Search results for: Black carbon
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1014

Search results for: Black carbon

594 The Effect of Feedstock Type and Slow Pyrolysis Temperature on Biochar Yield from Coconut Wastes

Authors: Adilah Shariff, Nur Syairah Mohamad Aziz, Norsyahidah Md Saleh, Nur Syuhada Izzati Ruzali

Abstract:

The first objective of this study is to investigate the suitability of coconut frond (CF) and coconut husk (CH) as feedstocks using a laboratory-scale slow pyrolysis experimental setup. The second objective is to investigate the effect of pyrolysis temperature on the biochar yield. The properties of CF and CH feedstocks were compared. The properties of the CF and CH feedstocks were investigated using proximate and elemental analysis, lignocellulosic determination, and also thermogravimetric analysis (TGA). The CF and CH feedstocks were pyrolysed at 300, 400, 500, 600 and 700 °C for 2 hours at 10 °C/min heating rate. The proximate analysis showed that CF feedstock has 89.96 mf wt% volatile matter, 4.67 mf wt% ash content and 5.37 mf wt% fixed carbon. The lignocelluloses analysis showed that CF feedstock contained 21.46% lignin, 39.05% cellulose and 22.49% hemicelluloses. The CH feedstock contained 84.13 mf wt% volatile matter, 0.33 mf wt% ash content, 15.54 mf wt% fixed carbon, 28.22% lignin, 33.61% cellulose and 22.03% hemicelluloses. Carbon and oxygen are the major component of the CF and CH feedstock compositions. Both of CF and CH feedstocks contained very low percentage of sulfur, 0.77% and 0.33%, respectively. TGA analysis indicated that coconut wastes are easily degraded. It may be due to their high volatile content. Between the temperature ranges of 300 and 800 °C, the TGA curves showed that the weight percentage of CF feedstock is lower than CH feedstock by 0.62%-5.88%. From the D TGA curves, most of the weight loss occurred between 210 and 400 °C for both feedstocks. The maximum weight loss for both CF and CH are 0.0074 wt%/min and 0.0061 wt%/min, respectively, which occurred at 324.5 °C. The yield percentage of both CF and CH biochars decreased significantly as the pyrolysis temperature was increased. For CF biochar, the yield decreased from 49.40 wt% to 28.12 wt% as the temperature increased from 300 to 700 °C. The yield for CH biochars also decreased from 52.18 wt% to 28.72 wt%. The findings of this study indicated that both CF and CH are suitable feedstock for slow pyrolysis of biochar.

Keywords: Biochar, biomass, coconut wastes, slow pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
593 Highly-Efficient Photoreaction Using Microfluidic Device

Authors: Shigenori Togashi, Yukako Asano

Abstract:

We developed an effective microfluidic device for photoreactions with low reflectance and good heat conductance. The performance of this microfluidic device was tested by carrying out a photoreactive synthesis of benzopinacol and acetone from benzophenone and 2-propanol. The yield reached 36% with an irradiation time of 469.2 s and was improved by more than 30% when compared to the values obtained by the batch method. Therefore, the microfluidic device was found to be effective for improving the yields of photoreactions.

Keywords: Microfluidic device, Photoreaction, Benzophenone, Black Aluminum Oxide, Detection, Yield Improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
592 Scope of BOD, Nitrogen and Phosphorous Removal through Plant-Soil Interaction in the Wetland

Authors: Debabrata Mazumder

Abstract:

Constructed and natural wetlands are being used extensively to treat different types of wastewater including the domestic one. Considerable removal efficiency has been achieved for a variety of pollutants like BOD, nitrogen and phosphorous in the wetlands. Wetland treatment appears to be the best choice for treatment or pre-treatment of wastewater because of the low maintenance cost and simplicity of operation. Wetlands are the natural exporters of organic carbon on account of decomposition of organic matter. The emergent plants like reeds, bulrushes and cattails are commonly used in constructed wetland for the treatment process providing surface for bacterial growth, filtration of solids, nutrient uptake and oxygenation to promote nitrification as well as denitrification. The present paper explored different scopes of organic matter (BOD), nitrogen and phosphorous removal from wastewater through wetlands. Emphasis is given to look into the soil chemistry for tracing the behavior of carbon, nitrogen and phosphorus in the wetland. Due consideration is also made to see the viability for upgrading the BOD, nitrogen and phosphorus removal efficiency through different classical modifications of wetland.

Keywords: BOD removal, modification, nitrogen removal, phosphorous removal, wetland.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2732
591 Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite

Authors: Masato Nishi, Tetsushi Kaburagi, Masashi Kurose, Tei Hirashima, Tetsusei Kurasiki

Abstract:

The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.

