynamics Effects
Authors: A. Alhelfi, B. Sunden
Abstract:
Cavitation in cryogenic liquids is widely present in contemporary science. In the current study, we re-examine a previously validated acoustic cavitation model which was developed for a gas bubble in liquid water. Furthermore, simulations of cryogenic fluids including the thermal effect, the effect of acoustic pressure amplitude and the frequency of sound field on the bubble dynamics are presented. A gas bubble (Helium) in liquids Nitrogen, Oxygen and Hydrogen in an acoustic field at ambient pressure and low temperature is investigated numerically. The results reveal that the oscillation of the bubble in liquid Hydrogen fluctuates more than in liquids Oxygen and Nitrogen. The oscillation of the bubble in liquids Oxygen and Nitrogen is approximately similar.
Keywords: Cryogenic liquids, cavitation, rocket engineering, ultrasound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739435 Modular Workflow System for HPC Applications
Authors: Y. Yudin, T. Krasikova, Y. Dorozhko, N. Currle-Linde
Abstract:
Nowadays, HPC, Grid and Cloud systems are evolving very rapidly. However, the development of infrastructure solutions related to HPC is lagging behind. While the existing infrastructure is sufficient for simple cases, many computational problems have more complex requirements.Such computational experiments use different resources simultaneously to start a large number of computational jobs.These resources are heterogeneous. They have different purposes, architectures, performance and used software.Users need a convenient tool that allows to describe and to run complex computational experiments under conditions of HPC environment. This paper introduces a modularworkflow system called SEGL which makes it possible to run complex computational experiments under conditions of a real HPC organization. The system can be used in a great number of organizations, which provide HPC power. Significant requirements to this system are high efficiency and interoperability with the existing HPC infrastructure of the organization without any changes.Keywords: HPC, Molecular Dynamics, Workflow Languages, Workflow Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729434 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network
Authors: A. Morsli, A.Tlemçani, N. Ould Cherchali, M. S. Boucherit
Abstract:
This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to a shunt Active Power Filter (sAPF) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.Keywords: Fuzzy logic controller, P-Q method, Pulse Width Modulation (PWM), shunt Active Power Filter (sAPF), Total Harmonic Distortion (THD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363433 Simulating Pathogen Transport with in a Naturally Ventilated Hospital Ward
Authors: C. A. Gilkeson, C. J. Noakes, P. A. Sleigh, M. A. I. Khan, M. A. Camargo-Valero
Abstract:
Understanding how airborne pathogens are transported through hospital wards is essential for determining the infection risk to patients and healthcare workers. This study utilizes Computational Fluid Dynamics (CFD) simulations to explore possible pathogen transport within a six-bed partitioned Nightingalestyle hospital ward. Grid independence of a ward model was addressed using the Grid Convergence Index (GCI) from solutions obtained using three fullystructured grids. Pathogens were simulated using source terms in conjunction with a scalar transport equation and a RANS turbulence model. Errors were found to be less than 4% in the calculation of air velocities but an average of 13% was seen in the scalar field. A parametric study of variations in the pathogen release point illustrated that its distribution is strongly influenced by the local velocity field and the degree of air mixing present.Keywords: Natural, Ventilation, Pathogen, Transport
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491432 Using Adaptive Pole Placement Control Strategy for Active Steering Safety System
Authors: Hadi Adibi-Asl, Alireza Doosthosseini, Amir Taghavipour
Abstract:
This paper studies the design of an adaptive control strategy to tune an active steering system for better drivability and maneuverability. In the first step, adaptive control strategy is applied to estimate the uncertain parameters on-line (e.g. cornering stiffness), then the estimated parameters are fed into the pole placement controller to generate corrective feedback gain to improve the steering system dynamic’s characteristics. The simulations are evaluated for three types of road conditions (dry, wet, and icy), and the performance of the adaptive pole placement control (APPC) are compared with pole placement control (PPC) and a passive system. The results show that the APPC strategy significantly improves the yaw rate and side slip angle of a bicycle plant model.Keywords: Adaptive control, active steering, pole placement, vehicle dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344431 A Novel Tracking Method Using Filtering and Geometry
Authors: Sang Hoon Lee, Jong Sue Bae, Taewan Kim, Jin Mo Song, Jong Ju Kim
Abstract:
Image target detection and tracking methods based on target information such as intensity, shape model, histogram and target dynamics have been proven to be robust to target model variations and background clutters as shown by recent researches. However, no definitive answer has been given to occluded target by counter measure or limited field of view(FOV). In this paper, we will present a novel tracking method using filtering and computational geometry. This paper has two central goals: 1) to deal with vulnerable target measurements; and 2) to maintain target tracking out of FOV using non-target-originated information. The experimental results, obtained with airborne images, show a robust tracking ability with respect to the existing approaches. In exploring the questions of target tracking, this paper will be limited to consideration of airborne image.Keywords: Tracking, Computational geometry, Homography, Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785430 Towards Achieving Energy Efficiency in Kazakhstan
Authors: Aigerim Uyzbayeva, Valeriya Tyo, Nurlan Ibrayev
Abstract:
Kazakhstan is currently one of the dynamically developing states in its region. The stable growth in all sectors of the economy leads to a corresponding increase in energy consumption. Thus country consumes significant amount of energy due to the high level of industrialisation and the presence of energy-intensive manufacturing such as mining and metallurgy which in turn leads to low energy efficiency. With allowance for this the Government has set several priorities to adopt a transition of Republic of Kazakhstan to a “green economy”. This article provides an overview of Kazakhstan’s energy efficiency situation in for the period of 1991- 2014. First, the dynamics of production and consumption of conventional energy resources are given. Second, the potential of renewable energy sources is summarised followed by the description of GHG emissions trends in the country. Third, Kazakhstan’ national initiatives, policies and locally implemented projects in the field of energy efficiency are described.
