Search results for: Spatial dynamics.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1541

Search results for: Spatial dynamics.

1121 Fabrication and Electrical Characterization of Al/BaxSr1-xTiO3/Pt/SiO2/Si Configuration for FeFET Applications

Authors: Ala'eddin A. Saif , Z. A. Z. Jamal, Z. Sauli, P. Poopalan

Abstract:

The ferroelectric behavior of barium strontium titanate (BST) in thin film form has been investigated in order to study the possibility of using BST for ferroelectric gate-field effect transistor (FeFET) for memory devices application. BST thin films have been fabricated as Al/BST/Pt/SiO2/Si-gate configuration. The variation of the dielectric constant (ε) and tan δ with frequency have been studied to ensure the dielectric quality of the material. The results show that at low frequencies, ε increases as the Ba content increases, whereas at high frequencies, it shows the opposite variation, which is attributed to the dipole dynamics. tan δ shows low values with a peak at the mid-frequency range. The ferroelectric behavior of the Al/BST/Pt/SiO2/Si has been investigated using C-V characteristics. The results show that the strength of the ferroelectric hysteresis loop increases as the Ba content increases; this is attributed to the grain size and dipole dynamics effect.

Keywords: BST thin film, Electrical properties, Ferroelectrichysteresis, Ferroelectric FET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
1120 Numerical Comparison of Rushton Turbine and CD-6 Impeller in Non-Newtonian Fluid Stirred Tank

Authors: Akhilesh Khapre, Basudeb Munshi

Abstract:

A computational fluid dynamics simulation is done for non-Newtonian fluid in a baffled stirred tank. The CMC solution is taken as non-Newtonian shear thinning fluid for simulation. The Reynolds Average Navier Stocks equation with steady state multi reference frame approach is used to simulate flow in the stirred tank. The turbulent flow field is modelled using realizable k-ε turbulence model. The simulated velocity profiles of Rushton turbine is validated with literature data. Then, the simulated flow field of CD-6 impeller is compared with the Rushton turbine. The flow field generated by CD-6 impeller is less in magnitude than the Rushton turbine. The impeller global parameter, power number and flow number, and entropy generation due to viscous dissipation rate is also reported.

Keywords: Computational fluid dynamics, non-Newtonian, Rushton turbine, CD-6 impeller, power number, flow number, viscous dissipation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4148
1119 Spatial Data Science for Data Driven Urban Planning: The Youth Economic Discomfort Index for Rome

Authors: Iacopo Testi, Diego Pajarito, Nicoletta Roberto, Carmen Greco

Abstract:

Today, a consistent segment of the world’s population lives in urban areas, and this proportion will vastly increase in the next decades. Therefore, understanding the key trends in urbanization, likely to unfold over the coming years, is crucial to the implementation of sustainable urban strategies. In parallel, the daily amount of digital data produced will be expanding at an exponential rate during the following years. The analysis of various types of data sets and its derived applications have incredible potential across different crucial sectors such as healthcare, housing, transportation, energy, and education. Nevertheless, in city development, architects and urban planners appear to rely mostly on traditional and analogical techniques of data collection. This paper investigates the prospective of the data science field, appearing to be a formidable resource to assist city managers in identifying strategies to enhance the social, economic, and environmental sustainability of our urban areas. The collection of different new layers of information would definitely enhance planners' capabilities to comprehend more in-depth urban phenomena such as gentrification, land use definition, mobility, or critical infrastructural issues. Specifically, the research results correlate economic, commercial, demographic, and housing data with the purpose of defining the youth economic discomfort index. The statistical composite index provides insights regarding the economic disadvantage of citizens aged between 18 years and 29 years, and results clearly display that central urban zones and more disadvantaged than peripheral ones. The experimental set up selected the city of Rome as the testing ground of the whole investigation. The methodology aims at applying statistical and spatial analysis to construct a composite index supporting informed data-driven decisions for urban planning.