Keywords: Carbon fiber reinforced thermoplastic (CFRTP), Finite element analysis (FEA), Pre-impregnated textile composite, Non-isothermal forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3468
590 Separation Characteristics of Dissolved Gases from Water Concurrently Variable Mixed with Exhalations for the Hollow Fiber Membrane

Authors: Pil Woo Heo

Abstract:

Water contains dissolved oxygen that a fish needs to breathe. It is important to increase the amounts of separation of dissolved oxygen from water for diverse applications using the separation system. In this paper, a separation system of dissolved gases from water concurrently variable mixed with the exhalations using a compressor is proposed. This system takes use of exhalations to increase the amounts of separation of dissolved oxygen from water. A compressor with variable off-time and on-time is used to control the exhalations mixed with inlet water. Exhalations contain some portion of carbon dioxide, oxygen, and nitrogen. Separation of dissolved gases containing dissolved oxygen is enhanced by using exhalations. The amounts of separation and the compositions of carbon dioxide and oxygen are measured. Higher amounts of separation can make the size of the separation device smaller, and then, application areas are diversified.

Keywords: Concurrently, variable mixed, exhalations, separation, hollow fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1109
589 Forgeability Study of Medium Carbon Micro-Alloyed Forging Steel

Authors: M. I. Equbal, R.K. Ohdar, B. Singh, P. Talukdar

Abstract:

Micro-alloyed steel components are used in automotive industry for the necessity to make the manufacturing process cycles shorter when compared to conventional steel by eliminating heat treatment cycles, so an important saving of costs and energy can be reached by reducing the number of operations. Microalloying elements like vanadium, niobium or titanium have been added to medium carbon steels to achieve grain refinement with or without precipitation strengthening along with uniform microstructure throughout the matrix. Present study reports the applicability of medium carbon vanadium micro-alloyed steel in hot forging. Forgeability has been determined with respect to different cooling rates, after forging in a hydraulic press at 50% diameter reduction in temperature range of 900-11000C. Final microstructures, hardness, tensile strength, and impact strength have been evaluated. The friction coefficients of different lubricating conditions, viz., graphite in hydraulic oil, graphite in furnace oil, DF 150 (Graphite, Water-Based) die lubricant and dry or without any lubrication were obtained from the ring compression test for the above micro-alloyed steel. Results of ring compression tests indicate that graphite in hydraulic oil lubricant is preferred for free forging and dry lubricant is preferred for die forging operation. Exceptionally good forgeability and high resistance to fracture, especially for faster cooling rate has been observed for fine equiaxed ferrite-pearlite grains, some amount of bainite and fine precipitates of vanadium carbides and carbonitrides. The results indicated that the cooling rate has a remarkable effect on the microstructure and mechanical properties at room temperature.

Keywords: Cooling rate, Hot forging, Micro-alloyed, Ring compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3664
588 Modelling and Control of Milk Fermentation Process in Biochemical Reactor

Authors: Jožef Ritonja

Abstract:

The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.

Keywords: Bioprocess engineering, biochemical reactor, fermentation process, modeling, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
587 Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House

Authors: Suman Chaudhary, Rinku Dhanker, Tanvi, Sneh Goyal

Abstract:

Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done.

Keywords: Sulphur oxidizing bacteria, isolation, optimization, characterization, sulphate production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181
586 Methane versus Carbon Dioxide: Mitigation Prospects

Authors: Alexander J. Severinsky, Allen L. Sessoms

Abstract:

Atmospheric carbon dioxide (CO2) has dominated the discussion around the causes of climate change. This is a reflection of a 100-year time horizon for all greenhouse gases that became a norm.  The 100-year time horizon is much too long – and yet, almost all mitigation efforts, including those set in the near-term frame of within 30 years, are still geared toward it. In this paper, we show that for a 30-year time horizon, methane (CH4) is the greenhouse gas whose radiative forcing exceeds that of CO2. In our analysis, we use the radiative forcing of greenhouse gases in the atmosphere, because they directly affect the rise in temperature on Earth. We found that in 2019, the radiative forcing (RF) of methane was ~2.5 W/m2 and that of carbon dioxide was ~2.1 W/m2. Under a business-as-usual (BAU) scenario until 2050, such forcing would be ~2.8 W/m2 and ~3.1 W/m2 respectively. There is a substantial spread in the data for anthropogenic and natural methane (CH4) emissions, along with natural gas, (which is primarily CH4), leakages from industrial production to consumption. For this reason, we estimate the minimum and maximum effects of a reduction of these leakages, and assume an effective immediate reduction by 80%. Such action may serve to reduce the annual radiative forcing of all CH4 emissions by ~15% to ~30%. This translates into a reduction of RF by 2050 from ~2.8 W/m2 to ~2.5 W/m2 in the case of the minimum effect that can be expected, and to ~2.15 W/m2 in the case of the maximum effort to reduce methane leakages. Under the BAU, we find that the RF of CO2 will increase from ~2.1 W/m2 now to ~3.1 W/m2 by 2050. We assume a linear reduction of 50% in anthropogenic emission over the course of the next 30 years, which would reduce the radiative forcing of CO2 from ~3.1 W/m2 to ~2.9 W/m2. In the case of "net zero," the other 50% of only anthropogenic CO2 emissions reduction would be limited to being either from sources of emissions or directly from the atmosphere. In this instance, the total reduction would be from ~3.1 W/m2 to ~2.7 W/m2, or ~0.4 W/m2. To achieve the same radiative forcing as in the scenario of maximum reduction of methane leakages of ~2.15 W/m2, an additional reduction of radiative forcing of CO2 would be approximately 2.7 -2.15 = 0.55 W/m2. In total, one would need to remove ~660 GT of CO2 from the atmosphere in order to match the maximum reduction of current methane leakages, and ~270 GT of CO2 from emitting sources, to reach "negative emissions". This amounts to over 900 GT of CO2.

