Search results for: Super resolution.
110 Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation
Authors: Seda Yavuz, Anıl Çelebi, Aysun Taşyapı Çelebi, Oğuzhan Urhan
Abstract:
Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption.
Keywords: Binarization, hardware architecture, local binary pattern, motion estimation, two-bit transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374109 Envelope-Wavelet Packet Transform for Machine Condition Monitoring
Authors: M. F. Yaqub, I. Gondal, J. Kamruzzaman
Abstract:
Wavelet transform has been extensively used in machine fault diagnosis and prognosis owing to its strength to deal with non-stationary signals. The existing Wavelet transform based schemes for fault diagnosis employ wavelet decomposition of the entire vibration frequency which not only involve huge computational overhead in extracting the features but also increases the dimensionality of the feature vector. This increase in the dimensionality has the tendency to 'over-fit' the training data and could mislead the fault diagnostic model. In this paper a novel technique, envelope wavelet packet transform (EWPT) is proposed in which features are extracted based on wavelet packet transform of the filtered envelope signal rather than the overall vibration signal. It not only reduces the computational overhead in terms of reduced number of wavelet decomposition levels and features but also improves the fault detection accuracy. Analytical expressions are provided for the optimal frequency resolution and decomposition level selection in EWPT. Experimental results with both actual and simulated machine fault data demonstrate significant gain in fault detection ability by EWPT at reduced complexity compared to existing techniques.Keywords: Envelope Detection, Wavelet Transform, Bearing Faults, Machine Health Monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958108 Neural Networks-Based Acoustic Annoyance Model for Laptop Hard Disk Drive
Authors: Yi Chao Ma, Cheng Siong Chin, Wai Lok Woo
Abstract:
Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and threedimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who are the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system, which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.Keywords: Hard disk drive noise, jury test, neural network model, psychoacoustic annoyance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533107 Numerical Analysis and Influence of the Parameters on Slope Stability
Authors: Fahim Kahlouche, Alaoua Bouaicha, Sihem Chaîbeddra, Sid-Ali Rafa, Abdelhamid Benouali
Abstract:
A designing of a structure requires its realization on rough or sloping ground. Besides the problem of the stability of the landslide, the behavior of the foundations that are bearing the structure is influenced by the destabilizing effect of the ground’s slope. This article focuses on the analysis of the slope stability exposed to loading by introducing the different factors influencing the slope’s behavior on the one hand, and on the influence of this slope on the foundation’s behavior on the other hand. This study is about the elastoplastic modelization using FLAC 2D. This software is based on the finite difference method, which is one of the older methods of numeric resolution of differential equations system with initial and boundary conditions. It was developed for the geotechnical simulation calculation. The aim of this simulation is to demonstrate the notable effect of shear modulus « G », cohesion « C », inclination angle (edge) « β », and distance between the foundation and the head of the slope on the stability of the slope as well as the stability of the foundation. In our simulation, the slope is constituted by homogenous ground. The foundation is considered as rigid/hard; therefore, the loading is made by the application of the vertical strengths on the nodes which represent the contact between the foundation and the ground.Keywords: Slope, shallow foundation, numeric method, FLAC 2D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1195106 An Image Enhancement Method Based on Curvelet Transform for CBCT-Images
Authors: Shahriar Farzam, Maryam Rastgarpour
Abstract:
Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).
Keywords: Curvelet transform, image enhancement, CBCT, image denoising.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260105 Influence of Optical Fluence Distribution on Photoacoustic Imaging
Authors: Mohamed K. Metwally, Sherif H. El-Gohary, Kyung Min Byun, Seung Moo Han, Soo Yeol Lee, Min Hyoung Cho, Gon Khang, Jinsung Cho, Tae-Seong Kim
Abstract:
Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect.
