Search results for: Bootstrap approach
636 A Study on the Attractiveness of Heavy Duty Motorcycle
Authors: Kaishuan Shen, Pan Changyu, Yuhsiang Lu, Zongshao Liu, Chishxsin Chuang, Minyuan Ma
Abstract:
The culture of riding heavy motorcycles originates from advanced countries and mainly comes from Europe, North America, and Japan. Heavy duty motorcycle riders are different from people who view motorcycles as a convenient mean of transportation. They regard riding them as a kind of enjoyment and high-level taste. The activities of riding heavy duty motorcycles have formes a distinctive landscape in domestic land in Taiwan. Previous studies which explored motorcycle culture in Taiwan still focused on the objects of motorcycle engine displacement under 50 cc.. The study aims to study the heavy duty motorcycles of engine displacement over 550 cc. and explores where their attractiveness is. For finding the attractiveness of heavy duty motorcycle, the study chooses Miryoku Engineering (Preference-Based Design) approach. Two steps are adopted to proceed the research. First, through arranging the letters obtained from interviewing experts, EGM (The Evaluation Grid Method) was applied to find out the structure of attractiveness. The attractive styles are eye-dazzling, leisure, classic, and racing competitive styles. Secondarily, Quantification Theory Type I analysis was adopted as a tool for analyzing the importance of attractiveness. The relationship between style and attractive parts was also discussed. The results could contribute to the design and research development of heavy duty motorcycle industry in Taiwan.Keywords: attractiveness, evaluation, heavy dutymotorcycle, miryoku engineering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916635 A Model to Study the Effect of Excess Buffers and Na+ Ions on Ca2+ Diffusion in Neuron Cell
Authors: Vikas Tewari, Shivendra Tewari, K. R. Pardasani
Abstract:
Calcium is a vital second messenger used in signal transduction. Calcium controls secretion, cell movement, muscular contraction, cell differentiation, ciliary beating and so on. Two theories have been used to simplify the system of reaction-diffusion equations of calcium into a single equation. One is excess buffer approximation (EBA) which assumes that mobile buffer is present in excess and cannot be saturated. The other is rapid buffer approximation (RBA), which assumes that calcium binding to buffer is rapid compared to calcium diffusion rate. In the present work, attempt has been made to develop a model for calcium diffusion under excess buffer approximation in neuron cells. This model incorporates the effect of [Na+] influx on [Ca2+] diffusion,variable calcium and sodium sources, sodium-calcium exchange protein, Sarcolemmal Calcium ATPase pump, sodium and calcium channels. The proposed mathematical model leads to a system of partial differential equations which have been solved numerically using Forward Time Centered Space (FTCS) approach. The numerical results have been used to study the relationships among different types of parameters such as buffer concentration, association rate, calcium permeability.
Keywords: Excess buffer approximation, Na+ influx, sodium calcium exchange protein, sarcolemmal calcium atpase pump, forward time centred space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596634 Design of an Ensemble Learning Behavior Anomaly Detection Framework
Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia
Abstract:
Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.Keywords: Cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151633 A Life Cycle Assessment (LCA) of Aluminum Production Process
Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour
Abstract:
The production of aluminum alloys and ingots – starting from the processing of alumina to aluminum, and the final cast product – was studied using a Life Cycle Assessment (LCA) approach. The studied aluminum supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminum metal were investigated. The impact of the aluminum production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it come to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.