Keywords: Methane Leakages, Methane Radiative Forcing, Methane Mitigation, Methane Net Zero.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645
585 Theoretical Study on Torsional Strengthening of Multi-cell RC Box Girders

Authors: Abeer A. M., Allawi A. A., Chai H. K.

Abstract:

A new analytical method to predict the torsional capacity and behavior of R.C multi-cell box girders strengthened with carbon fiber reinforced polymer (CFRP) sheets is presented. Modification was done on the Softened Truss Model (STM) in the proposed method; the concrete torsional problem is solved by combining the equilibrium conditions, compatibility conditions and constitutive laws of materials by taking into account the confinement of concrete with CFRP sheets. A specific algorithm is developed to predict the torsional behavior of reinforced concrete multi-cell box girders with or without strengthening by CFRP sheets. Applications of the developed method as an assessment tool to strengthened multicell box girders with CFRP and first analytical example that demonstrate the contribution of the CFRP materials on the torsional response is also included.

Keywords: Carbon fiber reinforced polymer, Concrete torsion, Modified Softened Truss Model, Multi-Cell box girder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4362
584 Non-Destructive Testing of Carbon Fiber Reinforced Plastic by Infrared Thermography Methods

Authors: W. Swiderski

Abstract:

Composite materials are one answer to the growing demand for materials with better parameters of construction and exploitation. Composite materials also permit conscious shaping of desirable properties to increase the extent of reach in the case of metals, ceramics or polymers. In recent years, composite materials have been used widely in aerospace, energy, transportation, medicine, etc. Fiber-reinforced composites including carbon fiber, glass fiber and aramid fiber have become a major structural material. The typical defect during manufacture and operation is delamination damage of layered composites. When delamination damage of the composites spreads, it may lead to a composite fracture. One of the many methods used in non-destructive testing of composites is active infrared thermography. In active thermography, it is necessary to deliver energy to the examined sample in order to obtain significant temperature differences indicating the presence of subsurface anomalies. To detect possible defects in composite materials, different methods of thermal stimulation can be applied to the tested material, these include heating lamps, lasers, eddy currents, microwaves or ultrasounds. The use of a suitable source of thermal stimulation on the test material can have a decisive influence on the detection or failure to detect defects. Samples of multilayer structure carbon composites were prepared with deliberately introduced defects for comparative purposes. Very thin defects of different sizes and shapes made of Teflon or copper having a thickness of 0.1 mm were screened. Non-destructive testing was carried out using the following sources of thermal stimulation, heating lamp, flash lamp, ultrasound and eddy currents. The results are reported in the paper.

Keywords: Non-destructive testing, IR thermography, composite material, thermal stimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
583 Impact of Fischer-Tropsch Wax on Ethylene Vinyl Acetate/Waste Crumb Rubber Modified Bitumen: An Energy-Sustainability Nexus

Authors: Keith D. Nare, Mohau J. Phiri, James Carson, Chris D. Woolard, Shanganyane P. Hlangothi

Abstract:

In an energy-intensive world, minimizing energy consumption is paramount to cost saving and reducing the carbon footprint. Improving mixture procedures utilizing warm mix additive Fischer-Tropsch (FT) wax in ethylene vinyl acetate (EVA) and modified bitumen highlights a greener and sustainable approach to modified bitumen. In this study, the impact of FT wax on optimized EVA/waste crumb rubber modified bitumen is assayed with a maximum loading of 2.5%. The rationale of the FT wax loading is to maintain the original maximum loading of EVA in the optimized mixture. The phase change abilities of FT wax enable EVA co-crystallization with the support of the elastomeric backbone of crumb rubber. Less than 1% loading of FT wax worked in the EVA/crumb rubber modified bitumen energy-sustainability nexus. Response surface methodology approach to the mixture design is implemented amongst the different loadings of FT wax, EVA for a consistent amount of crumb rubber and bitumen. Rheological parameters (complex shear modulus, phase angle and rutting parameter) were the factors used as performance indicators of the different optimized mixtures. The low temperature chemistry of the optimized mixtures is analyzed using elementary beam theory and the elastic-viscoelastic correspondence principle. Master curves and black space diagrams are developed and used to predict age-induced cracking of the different long term aged mixtures. Modified binder rheology reveals that the strain response is not linear and that there is substantial re-arrangement of polymer chains as stress is increased, this is based on the age state of the mixture and the FT wax and EVA loadings. Dominance of individual effects is evident over effects of synergy in co-interaction of EVA and FT wax. All-inclusive FT wax and EVA formulations were best optimized in mixture 4 with mixture 7 reflecting increase in ease of workability. Findings show that interaction chemistry of bitumen, crumb rubber EVA, and FT wax is first and second order in all cases involving individual contributions and co-interaction amongst the components of the mixture.

Keywords: Bitumen, crumb rubber, ethylene vinyl acetate, FT wax.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 943
582 Hydrogenation of CO2 to Methanol over Copper-Zinc Oxide-Based Catalyst

Authors: S. F. H. Tasfy, N. A. M. Zabidi, M. S. Shaharun

Abstract:

Carbon dioxide is highly thermochemical stable molecules where it is very difficult to activate the molecule and achieve higher catalytic conversion into alcohols or other hydrocarbon compounds. In this paper, series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were systematically prepared via impregnation technique with different Cu: Zn ratio for hydrogenation of CO2 to methanol. The synthesized catalysts were characterized by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and surface area determination was also performed. All catalysts were tested with respect to the hydrogenation of CO2 to methanol in microactivity fixed-bed reactor at 250oC, 2.25 MPa, and H2/CO2 ratio of 3. The results demonstrate that the catalytic structure, activity, and methanol selectivity was strongly affected by the ratio between Cu: Zn, Where higher catalytic activity of 14 % and methanol selectivity of 92 % was obtained over Cu/ZnO-SBA-15 catalyst with Cu:Zn ratio of 7:3 wt. %. Comparing with the single catalyst, the synergetic between Cu and Zn provides additional active sites to adsorb more H2 and CO2 and accelerate the CO2 conversion, resulting in higher methanol production under mild reaction conditions.

Keywords: Hydrogenation of carbon dioxide, methanol synthesis, Cu/ZnO-based catalyst, mesoporous silica (SBA-15), and metal ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994
581 Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation

Authors: N. A. Zainuddin, I. Norhuda, I. S. Adeib, A. N. Mustapa, S. H. Sarijo

Abstract:

Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO2 process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm.

Keywords: Particle size, RESS, solid oil particle, supercritical carbon dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 969
580 Neural Networks: From Black Box towards Transparent Box Application to Evapotranspiration Modeling

Authors: A. Johannet, B. Vayssade, D. Bertin

Abstract:

Neural networks are well known for their ability to model non linear functions, but as statistical methods usually does, they use a no parametric approach thus, a priori knowledge is not obvious to be taken into account no more than the a posteriori knowledge. In order to deal with these problematics, an original way to encode the knowledge inside the architecture is proposed. This method is applied to the problem of the evapotranspiration inside karstic aquifer which is a problem of huge utility in order to deal with water resource.

Keywords: Neural-Networks, Hydrology, Evapotranpiration, Hidden Function Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
579 A DOE Study of Ultrasound Intensified Removal of Phenol

Authors: P. R. Rahul, A. Kannan

Abstract:

Ultrasound-aided adsorption of phenol by Granular Activated Carbon (GAC) was investigated at different frequencies ranging from 35 kHz, 58 kHz, and 192 kHz. Other factors influencing adsorption such as Adsorbent dosage (g/L), the initial concentration of the phenol solution (ppm) and RPM was also considered along with the frequency variable. However, this study involved calorimetric measurements which helped is determining the effect of frequency on the % removal of phenol from the power dissipated to the system was normalized. It was found that low frequency (35 kHz) cavitation effects had a profound influence on the % removal of phenol per unit power. This study also had cavitation mapping of the ultrasonic baths, and it showed that the effect of cavitation on the adsorption system is irrespective of the position of the vessel. Hence, the vessel was placed at the center of the bath. In this study, novel temperature control and monitoring system to make sure that the system is under proper condition while operations. From the BET studies, it was found that there was only 5% increase in the surface area and hence it was concluded that ultrasound doesn’t profoundly alter the equilibrium value of the adsorption system. DOE studies indicated that adsorbent dosage has a higher influence on the % removal in comparison with other factors.