Keywords: Finite Element Method, Fluence Distribution, Monte Carlo Method, Photoacoustic Imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2678104 Highly Accurate Target Motion Compensation Using Entropy Function Minimization
Authors: Amin Aghatabar Roodbary, Mohammad Hassan Bastani
Abstract:
One of the defects of stepped frequency radar systems is their sensitivity to target motion. In such systems, target motion causes range cell shift, false peaks, Signal to Noise Ratio (SNR) reduction and range profile spreading because of power spectrum interference of each range cell in adjacent range cells which induces distortion in High Resolution Range Profile (HRRP) and disrupt target recognition process. Thus Target Motion Parameters (TMPs) effects compensation should be employed. In this paper, such a method for estimating TMPs (velocity and acceleration) and consequently eliminating or suppressing the unwanted effects on HRRP based on entropy minimization has been proposed. This method is carried out in two major steps: in the first step, a discrete search method has been utilized over the whole acceleration-velocity lattice network, in a specific interval seeking to find a less-accurate minimum point of the entropy function. Then in the second step, a 1-D search over velocity is done in locus of the minimum for several constant acceleration lines, in order to enhance the accuracy of the minimum point found in the first step. The provided simulation results demonstrate the effectiveness of the proposed method.
Keywords: ATR, HRRP, motion compensation, SFW, TMP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 657103 Fast Wavelet Image Denoising Based on Local Variance and Edge Analysis
Authors: Gaoyong Luo
Abstract:
The approach based on the wavelet transform has been widely used for image denoising due to its multi-resolution nature, its ability to produce high levels of noise reduction and the low level of distortion introduced. However, by removing noise, high frequency components belonging to edges are also removed, which leads to blurring the signal features. This paper proposes a new method of image noise reduction based on local variance and edge analysis. The analysis is performed by dividing an image into 32 x 32 pixel blocks, and transforming the data into wavelet domain. Fast lifting wavelet spatial-frequency decomposition and reconstruction is developed with the advantages of being computationally efficient and boundary effects minimized. The adaptive thresholding by local variance estimation and edge strength measurement can effectively reduce image noise while preserve the features of the original image corresponding to the boundaries of the objects. Experimental results demonstrate that the method performs well for images contaminated by natural and artificial noise, and is suitable to be adapted for different class of images and type of noises. The proposed algorithm provides a potential solution with parallel computation for real time or embedded system application.Keywords: Edge strength, Fast lifting wavelet, Image denoising, Local variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028102 3-D Reconstruction of Objects Using Digital Fringe Projection: Survey and Experimental Study
Authors: R. Talebi, A. Abdel-Dayem, J. Johnson
Abstract:
Three-dimensional reconstruction of small objects has been one of the most challenging problems over the last decade. Computer graphics researchers and photography professionals have been working on improving 3D reconstruction algorithms to fit the high demands of various real life applications. Medical sciences, animation industry, virtual reality, pattern recognition, tourism industry, and reverse engineering are common fields where 3D reconstruction of objects plays a vital role. Both lack of accuracy and high computational cost are the major challenges facing successful 3D reconstruction. Fringe projection has emerged as a promising 3D reconstruction direction that combines low computational cost to both high precision and high resolution. It employs digital projection, structured light systems and phase analysis on fringed pictures. Research studies have shown that the system has acceptable performance, and moreover it is insensitive to ambient light. This paper presents an overview of fringe projection approaches. It also presents an experimental study and implementation of a simple fringe projection system. We tested our system using two objects with different materials and levels of details. Experimental results have shown that, while our system is simple, it produces acceptable results.Keywords: Digital fringe projection, 3D reconstruction, phase unwrapping, phase shifting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5220101 Statistical Relation between Vegetation Cover and Land Surface Temperature in Phnom Penh City
Authors: Gulam Mohiuddin, Jan-Peter Mund
Abstract:
This study assessed the correlation between Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) in Phnom Penh City (Cambodia) from 2016 to 2020. Understanding the LST and NDVI can be helpful to understand the Urban Heat Island (UHI) scenario, and it can contribute to planning urban greening and combating the effects of UHI. The study used Landsat-8 images as the data for analysis. They have 100 m spatial resolution (per pixel) in the thermal band. The current study used an approach for the statistical analysis that considers every pixel from the study area instead of taking few sample points or analyzing descriptive statistics. Also, this study is examining the correlation between NDVI and LST with a spatially explicit approach. The study found a strong negative correlation between NDVI and LST (coefficient range -0.56 to -0.59), and this relationship is linear. This study showed a way to avoid the probable error from the sample-based approach in examining two spatial variables. The method is reproducible for a similar type of analysis on the correlation between spatial phenomena. The findings of this study will be used further to understand the causation behind LST change in that area triangulating LST, NDVI and land-use changes.