Keywords: Life cycle assessment, aluminum production, Supply chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4647632 A Novel Approach for Coin Identification using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms
Authors: J. Prakash, K. Rajesh
Abstract:
In this paper we present a new method for coin identification. The proposed method adopts a hybrid scheme using Eigenvalues of covariance matrix, Circular Hough Transform (CHT) and Bresenham-s circle algorithm. The statistical and geometrical properties of the small and large Eigenvalues of the covariance matrix of a set of edge pixels over a connected region of support are explored for the purpose of circular object detection. Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain only a small number of non-zero elements, they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of the circumference pixels is identified using Raster scan algorithm which uses geometrical symmetry property. After finding circular objects, the proposed method uses the texture on the surface of the coins called texton, which are unique properties of coins, refers to the fundamental micro structure in generic natural images. This method has been tested on several real world images including coin and non-coin images. The performance is also evaluated based on the noise withstanding capability.Keywords: Circular Hough Transform, Coin detection, Covariance matrix, Eigenvalues, Raster scan Algorithm, Texton.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880631 Analysis of Codebook Based Channel Feedback Techniques for MIMO-OFDM Systems
Authors: Muhammad Rehan Khalid, Ahmed Farhan Hanif, Adnan Ahmed Khan
Abstract:
This paper investigates the performance of Multiple- Input Multiple-Output (MIMO) feedback system combined with Orthogonal Frequency Division Multiplexing (OFDM). Two types of codebook based channel feedback techniques are used in this work. The first feedback technique uses a combination of both the long-term and short-term channel state information (CSI) at the transmitter, whereas the second technique uses only the short term CSI. The long-term and short-term CSI at the transmitter is used for efficient channel utilization. OFDM is a powerful technique employed in communication systems suffering from frequency selectivity. Combined with multiple antennas at the transmitter and receiver, OFDM proves to be robust against delay spread. Moreover, it leads to significant data rates with improved bit error performance over links having only a single antenna at both the transmitter and receiver. The effectiveness of these techniques has been demonstrated through the simulation of a MIMO-OFDM feedback system. The results have been evaluated for 4x4 MIMO channels. Simulation results indicate the benefits of the MIMO-OFDM channel feedback system over the one without incorporating OFDM. Performance gain of about 3 dB is observed for MIMO-OFDM feedback system as compared to the one without employing OFDM. Hence MIMO-OFDM becomes an attractive approach for future high speed wireless communication systems.
Keywords: MIMO systems, OFDM, Codebooks, Channel Feedback
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674630 An Approach of Quantum Steganography through Special SSCE Code
Authors: Indradip Banerjee, Souvik Bhattacharyya, Gautam Sanyal
Abstract:
Encrypted messages sending frequently draws the attention of third parties, perhaps causing attempts to break and reveal the original messages. Steganography is introduced to hide the existence of the communication by concealing a secret message in an appropriate carrier like text, image, audio or video. Quantum steganography where the sender (Alice) embeds her steganographic information into the cover and sends it to the receiver (Bob) over a communication channel. Alice and Bob share an algorithm and hide quantum information in the cover. An eavesdropper (Eve) without access to the algorithm can-t find out the existence of the quantum message. In this paper, a text quantum steganography technique based on the use of indefinite articles (a) or (an) in conjunction with the nonspecific or non-particular nouns in English language and quantum gate truth table have been proposed. The authors also introduced a new code representation technique (SSCE - Secret Steganography Code for Embedding) at both ends in order to achieve high level of security. Before the embedding operation each character of the secret message has been converted to SSCE Value and then embeds to cover text. Finally stego text is formed and transmits to the receiver side. At the receiver side different reverse operation has been carried out to get back the original information.Keywords: Quantum Steganography, SSCE (Secret SteganographyCode for Embedding), Security, Cover Text, Stego Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108629 An Edge Detection and Filtering Mechanism of Two Dimensional Digital Objects Based on Fuzzy Inference
Authors: Ayman A. Aly, Abdallah A. Alshnnaway
Abstract:
The general idea behind the filter is to average a pixel using other pixel values from its neighborhood, but simultaneously to take care of important image structures such as edges. The main concern of the proposed filter is to distinguish between any variations of the captured digital image due to noise and due to image structure. The edges give the image the appearance depth and sharpness. A loss of edges makes the image appear blurred or unfocused. However, noise smoothing and edge enhancement are traditionally conflicting tasks. Since most noise filtering behaves like a low pass filter, the blurring of edges and loss of detail seems a natural consequence. Techniques to remedy this inherent conflict often encompass generation of new noise due to enhancement. In this work a new fuzzy filter is presented for the noise reduction of images corrupted with additive noise. The filter consists of three stages. (1) Define fuzzy sets in the input space to computes a fuzzy derivative for eight different directions (2) construct a set of IFTHEN rules by to perform fuzzy smoothing according to contributions of neighboring pixel values and (3) define fuzzy sets in the output space to get the filtered and edged image. Experimental results are obtained to show the feasibility of the proposed approach with two dimensional objects.Keywords: Additive noise, edge preserving filtering, fuzzy image filtering, noise reduction, two dimensional mechanical images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568628 Weighted Data Replication Strategy for Data Grid Considering Economic Approach
Authors: N. Mansouri, A. Asadi
Abstract:
Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.