Keywords: Data science, spatial analysis, composite index, Rome, urban planning, youth economic discomfort index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900
1118 Source of Oseltamivir Resistance Due to R152K Mutation of Influenza B Virus Neuraminidase: Molecular Modeling

Authors: J. Tengrang, T. Rungrotmongkol, S. Hannongbua

Abstract:

Every 2-3 years the influenza B virus serves epidemics. Neuraminidase (NA) is an important target for influenza drug design. Although, oseltamivir, an oral neuraminidase drug, has been shown good inhibitory efficiency against wild-type of influenza B virus, the lower susceptibility to the R152K mutation has been reported. Better understanding of oseltamivir efficiency and resistance toward the influenza B NA wild-type and R152K mutant, respectively, could be useful for rational drug design. Here, two complex systems of wild-type and R152K NAs with oseltamivir bound were studied using molecular dynamics (MD) simulations. Based on 5-ns MD simulation, the loss of notable hydrogen bond and decrease in per-residue decomposition energy from the mutated residue K152 contributed to drug compared to those of R152 in wildtype were found to be a primary source of high-level of oseltamivir resistance due to the R152K mutation.

Keywords: Influenza B neuraminidase, Molecular dynamics simulation, Oseltamivir resistance, R152K mutant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
1117 Application of Geographic Information Systems(GIS) in the History of Cartography

Authors: Bangbo Hu

Abstract:

This paper discusses applications of a revolutionary information technology, Geographic Information Systems (GIS), in the field of the history of cartography by examples, including assessing accuracy of early maps, establishing a database of places and historical administrative units in history, integrating early maps in GIS or digital images, and analyzing social, political, and economic information related to production of early maps. GIS provides a new mean to evaluate the accuracy of early maps. Four basic steps using GIS for this type of study are discussed. In addition, several historical geographical information systems are introduced. These include China Historical Geographic Information Systems (CHGIS), the United States National Historical Geographic Information System (NHGIS), and the Great Britain Historical Geographical Information System. GIS also provides digital means to display and analyze the spatial information on the early maps or to layer them with modern spatial data. How GIS relational data structure may be used to analyze social, political, and economic information related to production of early maps is also discussed in this paper. Through discussion on these examples, this paper reveals value of GIS applications in this field.

Keywords: Cartography, GIS, history, maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3156
1116 Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students

Authors: Etsuo Morishita

Abstract:

In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows.

Keywords: Aerodynamics compressible flow, gas dynamics, hydraulics, shock wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949
1115 An Application of Extreme Value Theory as a Risk Measurement Approach in Frontier Markets

Authors: Dany Ng Cheong Vee, Preethee Nunkoo Gonpot, Noor-Ul-Hacq Sookia

Abstract:

In this paper, we consider the application of Extreme Value Theory as a risk measurement tool. The Value at Risk, for a set of indices, from six Stock Exchanges of Frontier markets is calculated using the Peaks over Threshold method and the performance of the model index-wise is evaluated using coverage tests and loss functions. Our results show that “fattailedness” alone of the data is not enough to justify the use of EVT as a VaR approach. The structure of the returns dynamics is also a determining factor. This approach works fine in markets which have had extremes occurring in the past thus making the model capable of coping with extremes coming up (Colombo, Tunisia and Zagreb Stock Exchanges). On the other hand, we find that indices with lower past than present volatility fail to adequately deal with future extremes (Mauritius and Kazakhstan). We also conclude that using EVT alone produces quite static VaR figures not reflecting the actual dynamics of the data.

Keywords: Extreme Value theory, Financial Crisis 2008, Frontier Markets, Value at Risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
1114 PhilSHORE: Development of a WebGIS-Based Marine Spatial Planning Tool for Tidal Current Energy Resource Assessment and Site Suitability Analysis

Authors: Ma. Rosario Concepcion O. Ang, Luis Caezar Ian K. Panganiban, Charmyne B. Mamador, Oliver Dan G. De Luna, Michael D. Bausas, Joselito P. Cruz

Abstract:

PhilSHORE is a multi-site, multi-device and multicriteria decision support tool designed to support the development of tidal current energy in the Philippines. Its platform is based on Geographic Information Systems (GIS) which allows for the collection, storage, processing, analyses and display of geospatial data. Combining GIS tools with open source web development applications, PhilSHORE becomes a webGIS-based marine spatial planning tool. To date, PhilSHORE displays output maps and graphs of power and energy density, site suitability and site-device analysis. It enables stakeholders and the public easy access to the results of tidal current energy resource assessments and site suitability analyses. Results of the initial development show that PhilSHORE is a promising decision support tool for ORE project developments.