Keywords: Land Surface Temperature, NDVI, Normalized Difference Vegetation Index, remote sensing, methodological development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 470100 Skin Lesion Segmentation Using Color Channel Optimization and Clustering-based Histogram Thresholding
Authors: Rahil Garnavi, Mohammad Aldeen, M. Emre Celebi, Alauddin Bhuiyan, Constantinos Dolianitis, George Varigos
Abstract:
Automatic segmentation of skin lesions is the first step towards the automated analysis of malignant melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most effective color space for melanoma application. This paper proposes an automatic segmentation algorithm based on color space analysis and clustering-based histogram thresholding, a process which is able to determine the optimal color channel for detecting the borders in dermoscopy images. The algorithm is tested on a set of 30 high resolution dermoscopy images. A comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm, applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. By performing ROC analysis and ranking the metrics, it is demonstrated that the best results are obtained with the X and XoYoR color channels, resulting in an accuracy of approximately 97%. The proposed method is also compared with two state-of-theart skin lesion segmentation methods.Keywords: Border detection, Color space analysis, Dermoscopy, Histogram thresholding, Melanoma, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224799 A Pairwise-Gaussian-Merging Approach: Towards Genome Segmentation for Copy Number Analysis
Authors: Chih-Hao Chen, Hsing-Chung Lee, Qingdong Ling, Hsiao-Jung Chen, Sun-Chong Wang, Li-Ching Wu, H.C. Lee
Abstract:
Segmentation, filtering out of measurement errors and identification of breakpoints are integral parts of any analysis of microarray data for the detection of copy number variation (CNV). Existing algorithms designed for these tasks have had some successes in the past, but they tend to be O(N2) in either computation time or memory requirement, or both, and the rapid advance of microarray resolution has practically rendered such algorithms useless. Here we propose an algorithm, SAD, that is much faster and much less thirsty for memory – O(N) in both computation time and memory requirement -- and offers higher accuracy. The two key ingredients of SAD are the fundamental assumption in statistics that measurement errors are normally distributed and the mathematical relation that the product of two Gaussians is another Gaussian (function). We have produced a computer program for analyzing CNV based on SAD. In addition to being fast and small it offers two important features: quantitative statistics for predictions and, with only two user-decided parameters, ease of use. Its speed shows little dependence on genomic profile. Running on an average modern computer, it completes CNV analyses for a 262 thousand-probe array in ~1 second and a 1.8 million-probe array in 9 secondsKeywords: Cancer, pathogenesis, chromosomal aberration, copy number variation, segmentation analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147798 Well-Being Inequality Using Superimposing Satisfaction Waves: Heisenberg Uncertainty in Behavioural Economics and Econometrics
Authors: Okay Gunes
Abstract:
In this article, a new method is proposed for the measuring of well-being inequality through a model composed of superimposing satisfaction waves. The displacement of households’ satisfactory state (i.e. satisfaction) is defined in a satisfaction string. The duration of the satisfactory state for a given period is measured in order to determine the relationship between utility and total satisfactory time, itself dependent on the density and tension of each satisfaction string. Thus, individual cardinal total satisfaction values are computed by way of a one-dimensional form for scalar sinusoidal (harmonic) moving wave function, using satisfaction waves with varying amplitudes and frequencies which allow us to measure wellbeing inequality. One advantage to using satisfaction waves is the ability to show that individual utility and consumption amounts would probably not commute; hence, it is impossible to measure or to know simultaneously the values of these observables from the dataset. Thus, we crystallize the problem by using a Heisenberg-type uncertainty resolution for self-adjoint economic operators. We propose to eliminate any estimation bias by correlating the standard deviations of selected economic operators; this is achieved by replacing the aforementioned observed uncertainties with households’ perceived uncertainties (i.e. corrected standard deviations) obtained through the logarithmic psychophysical law proposed by Weber and Fechner.