Keywords: Data grid, data replication, simulation, replica selection, replica placement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109627 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.
Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524626 Use of Carica papaya as a Bio-Sorbent for Removal of Heavy Metals in Wastewater
Authors: W. E. Igwegbe, B. C. Okoro, J. C. Osuagwu
Abstract:
The study assessed the effectiveness of Pawpaw (Carica papaya) wood in reducing the concentrations of heavy metals in wastewater acting as a bio-sorbent. The following heavy metals were considered; Zinc, Cadmium, Lead, Copper, Iron, Selenium, Nickel and Manganese. The physiochemical properties of Carica papaya stem were studied. The experimental sample was sourced from the trunk of a felled matured pawpaw tree. Wastewater for experimental use was prepared by dissolving soil samples collected from a dump site at Owerri, Imo state of Nigeria in water. The concentration of each metal remaining in solution as residual metal after bio-sorption was determined using Atomic absorption Spectrometer. The effects of pH and initial heavy metal concentration were studied in a batch reactor. The results of Spectrometer test showed that there were different functional groups detected in the Carica papaya stem biomass. There was increase in metal removal as the pH increased for all the metals considered except for Nickel and Manganese. Optimum bio-sorption occurred at pH 5.9 with 5g/100ml solution of bio-sorbent. The results of the study showed that the treated wastewater is fit for irrigation purpose based on Canada wastewater quality guideline for the protection of Agricultural standard. This approach thus provides a cost effective and environmentally friendly option for treating wastewater.Keywords: Biomass, bio-sorption, Carica papaya, heavy metal, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2819625 Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions
Authors: Mehdi Habibnia Rami, Shidvash Vakilipour, Mohammad H. Sabour, Rouzbeh Riazi, Hossein Hassannia
Abstract:
This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation.
Keywords: T106A turbine cascade, shear-layer separation, steady and unsteady conditions, turbulence models, OpenFOAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736624 Application of Statistical Approach for Optimizing CMCase Production by Bacillus tequilensis S28 Strain via Submerged Fermentation Using Wheat Bran as Carbon Source
Authors: A. Sharma, R. Tewari, S. K. Soni
Abstract:
Biofuels production has come forth as a future technology to combat the problem of depleting fossil fuels. Bio-based ethanol production from enzymatic lignocellulosic biomass degradation serves an efficient method and catching the eye of scientific community. High cost of the enzyme is the major obstacle in preventing the commercialization of this process. Thus main objective of the present study was to optimize composition of medium components for enhancing cellulase production by newly isolated strain of Bacillus tequilensis. Nineteen factors were taken into account using statistical Plackett-Burman Design. The significant variables influencing the cellulose production were further employed in statistical Response Surface Methodology using Central Composite Design for maximizing cellulase production. The optimum medium composition for cellulase production was: peptone (4.94 g/L), ammonium chloride (4.99 g/L), yeast extract (2.00 g/L), Tween-20 (0.53 g/L), calcium chloride (0.20 g/L) and cobalt chloride (0.60 g/L) with pH 7, agitation speed 150 rpm and 72 h incubation at 37oC. Analysis of variance (ANOVA) revealed high coefficient of determination (R2) of 0.99. Maximum cellulase productivity of 11.5 IU/ml was observed against the model predicted value of 13 IU/ml. This was found to be optimally active at 60oC and pH 5.5.
Keywords: Bacillus tequilensis, CMCase, Submerged Fermentation, Optimization, Plackett-Burman Design, Response Surface Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3063623 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing
Authors: Aleksandra Zysk, Pawel Badura
Abstract:
Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313622 Application of GA Optimization in Analysis of Variable Stiffness Composites
Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani
Abstract:
Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.Keywords: Beam structures, layerwise, optimization, variable angle tow, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652621 A New Bound on the Average Information Ratio of Perfect Secret-Sharing Schemes for Access Structures Based On Bipartite Graphs of Larger Girth
Authors: Hui-Chuan Lu
Abstract:
In a perfect secret-sharing scheme, a dealer distributes a secret among a set of participants in such a way that only qualified subsets of participants can recover the secret and the joint share of the participants in any unqualified subset is statistically independent of the secret. The access structure of the scheme refers to the collection of all qualified subsets. In a graph-based access structures, each vertex of a graph G represents a participant and each edge of G represents a minimal qualified subset. The average information ratio of a perfect secret-sharing scheme realizing a given access structure is the ratio of the average length of the shares given to the participants to the length of the secret. The infimum of the average information ratio of all possible perfect secret-sharing schemes realizing an access structure is called the optimal average information ratio of that access structure. We study the optimal average information ratio of the access structures based on bipartite graphs. Based on some previous results, we give a bound on the optimal average information ratio for all bipartite graphs of girth at least six. This bound is the best possible for some classes of bipartite graphs using our approach.