Keywords: GIS, Site Suitability Analysis, Tidal Current Energy Resource Assessment, WebGIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2715
1113 Study on a Nested Cartesian Grid Method

Authors: Yih-Ferng Peng

Abstract:

In this paper, the local grid refinement is focused by using a nested grid technique. The Cartesian grid numerical method is developed for simulating unsteady, viscous, incompressible flows with complex immersed boundaries. A finite volume method is used in conjunction with a two-step fractional-step procedure. The key aspects that need to be considered in developing such a nested grid solver are imposition of interface conditions on the inter-block and accurate discretization of the governing equation in cells that are with the inter-block as a control surface. A new interpolation procedure is presented which allows systematic development of a spatial discretization scheme that preserves the spatial accuracy of the underlying solver. The present nested grid method has been tested by two numerical examples to examine its performance in the two dimensional problems. The numerical examples include flow past a circular cylinder symmetrically installed in a Channel and flow past two circular cylinders with different diameters. From the numerical experiments, the ability of the solver to simulate flows with complicated immersed boundaries is demonstrated and the nested grid approach can efficiently speed up the numerical solutions.

Keywords: local grid refinement, Cartesian grid, nested grid, fractional-step method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
1112 Computational Fluid Dynamics Expert System using Artificial Neural Networks

Authors: Gonzalo Rubio, Eusebio Valero, Sven Lanzan

Abstract:

The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.

Keywords: Artificial Neural Network, Computational Fluid Dynamics, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2957
1111 Numerical Study of Vortex Formation inside a Stirred Tank

Authors: Divya Rajavathsavai, Akhilesh Khapre, Basudeb Munshi

Abstract:

The computational fluid dynamics (CFD) study of stirred tank with the air-water interface are carried out in the presence of different types of the impeller and with or without baffles. A multiple reference frame (MRF) approach with the volume of fluid (VOF) method is used to capture the air-water interface. The RANS (Reynolds Averaged Navier-Stokes) equations with k-ε turbulence model are solved to predict the flow behavior of water and air phase which are treated as a different phases. The predicted results have shown that the VOF method is able to capture the interface in the unbaffled tank. While, the VOF method is showing an unfeasible results in the baffled tank with high rotational impeller speed. For continuous stirred tank, the air-water interface is disturbed by the inflow and the level of water is also increased with time.

Keywords: Computational Fluid Dynamics, stirred tank, airwater interface, multiple reference frame, volume of fluid, Reynolds Averaged Navier-Stokes equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4368
1110 Molecular Dynamics Study on Laninamivir Inhibiting Neuraminidases of H5N1 and pH1N1 Influenza a Viruses

Authors: A. Meeprasert, W. Khuntawee, S. Hannongbua, T. Rungrotmongkol

Abstract:

Viral influenza A subtypes H5N1 and pandemic H1N1 (pH1N1) have worldwide emerged and transmitted. The most common anti-influenza drug for treatment of both seasonal and pandemic influenza viruses is oseltamivir that nowadays becomes resistance to influenza neuraminidase. The novel long-acting drug, laninamivir, was discovered for treatment of the patients infected with influenza B and influenza A viruses. In the present study, laninamivir complexed with wild-type strain of both H5N1 and pH1N1 viruses were comparatively determined the structures and drug-target interactions by means of molecular dynamics (MD) simulations. The results show that the hydrogen bonding interactions formed between laninamivir and its binding residues are likely similar for the two systems. Additionally, the presence of intermolecular interactions from laninamivir to the residues in the binding pocket is established through their side chains in accordance with hydrogen bond interactions.

Keywords: Laninamivir, neuraminidase, H5N1, pandemic H1N1, wild-type, MD simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
1109 Lunar Rover Virtual Simulation System with Autonomous Navigation

Authors: Bao Jinsong, Hu Xiaofeng, Wang Wei, Yu Dili, Jin Ye

Abstract:

The paper researched and presented a virtual simulation system based on a full-digital lunar terrain, integrated with kinematics and dynamics module as well as autonomous navigation simulation module. The system simulation models are established. Enabling technologies such as digital lunar surface module, kinematics and dynamics simulation, Autonomous navigation are investigated. A prototype system for lunar rover locomotion simulation is developed based on these technologies. Autonomous navigation is a key echnology in lunar rover system, but rarely involved in virtual simulation system. An autonomous navigation simulation module have been integrated in this prototype system, which was proved by the simulation results that the synthetic simulation and visualizing analysis system are established in the system, and the system can provide efficient support for research on the autonomous navigation of lunar rover.