Keywords: Ultrasound, adsorption, granulated activated carbon, phenol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
578 Simulation of the Performance of the Reforming of Methane in a Primary Reformer

Authors: A. Alkattib, M. Boumaza

Abstract:

Steam reforming is industrially important as it is  incorporated in several major chemical processes including the  production of ammonia, methanol, hydrogen and ox alcohols. Due to  the strongly endothermic nature of the process, a large amount of heat  is supplied by fuel burning (commonly natural gas) in the furnace  chamber. Reaction conversions, tube catalyst life, energy  consumption and CO2 emission represent the principal factors  affecting the performance of this unit and are directly influenced by  the high operating temperatures and pressures.  This study presents a simulation of the performance of the  reforming of methane in a primary reformer, through a developed  empirical relation which enables to investigate the effects of  operating parameters such as the pressure, temperature, steam to  carbon ratio on the production of hydrogen, as well as the fraction of  non converted methane.  It appears from this analysis that the exit temperature Te, the  operating pressure as well the steam to carbon ratio has an important  effect on the reforming of methane.

 

Keywords: Reforming, methane, performance, hydrogen, parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469
577 Surface Roughness Evaluation for EDM of En31 with Cu-Cr-Ni Powder Metallurgy Tool

Authors: Amoljit S. Gill, Sanjeev Kumar

Abstract:

In this study, Electrical Discharge Machining (EDM) is used to modify the surface of high carbon steel En31 with the help of tool electrode (Copper-Chromium-Nickel) manufactured by powder metallurgy (PM) process. The effect of EDM on surface roughness during surface alloying is studied. Taguchi’s Design of experiment (DOE) and L18 orthogonal array is used to find the best level of input parameters in order to achieve high surface finish. Six input parameters are considered and their percentage contribution towards surface roughness is investigated by analysis of variances (ANOVA). Experimental results show that an hard alloyed surface (1.21% carbon, 2.14% chromium and 1.38% nickel) with surface roughness of 3.19µm can be generated using EDM with PM tool. Additionally, techniques like Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) are used to analyze the machined surface and EDMed layer composition, respectively. The increase in machined surface micro-hardness (101%) may be related to the formation of carbides containing chromium.

Keywords: Electrical Discharge Machining, Surface Roughness, Powder metallurgy compact tools, Taguchi DOE technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2873
576 Springback Simulations of Monolithic and Layered Steels Used for Pressure Equipment

Authors: Anish H. Gandhi, Harit K. Raval

Abstract:

Carbon steel is used in boilers, pressure vessels, heat exchangers, piping, structural elements and other moderatetemperature service systems in which good strength and ductility are desired. ASME Boiler and Pressure Vessel Code, Section II Part A (2004) provides specifications of ferrous materials for construction of pressure equipment, covering wide range of mechanical properties including high strength materials for power plants application. However, increased level of springback is one of the major problems in fabricating components of high strength steel using bending. Presented work discuss the springback simulations for five different steels (i.e. SA-36, SA-299, SA-515 grade 70, SA-612 and SA-724 grade B) using finite element analysis of air V-bending. Analytical springback simulations of hypothetical layered materials are presented. Result shows that; (i) combination of the material property parameters controls the springback, (ii) layer of the high ductility steel on the high strength steel greatly suppresses the springback.

Keywords: Carbon steel, Finite element analysis, Layeredmaterial, Springback

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
575 Aqueous Extract of Flacourtia indica Prevents Carbon Tetrachloride Induced Hepatotoxicity in Rat

Authors: Gnanaprakash K, Madhusudhana Chetty C, Ramkanth S, Alagusundaram M, Tiruvengadarajan VS, Angala Parameswari S, Mohamed Saleem TS

Abstract:

Carbon tetrachloride (CCl4) is a well-known hepatotoxin and exposure to this chemical is known to induce oxidative stress and causes liver injury by the formation of free radicals. Flacourtia indica commonly known as 'Baichi' has been reported as an effective remedy for the treatment of a variety of diseases. The objective of this study was to investigate the hepatoprotective activity of aqueous extract of leaves of Flacourtia indica against CCl4 induced hepatotoxicity. Animals were pretreated with the aqueous extract of Flacourtia indica (250 & 500 mg/kg body weight) for one week and then challenged with CCl4 (1.5 ml/kg bw) in olive oil (1:1, v/v) on 7th day. Serum marker enzymes (ALP, AST, ALT, Total Protein & Total Bilirubin) and TBARS level (Marker for oxidative stress) were estimated in all the study groups. Alteration in the levels of biochemical markers of hepatic damage like AST, ALT, ALP, Total Protein, Total Bilirubin and lipid peroxides (TBARS) were tested in both CCl4 treated and extract treated groups. CCl4 has enhanced the AST, ALT, ALP and the Lipid peroxides (TBARS) in liver. Treatment of aqueous extract of Flacourtia indica leaves (250 & 500 mg/kg) exhibited a significant protective effect by altering the serum levels of AST, ALT, ALP, Total Protein, Total Bilirubin and liver TBARS. These biochemical observations were supported by histopathological study of liver sections. From this preliminary study it has been concluded that the aqueous extract of the leaves of Flacourtia indica protects liver against oxidative damages and could be used as an effective protector against CCl4 induced hepatic damage. Our findings suggested that Flacourtia indica possessed good hepatoprotective activity