Keywords: Energy efficiency in Kazakhstan, greenhouse gases, renewable energy, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3537429 On Some Signs of a Recurrent Climate Scenario Advent
Authors: Vladimir I. Byshev, Victor G. Neiman, Yuri A. Romanov, Ilya V. Serykh
Abstract:
Since atmosphere pressure field is an actual envoy of climatic signal the atmospheric Highs and Lows should be attributed to the key active focal points within the ocean-atmosphere interplay system. Here we were set a task to determine how the dynamics of those centres of action relates to the climate change both on regional and global scales. For this target the near-surface temperature and atmospheric pressure differences between the Icelandic Low and the Azores High were considered. The secular term of phase states of the system under consideration was found divided into three nonintersecting subsets. Each of that was put in consequence with one of three climatic scenarios related to the periods of 1905-1935 (relatively warm phase), 1940-1970 (cold phase) and 1980-2000 (warm phase).Keywords: Climate change, climatic scenario, fields of environmental characteristics, North Atlantic region.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561428 Study Interaction between Tin Dioxide Nanowhiskers and Ethanol Molecules in Gas Phase: Monte Carlo(MC) and Langevin Dynamics (LD) Simulation
Authors: L. Mahdavian, M. Raouf
Abstract:
Three dimensional nanostructure materials have attracted the attention of many researches because the possibility to apply them for near future devices in sensors, catalysis and energy related. Tin dioxide is the most used material for gas sensing because its three-dimensional nanostructures and properties are related to the large surface exposed to gas adsorption. We propose the use of branch SnO2 nanowhiskers in interaction with ethanol. All Sn atoms are symmetric. The total energy, potential energy and Kinetic energy calculated for interaction between SnO2 and ethanol in different distances and temperatures. The calculations achieved by methods of Langevin Dynamic and Mont Carlo simulation. The total energy increased with addition ethanol molecules and temperature so interactions between them are endothermic.
Keywords: Tin dioxide, nanowhisker, Ethanol, Langevin Dynamic and Mont Carlo Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168427 On the Numerical and Experimental Analysis of Internal Pressure in Air Bearings
Authors: Abdurrahim Dal, Tuncay Karaçay
Abstract:
Dynamics of a rotor supported by air bearings is strongly depends on the pressure distribution between the rotor and the bearing. In this study, internal pressure in air bearings is numerical and experimental analyzed for different radial clearances. Firstly the pressure distribution between rotor and bearing is modeled using Reynold's equation and this model is solved numerically. The rotor-bearing system is also modeled in four degree of freedom and it is simulated for different radial clearances. Then, in order to validate numerical results, a test rig is designed and the rotor bearing system is run under the same operational conditions. Pressure signals of left and right bearings are recorded. Internal pressure variations are compared for numerical and experimental results for different radial clearances.Keywords: Air bearing, internal pressure, Reynold’s equation, rotor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137426 Simultaneously Reduction of NOx and Soot Emissions in a DI Heavy Duty diesel Engine Operating at High Cooled EGR Rates
Authors: Sh. Khalilarya, S. Jafarmadar, H. Khatamnezhad, Gh. Javadirad, M. Pourfallah
Abstract:
One promising way to achieve low temperature combustion regime is the use of a large amount of cooled EGR. In this paper, the effect of injection timing on low temperature combustion process and emissions were investigated via three dimensional computational fluid dynamics (CFD) procedures in a DI diesel engine using high EGR rates. The results show when increasing EGR from low levels to levels corresponding to reduced temperature combustion, soot emission after first increasing, is decreased beyond 40% EGR and get the lowest value at 58% EGR rate. Soot and NOx emissions are simultaneously decreased at advanced injection timing before 20.5 ºCA BTDC in conjunction with 58% cooled EGR rate in compared to baseline case.Keywords: Diesel Engine, Low Temperature Combustion, High Cooled EGR Rates, Combustion, Emissions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030