Keywords: Lunar rover, virtual simulation, autonomous navigation, full-digital lunar terrain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
1108 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics

Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer

Abstract:

Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.

Keywords: Hamilton's principle of least action, particle based method, hyper-elasticity, analysis of stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
1107 On Discretization of Second-order Derivatives in Smoothed Particle Hydrodynamics

Authors: R. Fatehi, M.A. Fayazbakhsh, M.T. Manzari

Abstract:

Discretization of spatial derivatives is an important issue in meshfree methods especially when the derivative terms contain non-linear coefficients. In this paper, various methods used for discretization of second-order spatial derivatives are investigated in the context of Smoothed Particle Hydrodynamics. Three popular forms (i.e. "double summation", "second-order kernel derivation", and "difference scheme") are studied using one-dimensional unsteady heat conduction equation. To assess these schemes, transient response to a step function initial condition is considered. Due to parabolic nature of the heat equation, one can expect smooth and monotone solutions. It is shown, however in this paper, that regardless of the type of kernel function used and the size of smoothing radius, the double summation discretization form leads to non-physical oscillations which persist in the solution. Also, results show that when a second-order kernel derivative is used, a high-order kernel function shall be employed in such a way that the distance of inflection point from origin in the kernel function be less than the nearest particle distance. Otherwise, solutions may exhibit oscillations near discontinuities unlike the "difference scheme" which unconditionally produces monotone results.

Keywords: Heat conduction, Meshfree methods, Smoothed ParticleHydrodynamics (SPH), Second-order derivatives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3088
1106 Spreading Dynamics of a Viral Infection in a Complex Network

Authors: Khemanand Moheeput, Smita S. D. Goorah, Satish K. Ramchurn

Abstract:

We report a computational study of the spreading dynamics of a viral infection in a complex (scale-free) network. The final epidemic size distribution (FESD) was found to be unimodal or bimodal depending on the value of the basic reproductive number R0 . The FESDs occurred on time-scales long enough for intermediate-time epidemic size distributions (IESDs) to be important for control measures. The usefulness of R0 for deciding on the timeliness and intensity of control measures was found to be limited by the multimodal nature of the IESDs and by its inability to inform on the speed at which the infection spreads through the population. A reduction of the transmission probability at the hubs of the scale-free network decreased the occurrence of the larger-sized epidemic events of the multimodal distributions. For effective epidemic control, an early reduction in transmission at the index cell and its neighbors was essential.

Keywords: Basic reproductive number, epidemic control, scalefree network, viral infection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
1105 Blood Cell Dynamics in a Simple Shear Flow using an Implicit Fluid-Structure Interaction Method Based on the ALE Approach

Authors: Choeng-Ryul Choi, Chang-Nyung Kim, Tae-Hyub Hong

Abstract:

A numerical method is developed for simulating the motion of particles with arbitrary shapes in an effectively infinite or bounded viscous flow. The particle translational and angular motions are numerically investigated using a fluid-structure interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (smoothing and remeshing) in FLUENT ( ANSYS Inc., USA). Also, the effects of arbitrary shapes on the dynamics are studied using the FSI method which could be applied to the motions and deformations of a single blood cell and multiple blood cells, and the primary thrombogenesis caused by platelet aggregation. It is expected that, combined with a sophisticated large-scale computational technique, the simulation method will be useful for understanding the overall properties of blood flow from blood cellular level (microscopic) to the resulting rheological properties of blood as a mass (macroscopic).

Keywords: Blood Flow, Fluid-Structure Interaction (FSI), Micro-Channels, Arbitrary Shapes, Red Blood Cells (RBCs)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
1104 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation

Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon

Abstract:

This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.