Keywords: Heisenberg Uncertainty Principle, superimposing satisfaction waves, Weber–Fechner law, well-being inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205597 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman
Abstract:
With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.Keywords: Band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117096 A TRIZ-based Approach to Generation of Service-supporting Product Concepts
Authors: Seungkyum Kim, Yongtae Park
Abstract:
Recently, business environment and customer needs have become rapidly changing, hence it is very difficult to fulfill sophisticated customer needs by product or service innovation only. In practice, to cope with this problem, various manufacturing companies have developed services to combine with their products. Along with this, many academic studies on PSS (Product Service System) which is the integrated system of products and services have been conducted from the viewpoint of manufacturers. On the other hand, service providers are also attempting to develop service-supporting products to increase their service competitiveness and provide differentiated value. However, there is a lack of research based on the service-centric point of view. Accordingly, this paper proposes a concept generation method for service-supporting product development from the service-centric point of view. This method is designed to be executed in five consecutive steps: situation analysis, problem definition, problem resolution, solution evaluation, and concept generation. In the proposed approach, some tools of TRIZ (Theory of Solving Inventive Problem) such as ISQ (Innovative Situation Questionnaire) and 40 inventive principles are employed in order to define problems of the current services and solve them by generating service-supporting product concepts. This research contributes to the development of service-supporting products and service-centric PSSs.Keywords: TRIZ, PSS (Product Service System), service-supporting product, concept generation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192895 Large Eddy Simulation of Compartment Fire with Gas Combustible
Authors: Mliki Bouchmel, Abbassi Mohamed Ammar, Kamel Geudri, Chrigui Mouldi, Omri Ahmed
Abstract:
The objective of this work is to use the Fire Dynamics Simulator (FDS) to investigate the behavior of a kerosene small-scale fire. FDS is a Computational Fluid Dynamics (CFD) tool developed specifically for fire applications. Throughout its development, FDS is used for the resolution of practical problems in fire protection engineering. At the same time FDS is used to study fundamental fire dynamics and combustion. Predictions are based on Large Eddy Simulation (LES) with a Smagorinsky turbulence model. LES directly computes the large-scale eddies and the sub-grid scale dissipative processes are modeled. This technique is the default turbulence model which was used in this study. The validation of the numerical prediction is done using a direct comparison of combustion output variables to experimental measurements. Effect of the mesh size on the temperature evolutions is investigated and optimum grid size is suggested. Effect of width openings is investigated. Temperature distribution and species flow are presented for different operating conditions. The effect of the composition of the used fuel on atmospheric pollution is also a focus point within this work. Good predictions are obtained where the size of the computational cells within the fire compartment is less than 1/10th of the characteristic fire diameter.
Keywords: Large eddy simulation, Radiation, Turbulence, combustion, pollution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217794 A New Approach for Image Segmentation using Pillar-Kmeans Algorithm
Authors: Ali Ridho Barakbah, Yasushi Kiyoki
Abstract:
This paper presents a new approach for image segmentation by applying Pillar-Kmeans algorithm. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after optimized by Pillar Algorithm. The Pillar algorithm considers the pillars- placement which should be located as far as possible from each other to withstand against the pressure distribution of a roof, as identical to the number of centroids amongst the data distribution. This algorithm is able to optimize the K-means clustering for image segmentation in aspects of precision and computation time. It designates the initial centroids- positions by calculating the accumulated distance metric between each data point and all previous centroids, and then selects data points which have the maximum distance as new initial centroids. This algorithm distributes all initial centroids according to the maximum accumulated distance metric. This paper evaluates the proposed approach for image segmentation by comparing with K-means and Gaussian Mixture Model algorithm and involving RGB, HSV, HSL and CIELAB color spaces. The experimental results clarify the effectiveness of our approach to improve the segmentation quality in aspects of precision and computational time.Keywords: Image segmentation, K-means clustering, Pillaralgorithm, color spaces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 337293 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection
Authors: Hussin K. Ragb, Vijayan K. Asari
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: Pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148992 A Comparison of Experimental Data with Monte Carlo Calculations for Optimisation of the Sourceto- Detector Distance in Determining the Efficiency of a LaBr3:Ce (5%) Detector
Authors: H. Aldousari, T. Buchacher, N. M. Spyrou
Abstract:
Cerium-doped lanthanum bromide LaBr3:Ce(5%) crystals are considered to be one of the most advanced scintillator materials used in PET scanning, combining a high light yield, fast decay time and excellent energy resolution. Apart from the correct choice of scintillator, it is also important to optimise the detector geometry, not least in terms of source-to-detector distance in order to obtain reliable measurements and efficiency. In this study a commercially available 25 mm x 25 mm BrilLanCeTM 380 LaBr3: Ce (5%) detector was characterised in terms of its efficiency at varying source-to-detector distances. Gamma-ray spectra of 22Na, 60Co, and 137Cs were separately acquired at distances of 5, 10, 15, and 20cm. As a result of the change in solid angle subtended by the detector, the geometric efficiency reduced in efficiency with increasing distance. High efficiencies at low distances can cause pulse pile-up when subsequent photons are detected before previously detected events have decayed. To reduce this systematic error the source-to-detector distance should be balanced between efficiency and pulse pile-up suppression as otherwise pile-up corrections would need to be necessary at short distances. In addition to the experimental measurements Monte Carlo simulations have been carried out for the same setup, allowing a comparison of results. The advantages and disadvantages of each approach have been highlighted.