Keywords: Secret-sharing scheme, average information ratio, star covering, deduction, core cluster.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434620 Multi-Stage Multi-Period Production Planning in Wire and Cable Industry
Authors: Mahnaz Hosseinzadeh, Shaghayegh Rezaee Amiri
Abstract:
This paper presents a methodology for serial production planning problem in wire and cable manufacturing process that addresses the problem of input-output imbalance in different consecutive stations, hoping to minimize the halt of machines in each stage. To this end, a linear Goal Programming (GP) model is developed, in which four main categories of constraints as per the number of runs per machine, machines’ sequences, acceptable inventories of machines at the end of each period, and the necessity of fulfillment of the customers’ orders are considered. The model is formulated based upon on the real data obtained from IKO TAK Company, an important supplier of wire and cable for oil and gas and automotive industries in Iran. By solving the model in GAMS software the optimal number of runs, end-of-period inventories, and the possible minimum idle time for each machine are calculated. The application of the numerical results in the target company has shown the efficiency of the proposed model and the solution in decreasing the lead time of the end product delivery to the customers by 20%. Accordingly, the developed model could be easily applied in wire and cable companies for the aim of optimal production planning to reduce the halt of machines in manufacturing stages.
Keywords: Serial manufacturing process, production planning, wire and cable industry, goal programming approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931619 Optimum Surface Roughness Prediction in Face Milling of High Silicon Stainless Steel
Authors: M. Farahnakian, M.R. Razfar, S. Elhami-Joosheghan
Abstract:
This paper presents an approach for the determination of the optimal cutting parameters (spindle speed, feed rate, depth of cut and engagement) leading to minimum surface roughness in face milling of high silicon stainless steel by coupling neural network (NN) and Electromagnetism-like Algorithm (EM). In this regard, the advantages of statistical experimental design technique, experimental measurements, artificial neural network, and Electromagnetism-like optimization method are exploited in an integrated manner. To this end, numerous experiments on this stainless steel were conducted to obtain surface roughness values. A predictive model for surface roughness is created by using a back propogation neural network, then the optimization problem was solved by using EM optimization. Additional experiments were performed to validate optimum surface roughness value predicted by EM algorithm. It is clearly seen that a good agreement is observed between the predicted values by EM coupled with feed forward neural network and experimental measurements. The obtained results show that the EM algorithm coupled with back propogation neural network is an efficient and accurate method in approaching the global minimum of surface roughness in face milling.
Keywords: cutting parameters, face milling, surface roughness, artificial neural network, Electromagnetism-like algorithm,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586618 Investigating Transformative Practices in the Bangladeshi Classroom
Authors: Rubaiyat Jahan, Nasreen Sultana Mitu
Abstract:
This paper examines the theoretical construct of transformative practices, and reports some evidence of transformative practices from a couple of Bangladeshi English teachers. The idea of transformative practices calls for teachers’ capabilities to invest their intellectual labor in teaching with an assumption that along with the academic advancement of the learners, it aims for the personal transformation for both the learners as well for themselves. Following an ethnographic research approach, data for this study were collected through in-depth interviews, informal talks and classroom observations for a period of one year. In relevance to the English classroom of the Bangladeshi context, from this study, references of transformative practices have been underlined from the participant teachers’ views on English language teaching as well as from their actual practices. According to data of this research, some evidence of transformative practices in the form of critical language awareness and personal theories of practices emerge from the participants’ articulation of the beliefs on teaching; and from the participant teachers’ classroom practices evidence of self-directed acts of teaching, self-directed acts of professional development, and liberatory autonomy have been highlighted as the reflections of transformative practices. The implication of this paper refers to the significance of practicing teachers’ articulation of beliefs and views on teaching along with their orientation to critical pedagogical relations.