Keywords: Carbon Tetrachloride, Flacourtia indica, Hepatoprotective activity, Oxidative stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182
574 Study on the Effect of Volume Fraction of Dual Phase Steel to Corrosion Behaviour and Hardness

Authors: R. Nadlene, H. Esah, S. Norliana, M.A. Mohd Irwan

Abstract:

The objective of this project is to study the corrosion behaviour and hardness based on the presence of martensite in dual phase steel. This study was conducted on six samples of dual phase steel which have different percentage of martensite. A total of 9 specimens were prepared by intercritical annealing process to study the effect of temperature to the formation of martensite. The low carbon steels specimens were heated for 25 minutes in a specified temperature ranging from 7250C to 8250C followed by rapid cooling in water. The measurement of corrosion rate was done by using extrapolation tafel method, while potentiostat was used to control and measured the current produced. This measurement is performed through a system named CMS105. The result shows that a specimen with higher percentage of martensite is likely to corrode faster. Hardness test for each specimen was conducted to compare its hardness with low carbon steel. The results obtained indicate that the specimen hardness is proportional to the amount of martensite in dual phase steel.

Keywords: dual phase steel, corrosion behaviour, hardness, intercritical annealing, martensite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3015
573 The Emergence of Construction Mafia in South Africa: The Implication on the Construction Industry

Authors: Thandokazi Nyangiwe, Christopher Amoah, Charles P. Mukumba

Abstract:

The South African construction sector is threatened by emerging black business forums called construction mafias. The emergence of the construction mafia has culminated in the disruptions and abandonment of construction sites resulting in the loss of jobs for construction workers. The paper examines the origin of construction mafias and their impact on the construction sector, including the potential ways to cope with their operations. A qualitative research approach was adopted for this study using open-ended interview questions to gather information from 30 key construction industry stakeholders, including contractors, subcontractors, consultants, and the construction project communities. Content and thematic analyses were used to analyses the data collected. The findings suggest that most participants do not fully understand the existence and operations of construction mafias in the construction industry. Construction mafias claim to be part of the local business forums. They disrupt construction projects and demand a certain amount, usually 30% of the construction value. Construction mafias frequently resort to intimidation and violence if their demands are unmet. Their operations have resulted in delayed completion of construction projects, abandonment of projects, and loss of income for the contractor and jobs for the construction workers. The interviews were limited to construction stakeholders. Because of the nature of the mafias’ operations, they could not be accessed for interviews for fear of being identified because of the connotation attached to their role as construction mafias. Construction project owners face disruptions of projects resulting in loss of equipment, materials, and income. Therefore, there is a need to sensitize the construction stakeholders in the construction industry regarding the existence and operations of the construction mafia and the implications on construction project performance and delivery. The findings will give insight into the operations of the construction mafias in the South African construction industry, which has caused disruptions in construction project sites. Stakeholders must find solutions to address the construction mafias’ disruptive actions on construction projects. The study presents an initial inquiry that will come up with how to manage and cope with the growing operations of construction mafias in the South African construction industry.

Keywords: Black business forums, construction mafia, South African construction industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235
572 Photopolymerization of Dimethacrylamide with (Meth)acrylates

Authors: Yuling Xu, Haibo Wang, Dong Xie

Abstract:

A photopolymerizable dimethacrylamide was synthesized and copolymerized with the selected (meth)acrylates. The polymerization rate, degree of conversion, gel time, and compressive strength of the formed neat resins were investigated. The results show that in situ photo-polymerization of the synthesized dimethacrylamide with comonomers having an electron-withdrawing and/or acrylate group dramatically increased the polymerization rate, degree of conversion, and compressive strength. On the other hand, an electron-donating group on either carbon-carbon double bond or the ester linkage slowed down the polymerization. In contrast, the triethylene glycol dimethacrylate-based system did not show a clear pattern. Both strong hydrogen-bonding between (meth)acrylamide and organic acid groups may be responsible for higher compressive strengths. Within the limitation of this study, the photo-polymerization of dimethacrylamide can be greatly accelerated by copolymerization with monomers having electron-withdrawing and/or acrylate groups. The monomers with methacrylate group can significantly reduce the polymerization rate and degree of conversion.