Keywords: Human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
1103 Agent-based Simulation for Blood Glucose Control in Diabetic Patients

Authors: Sh. Yasini, M. B. Naghibi-Sistani, A. Karimpour

Abstract:

This paper employs a new approach to regulate the blood glucose level of type I diabetic patient under an intensive insulin treatment. The closed-loop control scheme incorporates expert knowledge about treatment by using reinforcement learning theory to maintain the normoglycemic average of 80 mg/dl and the normal condition for free plasma insulin concentration in severe initial state. The insulin delivery rate is obtained off-line by using Qlearning algorithm, without requiring an explicit model of the environment dynamics. The implementation of the insulin delivery rate, therefore, requires simple function evaluation and minimal online computations. Controller performance is assessed in terms of its ability to reject the effect of meal disturbance and to overcome the variability in the glucose-insulin dynamics from patient to patient. Computer simulations are used to evaluate the effectiveness of the proposed technique and to show its superiority in controlling hyperglycemia over other existing algorithms

Keywords: Insulin Delivery rate, Q-learning algorithm, Reinforcement learning, Type I diabetes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
1102 Accessibility and Visibility through Space Syntax Analysis of the Linga Raj Temple in Odisha, India

Authors: S. Pramanik

Abstract:

Since the early ages, the Hindu temples have been interpreted through various Vedic philosophies. These temples are visited by pilgrims which demonstrate the rituals and religious belief of communities, reflecting a variety of actions and behaviors. Darsana a direct seeing, is a part of the pilgrimage activity. During the process of Darsana, a devotee is prepared for entry in the temple to realize the cognizing Truth culminating in visualizing the idol of God, placed at the Garbhagriha (sanctum sanctorum). For this, the pilgrim must pass through a sequential arrangement of spaces. During the process of progress, the pilgrims visualize the spaces differently from various points of views. The viewpoints create a variety of spatial patterns in the minds of pilgrims coherent to the Hindu philosophies. The space organization and its order are perceived by various techniques of spatial analysis. A temple, as examples of Kalinga stylistic variations, has been chosen for the study. This paper intends to demonstrate some visual patterns generated during the process of Darsana (visibility) and its accessibility by Point Isovist Studies and Visibility Graph Analysis from the entrance (Simha Dwara) to The Sanctum sanctorum (Garbhagriha).

Keywords: Hindu Temple Architecture, Point Isovist, space syntax analysis, visibility graph analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
1101 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation

Authors: Tomoaki Hashimoto

Abstract:

Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.

Keywords: Optimal control, stochastic systems, quantum systems, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
1100 Map UI Design of IoT Application Based on Passenger Evacuation Behaviors in Underground Station

Authors: Meng-Cong Zheng

Abstract:

When the public space is in an emergency, how to quickly establish spatial cognition and emergency shelter in the closed underground space is the urgent task. This study takes Taipei Station as the research base and aims to apply the use of Internet of things (IoT) application for underground evacuation mobility design. The first experiment identified passengers' evacuation behaviors and spatial cognition in underground spaces by wayfinding tasks and thinking aloud, then defined the design conditions of User Interface (UI) and proposed the UI design.  The second experiment evaluated the UI design based on passengers' evacuation behaviors by wayfinding tasks and think aloud again as same as the first experiment. The first experiment found that the design conditions that the subjects were most concerned about were "map" and hoping to learn the relative position of themselves with other landmarks by the map and watch the overall route. "Position" needs to be accurately labeled to determine the location in underground space. Each step of the escape instructions should be presented clearly in "navigation bar." The "message bar" should be informed of the next or final target exit. In the second experiment with the UI design, we found that the "spatial map" distinguishing between walking and non-walking areas with shades of color is useful. The addition of 2.5D maps of the UI design increased the user's perception of space. Amending the color of the corner diagram in the "escape route" also reduces the confusion between the symbol and other diagrams. The larger volume of toilets and elevators can be a judgment of users' relative location in "Hardware facilities." Fire extinguisher icon should be highlighted. "Fire point tips" of the UI design indicated fire with a graphical fireball can convey precise information to the escaped person. "Fire point tips" of the UI design indicated fire with a graphical fireball can convey precise information to the escaped person. However, "Compass and return to present location" are less used in underground space.