Keywords: Critical language awareness, personal theories of practices, teacher autonomy, transformative practices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 835617 Agreement Options on Multi Criteria Group Decision and Negotiation
Authors: Christiono Utomo, Arazi Idrus, Madzlan Napiah, Mohd. Faris Khamidi
Abstract:
This paper presents a conceptual model of agreement options on negotiation support for civil engineering decision. The negotiation support facilitates the solving of group choice decision making problems in civil engineering decision to reduce the impact of mud volcano disaster in Sidoarjo, Indonesia. The approach based on application of analytical hierarchy process (AHP) method for multi criteria decision on three level of decision hierarchy. Decisions for reducing impact is very complicated since many parties involved in a critical time. Where a number of stakeholders are involved in choosing a single alternative from a set of solution alternatives, there are different concern caused by differing stakeholder preferences, experiences, and background. Therefore, a group choice decision support is required to enable each stakeholder to evaluate and rank the solution alternatives before engaging into negotiation with the other stakeholders. Such civil engineering solutions as alternatives are referred to as agreement options that are determined by identifying the possible stakeholder choice, followed by determining the optimal solution for each group of stakeholder. Determination of the optimal solution is based on a game theory model of n-person general sum game with complete information that involves forming coalitions among stakeholders.Keywords: Agreement options, AHP, agent, negotiation, multicriteria, game theory, and coalition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642616 The Relevance of Data Warehousing and Data Mining in the Field of Evidence-based Medicine to Support Healthcare Decision Making
Authors: Nevena Stolba, A Min Tjoa
Abstract:
Evidence-based medicine is a new direction in modern healthcare. Its task is to prevent, diagnose and medicate diseases using medical evidence. Medical data about a large patient population is analyzed to perform healthcare management and medical research. In order to obtain the best evidence for a given disease, external clinical expertise as well as internal clinical experience must be available to the healthcare practitioners at right time and in the right manner. External evidence-based knowledge can not be applied directly to the patient without adjusting it to the patient-s health condition. We propose a data warehouse based approach as a suitable solution for the integration of external evidence-based data sources into the existing clinical information system and data mining techniques for finding appropriate therapy for a given patient and a given disease. Through integration of data warehousing, OLAP and data mining techniques in the healthcare area, an easy to use decision support platform, which supports decision making process of care givers and clinical managers, is built. We present three case studies, which show, that a clinical data warehouse that facilitates evidence-based medicine is a reliable, powerful and user-friendly platform for strategic decision making, which has a great relevance for the practice and acceptance of evidence-based medicine.
Keywords: data mining, data warehousing, decision-support systems, evidence-based medicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3811615 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management
Authors: M. Graus, K. Westhoff, X. Xu
Abstract:
The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.
Keywords: Data analytics, green production, industrial energy management, optimization, renewable energies, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736614 Perceived Benefits of Technology Enhanced Learning by Learners in Uganda: Three Band Benefits
Authors: Kafuko M. Maria, Namisango Fatuma, Byomire Gorretti
Abstract:
Mobile learning (m-learning) is steadily growing and has undoubtedly derived benefits to learners and tutors in different learning environments. This paper investigates the variation in benefits derived from enhanced classroom learning through use of m-learning platforms in the context of a developing country owing to the fact that it is still in its initial stages. The study focused on how basic technology-enhanced pedagogic innovation like cell phone-based learning is enhancing classroom learning from the learners’ perspective. The paper explicitly indicates the opportunities presented by enhanced learning to a conventional learning environment like a physical classroom. The findings were obtained through a survey of two universities in Uganda in which data was quantitatively collected, analyzed and presented in a three banded diagram depicting the variation in the obtainable benefits. Learners indicated that a smartphone is the most commonly used device. Learners also indicate that straight lectures, student to student plus student to lecturer communication, accessing learning material and assignments are core activities. In a TEL environment support by smartphones, learners indicated that they conveniently achieve the prior activities plus discussions and group work. Learners seemed not attracted to the possibility of using TEL environment to take lectures, as well as make class presentations. The less attractiveness of these two factors may be due to the teacher centered approach commonly applied in the country’s education system.