Keywords: BrilLanCeTM380 LaBr3:Ce(5%), Coincidence summing, GATE simulation, Geometric efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188991 Image Classification and Accuracy Assessment Using the Confusion Matrix, Contingency Matrix, and Kappa Coefficient
Authors: F. F. Howard, C. B. Boye, I. Yakubu, J. S. Y. Kuma
Abstract:
One of the ways that could be used for the production of land use and land cover maps by a procedure known as image classification is the use of the remote sensing technique. Numerous elements ought to be taken into consideration, including the availability of highly satisfactory Landsat imagery, secondary data and a precise classification process. The goal of this study was to classify and map the land use and land cover of the study area using remote sensing and Geospatial Information System (GIS) analysis. The classification was done using Landsat 8 satellite images acquired in December 2020 covering the study area. The Landsat image was downloaded from the USGS. The Landsat image with 30 m resolution was geo-referenced to the WGS_84 datum and Universal Transverse Mercator (UTM) Zone 30N coordinate projection system. A radiometric correction was applied to the image to reduce the noise in the image. This study consists of two sections: the Land Use/Land Cover (LULC) and Accuracy Assessments using the confusion and contingency matrix and the Kappa coefficient. The LULC classifications were vegetation (agriculture) (67.87%), water bodies (0.01%), mining areas (5.24%), forest (26.02%), and settlement (0.88%). The overall accuracy of 97.87% and the kappa coefficient (K) of 97.3% were obtained for the confusion matrix. While an overall accuracy of 95.7% and a Kappa coefficient of 0.947 were obtained for the contingency matrix, the kappa coefficients were rated as substantial; hence, the classified image is fit for further research.
Keywords: Confusion Matrix, contingency matrix, kappa coefficient, land used/ land cover, accuracy assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25290 Low Value Capacitance Measurement System with Adjustable Lead Capacitance Compensation
Authors: Gautam Sarkar, Anjan Rakshit, Amitava Chatterjee, Kesab Bhattacharya
Abstract:
The present paper describes the development of a low cost, highly accurate low capacitance measurement system that can be used over a range of 0 – 400 pF with a resolution of 1 pF. The range of capacitance may be easily altered by a simple resistance or capacitance variation of the measurement circuit. This capacitance measurement system uses quad two-input NAND Schmitt trigger circuit CD4093B with hysteresis for the measurement and this system is integrated with PIC 18F2550 microcontroller for data acquisition purpose. The microcontroller interacts with software developed in the PC end through USB architecture and an attractive graphical user interface (GUI) based system is developed in the PC end to provide the user with real time, online display of capacitance under measurement. The system uses a differential mode of capacitance measurement, with reference to a trimmer capacitance, that effectively compensates lead capacitances, a notorious error encountered in usual low capacitance measurements. The hysteresis provided in the Schmitt-trigger circuits enable reliable operation of the system by greatly minimizing the possibility of false triggering because of stray interferences, usually regarded as another source of significant error. The real life testing of the proposed system showed that our measurements could produce highly accurate capacitance measurements, when compared to cutting edge, high end digital capacitance meters.