Keywords: Photopolymerization, dimethacrylamide, degree of conversion, compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
571 Modeling Ambient Carbon Monoxide Pollutant Due to Road Traffic

Authors: Anjaneyulu M.V.L.R., Harikrishna M., Chenchuobulu S.

Abstract:

Rapid urbanization, industrialization and population growth have led to an increase in number of automobiles that cause air pollution. It is estimated that road traffic contributes 60% of air pollution in urban areas. A case by case assessment is required to predict the air quality in urban situations, so as to evolve certain traffic management measures to maintain the air quality levels with in the tolerable limits. Calicut city in the state of Kerala, India has been chosen as the study area. Carbon Monoxide (CO) concentration was monitored at 15 links in Calicut city and air quality performance was evaluated over each link. The CO pollutant concentration values were compared with the National Ambient Air Quality Standards (NAAQS), and the CO values were predicted by using CALINE4 and IITLS and Linear regression models. The study has revealed that linear regression model performs better than the CALINE4 and IITLS models. The possible association between CO pollutant concentration and traffic parameters like traffic flow, type of vehicle, and traffic stream speed was also evaluated.

Keywords: CO pollution, Modelling, Traffic stream parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365
570 A Study of Fatty Acid Production in the Batch Reactor via the Carbohydrate Fermentation by C. butyricum

Authors: H. Azan T., R. W. Lovitt, Nur K. T., N. Azwa. M. B.

Abstract:

Carbohydrate can be used as a substrate that can be consumed by C. butyricum and converted to useful chemicals such as acetic and butyric acid. Influence of concentration and types of carbohydrate to cell growth, carbohydrate consumed, productivity and carbon balance have been explored. Batch reactor was selected in this study to avoid contamination due to simpler operation system. Glucose was preferred as first types of carbohydrate to be tested. Six concentrations were studied from 0 to 28g/L. Eventually, 15g/L has shown the best concentration for glucose in term of growth rate (2.63h-1) and carbon balance (99.76% recovery). Comparison for types of carbohydrate was also conducted. 15g/L of xylose (monosaccharide) and starch (complex carbohydrate) was tested.  In term of growth rate and productivity, glucose showed the best carbohydrates. Results for this study showed that glucose and xylose produced more than 80% of acetic acid and less than 20% of butyric acid. Meanwhile, 63.1% of acetic acid and 36.9% of butyric acid were produced from starch. 

Keywords: C. butyricum, glucose, starch, xylose, carbohydrate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
569 Utilization of Advanced Data Storage Technology to Conduct Construction Industry on Clear Environment

Authors: Javad Majrouhi Sardroud, Mukesh C. Limbachiya

Abstract:

Construction projects generally take place in uncontrolled and dynamic environments where construction waste is a serious environmental problem in many large cities. The total amount of waste and carbon dioxide emissions from transportation vehicles are still out of control due to increasing construction projects, massive urban development projects and the lack of effective tools for minimizing adverse environmental impacts in construction. This research is about utilization of the integrated applications of automated advanced tracking and data storage technologies in the area of environmental management to monitor and control adverse environmental impacts such as construction waste and carbon dioxide emissions. Radio Frequency Identification (RFID) integrated with the Global Position System (GPS) provides an opportunity to uniquely identify materials, components, and equipments and to locate and track them using minimal or no worker input. The transmission of data to the central database will be carried out with the help of Global System for Mobile Communications (GSM).

Keywords: Clear environment, Construction industry, RFID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
568 Waste to Biofuel by Torrefaction Technology

Authors: Jyh-Cherng Chen, Yu-Zen Lin, Wei-Zhi Chen

Abstract:

Torrefaction is one of waste to energy (WTE) technologies developing in Taiwan recently, which can reduce the moisture and impuritiesand increase the energy density of biowaste effectively.To understand the torrefaction characteristics of different biowaste and the influences of different torrefaction conditions, four typical biowaste were selected to carry out the torrefaction experiments. The physical and chemical properties of different biowaste prior to and after torrefaction were analyzed and compared. Experimental results show that the contents of elemental carbon and caloric value of the four biowaste were significantly increased after torrefaction. The increase of combustible and caloric value in bamboo was the greatest among the four biowaste. The caloric value of bamboo can be increased from 1526 kcal/kg to 6104 kcal/kg after 300oC and 1 hour torrefaction. The caloric valueof torrefied bamboo was almost four times as the original. The increase of elemental carbon content in wood was the greatest (from 41.03% to 75.24%), and the next was bamboo (from 47.07% to 74.63%). The major parameters which affected the caloric value of torrefied biowaste followed the sequence of biowaste kinds, torrefaction time, and torrefaction temperature. The optimal torrefaction conditions of the experiments were bamboo torrefied at 300oC for 3 hours, and the corresponding caloric value of torrefied bamboo was 5953 kcal/kg. This caloric value is similar to that of brown coal or bituminous coal.