Keywords: Technology enhanced learning, mobile learning classroom learning, perceived benefits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698613 An Agent Oriented Approach to Operational Profile Management
Authors: Sunitha Ramanujam, Hany El Yamany, Miriam A. M. Capretz
Abstract:
Software reliability, defined as the probability of a software system or application functioning without failure or errors over a defined period of time, has been an important area of research for over three decades. Several research efforts aimed at developing models to improve reliability are currently underway. One of the most popular approaches to software reliability adopted by some of these research efforts involves the use of operational profiles to predict how software applications will be used. Operational profiles are a quantification of usage patterns for a software application. The research presented in this paper investigates an innovative multiagent framework for automatic creation and management of operational profiles for generic distributed systems after their release into the market. The architecture of the proposed Operational Profile MAS (Multi-Agent System) is presented along with detailed descriptions of the various models arrived at following the analysis and design phases of the proposed system. The operational profile in this paper is extended to comprise seven different profiles. Further, the criticality of operations is defined using a new composed metrics in order to organize the testing process as well as to decrease the time and cost involved in this process. A prototype implementation of the proposed MAS is included as proof-of-concept and the framework is considered as a step towards making distributed systems intelligent and self-managing.Keywords: Software reliability, Software testing, Metrics, Distributed systems, Multi-agent systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857612 Analysing Environmental Risks and Perceptions of Risks to Assess Health and Well-being in Poor Areas of Abidjan
Authors: Kouassi Dongo, Christian Zurbrügg, Gueladio Cissé1, Brigit Obrist, Marcel Tanner, Jean Biémi
Abstract:
This study analyzed environmental health risks and people-s perceptions of risks related to waste management in poor settlements of Abidjan, to develop integrated solutions for health and well-being improvement. The trans-disciplinary approach used relied on remote sensing, a geographic information system (GIS), qualitative and quantitative methods such as interviews and a household survey (n=1800). Mitigating strategies were then developed using an integrated participatory stakeholder workshop. Waste management deficiencies resulting in lack of drainage and uncontrolled solid and liquid waste disposal in the poor settlements lead to severe environmental health risks. Health problems were caused by direct handling of waste, as well as through broader exposure of the population. People in poor settlements had little awareness of health risks related to waste management in their community and a general lack of knowledge pertaining to sanitation systems. This unfortunate combination was the key determinant affecting the health and vulnerability. For example, an increased prevalence of malaria (47.1%) and diarrhoea (19.2%) was observed in the rainy season when compared to the dry season (32.3% and 14.3%). Concerted and adapted solutions that suited all the stakeholders concerned were developed in a participatory workshop to allow for improvement of health and well-being.Keywords: Abidjan, environmental health risks, informalsettlements, vulnerability, waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763611 Unequal Error Protection of Facial Features for Personal ID Images Coding
Abstract:
This paper presents an approach for an unequal error protection of facial features of personal ID images coding. We consider unequal error protection (UEP) strategies for the efficient progressive transmission of embedded image codes over noisy channels. This new method is based on the progressive image compression embedded zerotree wavelet (EZW) algorithm and UEP technique with defined region of interest (ROI). In this case is ROI equal facial features within personal ID image. ROI technique is important in applications with different parts of importance. In ROI coding, a chosen ROI is encoded with higher quality than the background (BG). Unequal error protection of image is provided by different coding techniques and encoding LL band separately. In our proposed method, image is divided into two parts (ROI, BG) that consist of more important bytes (MIB) and less important bytes (LIB). The proposed unequal error protection of image transmission has shown to be more appropriate to low bit rate applications, producing better quality output for ROI of the compresses image. The experimental results verify effectiveness of the design. The results of our method demonstrate the comparison of the UEP of image transmission with defined ROI with facial features and the equal error protection (EEP) over additive white gaussian noise (AWGN) channel.Keywords: Embedded zerotree wavelet (EZW), equal error protection (EEP), facial features, personal ID images, region of interest (ROI), unequal error protection (UEP)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490610 An Optimal Load Shedding Approach for Distribution Networks with DGs considering Capacity Deficiency Modelling of Bulked Power Supply
Authors: A. R. Malekpour, A.R. Seifi
Abstract:
This paper discusses a genetic algorithm (GA) based optimal load shedding that can apply for electrical distribution networks with and without dispersed generators (DG). Also, the proposed method has the ability for considering constant and variable capacity deficiency caused by unscheduled outages in the bulked generation and transmission system of bulked power supply. The genetic algorithm (GA) is employed to search for the optimal load shedding strategy in distribution networks considering DGs in two cases of constant and variable modelling of bulked power supply of distribution networks. Electrical power distribution systems have a radial network and unidirectional power flows. With the advent of dispersed generations, the electrical distribution system has a locally looped network and bidirectional power flows. Therefore, installed DG in the electrical distribution systems can cause operational problems and impact on existing operational schemes. Introduction of DGs in electrical distribution systems has introduced many new issues in operational and planning level. Load shedding as one of operational issue has no exempt. The objective is to minimize the sum of curtailed load and also system losses within the frame-work of system operational and security constraints. The proposed method is tested on a radial distribution system with 33 load points for more practical applications.