Keywords: Capacitance measurement, NAND Schmitt trigger, microcontroller, GUI, lead compensation, hysteresis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737089 Automatic Segmentation of Dermoscopy Images Using Histogram Thresholding on Optimal Color Channels
Authors: Rahil Garnavi, Mohammad Aldeen, M. Emre Celebi, Alauddin Bhuiyan, Constantinos Dolianitis, George Varigos
Abstract:
Automatic segmentation of skin lesions is the first step towards development of a computer-aided diagnosis of melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most discriminative and effective color space for melanoma application. This paper proposes a novel automatic segmentation algorithm using color space analysis and clustering-based histogram thresholding, which is able to determine the optimal color channel for segmentation of skin lesions. To demonstrate the validity of the algorithm, it is tested on a set of 30 high resolution dermoscopy images and a comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm. The evaluation is carried out by applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. Through ROC analysis and ranking the metrics, it is shown that the best results are obtained with the X and XoYoR color channels which results in an accuracy of approximately 97%. The proposed method is also compared with two state-ofthe- art skin lesion segmentation methods, which demonstrates the effectiveness and superiority of the proposed segmentation method.Keywords: Border detection, Color space analysis, Dermoscopy, Histogram thresholding, Melanoma, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208588 Lagrangian Flow Skeletons Captured in the Wake of a Swimming Nematode C. elegans Using an Immersed Boundary Fluid-Structure Interaction Approach
Authors: Arash Taheri
Abstract:
In this paper, Lagrangian coherent structure (LCS) concept is applied to wake flows generated in the up/down-stream of a swimming nematode C. elegans in an intermediate Re number range, i.e., 250-1200. It materializes Lagrangian hidden structures depicting flow transport barriers. To pursue the goals, nematode swimming in a quiescent fluid flow environment is numerically simulated by a two-way fluid-structure interaction (FSI) approach with the aid of immersed boundary method (IBM). In this regard, incompressible Navier-Stokes equations, fully-coupled with Lagrangian deformation equations for the immersed body, are solved using IB2d code. For all simulations, nematode’s body is modeled with a parametrized spring-fiber built-in case available in the computational code. Reverse von-Kármán vortex street formation and vortex shedding characteristics are studied and discussed in details via LCS approach, including grid resolution, integration time and Reynolds number effects. Results unveil presence of different flow regions with distinct fluid particle fates in the swimming animal’s wake and formation of so-called ‘mushroom-shaped’ structures in attracting LCS identities.
Keywords: Lagrangian coherent structure, nematode swimming, fluid-structure interaction, immersed boundary method, bionics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99487 Spatiotemporal Analysis of Visual Evoked Responses Using Dense EEG
Authors: Rima Hleiss, Elie Bitar, Mahmoud Hassan, Mohamad Khalil
Abstract:
A comprehensive study of object recognition in the human brain requires combining both spatial and temporal analysis of brain activity. Here, we are mainly interested in three issues: the time perception of visual objects, the ability of discrimination between two particular categories (objects vs. animals), and the possibility to identify a particular spatial representation of visual objects. Our experiment consisted of acquiring dense electroencephalographic (EEG) signals during a picture-naming task comprising a set of objects and animals’ images. These EEG responses were recorded from nine participants. In order to determine the time perception of the presented visual stimulus, we analyzed the Event Related Potentials (ERPs) derived from the recorded EEG signals. The analysis of these signals showed that the brain perceives animals and objects with different time instants. Concerning the discrimination of the two categories, the support vector machine (SVM) was applied on the instantaneous EEG (excellent temporal resolution: on the order of millisecond) to categorize the visual stimuli into two different classes. The spatial differences between the evoked responses of the two categories were also investigated. The results showed a variation of the neural activity with the properties of the visual input. Results showed also the existence of a spatial pattern of electrodes over particular regions of the scalp in correspondence to their responses to the visual inputs.