Keywords: Evacuation behaviors, IoT application, map UI design, underground station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 741
1099 Numerical Study of a Butterfly Valve for Vibration Analysis and Reduction

Authors: Malik I. Al-Amayreh, Mohammad I. Kilani, Ahmed S. Al-Salaymeh

Abstract:

This work presents a Computational Fluid Dynamics (CFD) simulation of a butterfly valve used to control the flow of combustible gas mixture in an industrial process setting.The work uses CFD simulation to analyze the flow characteristics in the vicinity of the valve, including the pressure distributions and Frequency spectrum of the pressure pulsations downstream the valves and the vortex shedding allow predicting the torque fluctuations acting on the valve shaft and the possibility of generating mechanical vibration and resonance.These fluctuations are due to aerodynamic torque resulting from fluid turbulence and vortex shedding in the valve vicinity. The valve analyzed is located in a pipeline between two opposing 90o elbows, which exposes the valve and the surrounding structure to the turbulence generated upstream and downstream the elbows at either end of the pipe.CFD simulations show that the best location for the valve from a vibration point of view is in the middle of the pipe joining the elbows.

Keywords: Butterfly Valve Vibration Analysis, Computational Fluid Dynamics, Fluid Flow Circuit Design, Fluid Mechanics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3818
1098 Urban Land Cover Change of Olomouc City Using LANDSAT Images

Authors: Miloš Marjanović, Jaroslav Burian, Ja kub Miřijovský, Jan Harbula

Abstract:

This paper regards the phenomena of intensive suburbanization and urbanization in Olomouc city and in Olomouc region in general for the period of 1986–2009. A Remote Sensing approach that involves tracking of changes in Land Cover units is proposed to quantify the urbanization state and trends in temporal and spatial aspects. It actually consisted of two approaches, Experiment 1 and Experiment 2 which implied two different image classification solutions in order to provide Land Cover maps for each 1986–2009 time split available in the Landsat image set. Experiment 1 dealt with the unsupervised classification, while Experiment 2 involved semi- supervised classification, using a combination of object-based and pixel-based classifiers. The resulting Land Cover maps were subsequently quantified for the proportion of urban area unit and its trend through time, and also for the urban area unit stability, yielding the relation of spatial and temporal development of the urban area unit. Some outcomes seem promising but there is indisputably room for improvements of source data and also processing and filtering.

Keywords: Change detection, image classification, land cover, Landsat images, Olomouc city, urbanization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
1097 Heteromolecular Structure Formation in Aqueous Solutions of Ethanol, Tetrahydrofuran and Dimethylformamide

Authors: Sh. Gofurov, O. Ismailova, U. Makhmanov, A. Kokhkharov

Abstract:

The refractometric method has been used to determine optical properties of concentration features of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide at the room temperature. Changes in dielectric permittivity of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide in a wide range of concentrations (0÷1.0 molar fraction) have been studied using molecular dynamics method. The curves depending on the concentration of experimental data on excess refractive indices and excess dielectric permittivity were compared. It has been shown that stable heteromolecular complexes in binary solutions are formed in the concentration range of 0.3÷0.4 mole fractions. The real and complex part of dielectric permittivity was obtained from dipole-dipole autocorrelation functions of molecules. At the concentrations of C = 0.3 / 0.4 m.f. the heteromolecular structures with hydrogen bonds are formed. This is confirmed by the extremum values of excessive dielectric permittivity and excessive refractive index of aqueous solutions.

Keywords: Refractometric method, dielectric constant, molecular dynamics, aqueous solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002
1096 Dynamic Interrelationship among the Stock Markets of India, Pakistan and United States

Authors: A. Iqbal, N. Khalid, S. Rafiq

Abstract:

The interrelationship between international stock markets has been a key study area among the financial market researchers for international portfolio management and risk measurement. The characteristics of security returns and their dynamics play a vital role in the financial market theory. This study is an attempt to find out the dynamic linkages among the equity market of USA and emerging markets of Pakistan and India using daily data covering the period of January 2003–December 2009. The study utilizes Johansen (Journal of Economic Dynamics and Control, 12, 1988) and Johansen and Juselius (Oxford Bulletin of Economics and Statistics, 52, 1990) cointegration procedure for long run relationship and Granger-causality tests based on Toda and Yamamoto (Journal of Econometrics, 66, 1995) methodology. No cointegration was found among stock markets of USA, Pakistan and India, while Granger-causality test showed the evidence of unidirectional causality running from New York stock exchange to Bombay and Karachi stock exchanges.