Keywords: Torrefaction, waste to energy, calorie, biofuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
567 Gas-Liquid Flow on Smooth and Textured Inclined Planes

Authors: J.J. Cooke, S. Gu, L.M. Armstrong, K.H. Luo

Abstract:

Carbon Capture & Storage (CCS) is one of the various methods that can be used to reduce the carbon footprint of the energy sector. This paper focuses on the absorption of CO2 from flue gas using packed columns, whose efficiency is highly dependent on the structure of the liquid films within the column. To study the characteristics of liquid films a CFD solver, OpenFOAM is utilised to solve two-phase, isothermal film flow using the volume-of-fluid (VOF) method. The model was validated using existing experimental data and the Nusselt theory. It was found that smaller plate inclination angles, with respect to the horizontal plane, resulted in larger wetted areas on smooth plates. However, only a slight improvement in the wetted area was observed. Simulations were also performed using a ridged plate and it was observed that these surface textures significantly increase the wetted area of the plate. This was mainly attributed to the channelling effect of the ridges, which helped to oppose the surface tension forces trying to minimise the surface area. Rivulet formations on the ridged plate were also flattened out and spread across a larger proportion of the plate width.

Keywords: CCS, liquid film flow, packed columns, wetted area

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
566 An Analysis of the Performances of Various Buoys as the Floats of Wave Energy Converters

Authors: İlkay Özer Erselcan, Abdi Kükner, Gökhan Ceylan

Abstract:

The power generated by eight point absorber type wave energy converters each having a different buoy are calculated in order to investigate the performances of buoys in this study. The calculations are carried out by modeling three different sea states observed in two different locations in the Black Sea. The floats analyzed in this study have two basic geometries and four different draft/radius (d/r) ratios. The buoys possess the shapes of a semi-ellipsoid and a semi-elliptic paraboloid. Additionally, the draft/radius ratios range from 0.25 to 1 by an increment of 0.25. The radiation forces acting on the buoys due to the oscillatory motions of these bodies are evaluated by employing a 3D panel method along with a distribution of 3D pulsating sources in frequency domain. On the other hand, the wave forces acting on the buoys which are taken as the sum of Froude-Krylov forces and diffraction forces are calculated by using linear wave theory. Furthermore, the wave energy converters are assumed to be taut-moored to the seabed so that the secondary body which houses a power take-off system oscillates with much smaller amplitudes compared to the buoy. As a result, it is assumed that there is not any significant contribution to the power generation from the motions of the housing body and the only contribution to power generation comes from the buoy. The power take-off systems of the wave energy converters are high pressure oil hydraulic systems which are identical in terms of their characteristic parameters. The results show that the power generated by wave energy converters which have semi-ellipsoid floats is higher than that of those which have semi elliptic paraboloid floats in both locations and in all sea states. It is also determined that the power generated by the wave energy converters follow an unsteady pattern such that they do not decrease or increase with changing draft/radius ratios of the floats. Although the highest power level is obtained with a semi-ellipsoid float which has a draft/radius ratio equal to 1, other floats of which the draft/radius ratio is 0.25 delivered higher power that the floats with a draft/radius ratio equal to 1 in some cases.

Keywords: Black Sea, Buoys, Hydraulic Power Take-Off System, Wave Energy Converters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
565 Flocculation on the Treatment of Olive Oil Mill Wastewater: Pretreatment

Authors: G. Hodaifa, J. A. Páez, C. Agabo, E. Ramos, J. C. Gutiérrez, A. Rosal

Abstract:

Currently, continuous two-phase decanter process used for olive oil production is the more internationally widespread. The wastewaters generated from this industry (OMW) are a real environmental problem because of its high organic load. Among proposed treatments for these wastewaters, advanced oxidation technologies (Fenton, ozone, photoFenton, etc.) are the most favourable. The direct application of these processes is somewhat expensive. Therefore, the application of a previous stage based on a flocculation-sedimentation operation is of high importance. In this research five commercial flocculants (three cationic, and two anionic) have been used to achieve the separation of phases (liquid clarifiedsludge). For each flocculant, different concentrations (0-1000 mg/L) have been studied. In these experiments, sludge volume formed and the final water quality were determined. The final removal percentages of total phenols (11.3-25.1%), COD (5.6-20.4%), total carbon (2.3-26.5%), total organic carbon (1.50-23.8%), total nitrogen (1.45-24.8%), and turbidity (27.9-61.4%) were determined. The variation on electric conductivity reduction percentage (1-8%) was also determined. Finally, the best flocculants with highest removal percentages have been determined (QG2001 and Flocudex CS49).

Keywords: Flocculants, flocculation, olive oil mill wastewater, water quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551