Keywords: Brain activity, dense EEG, evoked responses, spatiotemporal analysis, SVM, perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107186 Structural and Optical Properties ofInxAlyGa1-x-yN Quaternary Alloys
Authors: N. H. Abd Raof, H. Abu Hassan, S.K. Mohd Bakhori, S. S. Ng, Z. Hassan
Abstract:
Quaternary InxAlyGa1-x-yN semiconductors have attracted much research interest because the use of this quaternary offer the great flexibility in tailoring their band gap profile while maintaining their lattice-matching and structural integrity. The structural and optical properties of InxAlyGa1-x-yN alloys grown by molecular beam epitaxy (MBE) is presented. The structural quality of InxAlyGa1-x-yN layers was characterized using high-resolution X-ray diffraction (HRXRD). The results confirm that the InxAlyGa1-x-yN films had wurtzite structure and without phase separation. As the In composition increases, the Bragg angle of the (0002) InxAlyGa1-x-yN peak gradually decreases, indicating the increase in the lattice constant c of the alloys. FWHM of (0002) InxAlyGa1-x-yN decreases with increasing In composition from 0 to 0.04, that could indicate the decrease of quality of the samples due to point defects leading to non-uniformity of the epilayers. UV-VIS spectroscopy have been used to study the energy band gap of InxAlyGa1-x-yN. As the indium (In) compositions increases, the energy band gap decreases. However, for InxAlyGa1-x-yN with In composition of 0.1, the band gap shows a sudden increase in energy. This is probably due to local alloy compositional fluctuations in the epilayer. The bowing parameter which appears also to be very sensitive on In content is investigated and obtained b = 50.08 for quaternary InxAlyGa1-x-yN alloys. From photoluminescence (PL) measurement, green luminescence (GL) appears at PL spectrum of InxAlyGa1-x-yN, emitted for all x at ~530 nm and it become more pronounced as the In composition (x) increased, which is believed cause by gallium vacancies and related to isolated native defects.Keywords: HRXRD, nitrides, PL, quaternary, UV-VIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157285 An Efficient Biometric Cryptosystem using Autocorrelators
Authors: R. Bremananth, A. Chitra
Abstract:
Cryptography provides the secure manner of information transmission over the insecure channel. It authenticates messages based on the key but not on the user. It requires a lengthy key to encrypt and decrypt the sending and receiving the messages, respectively. But these keys can be guessed or cracked. Moreover, Maintaining and sharing lengthy, random keys in enciphering and deciphering process is the critical problem in the cryptography system. A new approach is described for generating a crypto key, which is acquired from a person-s iris pattern. In the biometric field, template created by the biometric algorithm can only be authenticated with the same person. Among the biometric templates, iris features can efficiently be distinguished with individuals and produces less false positives in the larger population. This type of iris code distribution provides merely less intra-class variability that aids the cryptosystem to confidently decrypt messages with an exact matching of iris pattern. In this proposed approach, the iris features are extracted using multi resolution wavelets. It produces 135-bit iris codes from each subject and is used for encrypting/decrypting the messages. The autocorrelators are used to recall original messages from the partially corrupted data produced by the decryption process. It intends to resolve the repudiation and key management problems. Results were analyzed in both conventional iris cryptography system (CIC) and non-repudiation iris cryptography system (NRIC). It shows that this new approach provides considerably high authentication in enciphering and deciphering processes.Keywords: Autocorrelators, biometrics cryptography, irispatterns, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152784 A Robust Salient Region Extraction Based on Color and Texture Features
Authors: Mingxin Zhang, Zhaogan Lu, Junyi Shen
Abstract:
In current common research reports, salient regions are usually defined as those regions that could present the main meaningful or semantic contents. However, there are no uniform saliency metrics that could describe the saliency of implicit image regions. Most common metrics take those regions as salient regions, which have many abrupt changes or some unpredictable characteristics. But, this metric will fail to detect those salient useful regions with flat textures. In fact, according to human semantic perceptions, color and texture distinctions are the main characteristics that could distinct different regions. Thus, we present a novel saliency metric coupled with color and texture features, and its corresponding salient region extraction methods. In order to evaluate the corresponding saliency values of implicit regions in one image, three main colors and multi-resolution Gabor features are respectively used for color and texture features. For each region, its saliency value is actually to evaluate the total sum of its Euclidean distances for other regions in the color and texture spaces. A special synthesized image and several practical images with main salient regions are used to evaluate the performance of the proposed saliency metric and other several common metrics, i.e., scale saliency, wavelet transform modulus maxima point density, and important index based metrics. Experiment results verified that the proposed saliency metric could achieve more robust performance than those common saliency metrics.Keywords: salient regions, color and texture features, image segmentation, saliency metric