Keywords: Causality, Cointegration, India, Pakistan, Stock Markets, US.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
1095 Studying Frame-Resistant Steel Structures under Near Field Ground Motion

Authors: S. A. Hashemi, A. Khoshraftar

Abstract:

This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectlyplastic behavior was performed using RAM PERFORM-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of ground motion may increase the axial load significantly in the interior columns and, consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.

Keywords: Inelastic behavior, non-linear dynamic analysis, steel structure, vertical component.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
1094 CFD Simulations for Studying Flow Behaviors in Dipping Tank in Continuous Latex Gloves Production Lines

Authors: W. Koranuntachai, T. Chantrasmi, U. Nontakaew

Abstract:

Medical latex gloves are made from the latex compound in production lines. Latex dipping is considered one of the most important processes that directly affect the final product quality. In a continuous production line, a chain conveyor carries the formers through the process and partially submerges them into an open channel flow in a latex dipping tank. In general, the conveyor speed is determined by the desired production capacity, and the latex-dipping tank can then be designed accordingly. It is important to understand the flow behavior in the dipping tank in order to achieve high quality in the process. In this work, Computational Fluid Dynamics (CFD) was used to simulate the flow past an array of formers in a simplified latex dipping process. The computational results showed both the flow structure and the vortex generation between two formers. The maximum shear stress over the surface of the formers was used as the quality metric of the latex-dipping process when adjusting operation parameters.

Keywords: medical latex gloves, latex dipping, dipping tank, computational fluid dynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540
1093 An Overview of Project Management Application in Computational Fluid Dynamics

Authors: Sajith Sajeev

Abstract:

The application of Computational Fluid Dynamics (CFD) is widespread in engineering and industry, including aerospace, automotive, and energy. CFD simulations necessitate the use of intricate mathematical models and a substantial amount of computational power to accurately describe the behavior of fluids. The implementation of CFD projects can be difficult, and a well-structured approach to project management is required to assure the timely and cost-effective delivery of high-quality results. This paper's objective is to provide an overview of project management in CFD, including its problems, methodologies, and best practices. The study opens with a discussion of the difficulties connected with CFD project management, such as the complexity of the mathematical models, the need for extensive computational resources, and the difficulties associated with validating and verifying the results. In addition, the study examines the project management methodologies typically employed in CFD, such as the Traditional/Waterfall model, Agile and Scrum. Comparisons are made between the advantages and disadvantages of each technique, and suggestions are made for their effective implementation in CFD projects. The study concludes with a discussion of the best practices for project management in CFD, including the utilization of a well-defined project scope, a clear project plan, and effective teamwork. In addition, it highlights the significance of continuous process improvement and the utilization of metrics to monitor progress and discover improvement opportunities. This article is a resource for project managers, researchers, and practitioners in the field of CFD. It can aid in enhancing project outcomes, reducing risks, and enhancing the productivity of CFD projects. This paper provides a complete overview of project management in CFD and is a great resource for individuals who wish to implement efficient project management methods in CFD projects.

Keywords: Project management, Computational Fluid Dynamics, Traditional/Waterfall methodology, agile methodology, scrum methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
1092 Molecular Dynamics of Fatty Acid Interacting with Carbon Nanotube as Selective Device

Authors: David L. Azevedo, Jordan Del Nero

Abstract:

In this paper we study a system composed by carbon nanotube (CNT) and bundle of carbon nanotube (BuCNT) interacting with a specific fatty acid as molecular probe. Full system is represented by open nanotube (or nanotubes) and the linoleic acid (LA) relaxing due the interaction with CNT and BuCNT. The LA has in his form an asymmetric shape with COOH termination provoking a close BuCNT interaction mainly by van der Waals force field. The simulations were performed by classical molecular dynamics with standard parameterizations. Our results show that these BuCNT and CNT are dynamically stable and it shows a preferential interaction position with LA resulting in three features: (i) when the LA is interacting with CNT and BuCNT (including both termination, CH2 or COOH), the LA is repelled; (ii) when the LA terminated with CH2 is closer to open extremity of BuCNT, the LA is also repelled by the interaction between them; and (iii) when the LA terminated with COOH is closer to open extremity of BuCNT, the LA is encapsulated by the BuCNT. These simulations are part of a more extensive work on searching efficient selective molecular devices and could be useful to reach this goal.

Keywords: Carbon Nanotube, Linoleic Acid, MolecularDynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681