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156783 Promoting Authenticity in Employer Brands to Address the Global-Local Problem in Complex Organisations: The Case of a Developing Country
Authors: Saud A. Taj
Abstract:
Employer branding is considered as a useful tool for addressing the global-local problem facing complex organisations that have operations scattered across the globe and face challenges of dealing with the local environment alongside. Despite being an established field of study within the Western developed world, there is little empirical evidence concerning the relevance of employer branding to global companies that operate in the under-developed economies. This paper fills this gap by gaining rich insight into the implementation of employer branding programs in a foreign multinational operating in Pakistan dealing with the global-local problem. The study is qualitative in nature and employs semistructured and focus group interviews with senior/middle managers and local frontline employees to deeply examine the phenomenon in case organisation. Findings suggest that authenticity is required in employer brands to enable them to respond to the local needs thereby leading to the resolution of the global-local problem. However, the role of signaling theory is key to the development of authentic employer brands as it stresses on the need to establish an efficient and effective signaling environment where in signals travel in both directions (from signal designers to receivers and backwards) and facilitate firms with the global-local problem. The paper also identifies future avenues of research for the employer branding field.
Keywords: Authenticity, Counter-signals, Employer Branding, Global-Local Problem, Signaling Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180682 Space Vector Pulse Width Modulation Technique Based Design and Simulation of a Three-Phase Voltage Source Converter Systems
Authors: Farhan Beg
Abstract:
A Space Vector based Pulse Width Modulation control technique for the three-phase PWM converter is proposed in this paper. The proposed control scheme is based on a synchronous reference frame model. High performance and efficiency is obtained with regards to the DC bus voltage and the power factor considerations of the PWM rectifier thus leading to low losses. MATLAB/SIMULINK are used as a platform for the simulations and a SIMULINK model is presented in the paper. The results show that the proposed model demonstrates better performance and properties compared to the traditional SPWM method and the method improves the dynamic performance of the closed loop drastically. For the Space Vector based Pulse Width Modulation, Sine signal is the reference waveform and triangle waveform is the carrier waveform. When the value sine signal is large than triangle signal, the pulse will start produce to high. And then when the triangular signals higher than sine signal, the pulse will come to low. SPWM output will changed by changing the value of the modulation index and frequency used in this system to produce more pulse width. The more pulse width produced, the output voltage will have lower harmonics contents and the resolution increase.
Keywords: Power Factor, SVPWM, PWM rectifier, SPWM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 402381 Comparison between Higher-Order SVD and Third-order Orthogonal Tensor Product Expansion
Authors: Chiharu Okuma, Jun Murakami, Naoki Yamamoto
Abstract:
In digital signal processing it is important to approximate multi-dimensional data by the method called rank reduction, in which we reduce the rank of multi-dimensional data from higher to lower. For 2-dimennsional data, singular value decomposition (SVD) is one of the most known rank reduction techniques. Additional, outer product expansion expanded from SVD was proposed and implemented for multi-dimensional data, which has been widely applied to image processing and pattern recognition. However, the multi-dimensional outer product expansion has behavior of great computation complex and has not orthogonally between the expansion terms. Therefore we have proposed an alterative method, Third-order Orthogonal Tensor Product Expansion short for 3-OTPE. 3-OTPE uses the power method instead of nonlinear optimization method for decreasing at computing time. At the same time the group of B. D. Lathauwer proposed Higher-Order SVD (HOSVD) that is also developed with SVD extensions for multi-dimensional data. 3-OTPE and HOSVD are similarly on the rank reduction of multi-dimensional data. Using these two methods we can obtain computation results respectively, some ones are the same while some ones are slight different. In this paper, we compare 3-OTPE to HOSVD in accuracy of calculation and computing time of resolution, and clarify the difference between these two methods.Keywords: Singular value decomposition (SVD), higher-order SVD (HOSVD), higher-order tensor, outer product expansion, power method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562