Keywords: DG, Load shedding, Optimization, Capacity Deficiency Modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739609 A Proposed Hybrid Color Image Compression Based on Fractal Coding with Quadtree and Discrete Cosine Transform
Authors: Shimal Das, Dibyendu Ghoshal
Abstract:
Fractal based digital image compression is a specific technique in the field of color image. The method is best suited for irregular shape of image like snow bobs, clouds, flame of fire; tree leaves images, depending on the fact that parts of an image often resemble with other parts of the same image. This technique has drawn much attention in recent years because of very high compression ratio that can be achieved. Hybrid scheme incorporating fractal compression and speedup techniques have achieved high compression ratio compared to pure fractal compression. Fractal image compression is a lossy compression method in which selfsimilarity nature of an image is used. This technique provides high compression ratio, less encoding time and fart decoding process. In this paper, fractal compression with quad tree and DCT is proposed to compress the color image. The proposed hybrid schemes require four phases to compress the color image. First: the image is segmented and Discrete Cosine Transform is applied to each block of the segmented image. Second: the block values are scanned in a zigzag manner to prevent zero co-efficient. Third: the resulting image is partitioned as fractals by quadtree approach. Fourth: the image is compressed using Run length encoding technique.
Keywords: Fractal coding, Discrete Cosine Transform, Iterated Function System (IFS), Affine Transformation, Run length encoding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570608 When Psychology Meets Ecology: Cognitive Flexibility for Quarry Rehabilitation
Authors: J. Fenianos, C. Khater, D. Brouillet
Abstract:
Ecological projects are often faced with reluctance from local communities hosting the project, especially when this project involves variation from preset ideas or classical practices. This paper aims at appreciating the contribution of environmental psychology through cognitive flexibility exercises to improve the acceptability of local communities in adopting more ecological rehabilitation scenarios. The study is based on a quarry site located in Bekaa- Lebanon. Four groups were considered with different levels of involvement, as follows: Group 1 is Training (T) – 50 hours of on-site training over 8 months, Group 2 is Awareness (A) – 2 hours of awareness raising session, Group 3 is Flexibility (F) – 2 hours of flexibility exercises and Group 4 is the Control (C). The results show that individuals in Group 3 (F) who followed flexibility sessions accept comparably the ecological rehabilitation option over the more classical one. This is also the case for the people in Group 1 (T) who followed a more time-demanding “on-site training”. Another experience was conducted on a second quarry site combining flexibility with awareness-raising. This research confirms that it is possible to reduce resistance to change thanks to a limited in-time intervention using cognitive flexibility. This methodological approach could be transferable to other environmental problems involving local communities and changes in preset perceptions.
Keywords: Acceptability, ecological restoration, environmental psychology, Lebanon, local communities, resistance to change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283607 Development of In Situ Permeability Test Using Constant Discharge Method for Sandy Soils
Authors: A. Rifa’i, Y. Takeshita, M. Komatsu
Abstract:
The post-rain puddles problem that occurs in the first yard of Prambanan Temple are often disturbing visitor activity. A poodle layer and a drainage system had ever built to avoid such a problem, but puddles still did not stop appearing after rain. Permeability parameter needs to be determined by using a simpler procedure to find exact method of solution. The instrument modelling was proposed according to the development of field permeability testing instrument. This experiment used a proposed Constant Discharge method. Constant Discharge method used a tube poured with constant water flow from unsaturated until saturated soil condition. Volumetric water content (θ) were monitored by soil moisture measurement device. The results were correlations between k and θ which were drawn by numerical approach from Van Genutchen model. Parameters θr optimum value obtained from the test was at very dry soil. Coefficient of permeability with a density of 19.8 kN/m3 for unsaturated conditions was in range of 3 x 10-6 cm/sec (Sr=68%) until 9.98 x 10-4 cm/sec (Sr=82%). The equipment and testing procedure developed in this research was quite effective, simple and easy to be implemented on determining field soil permeability coefficient value of sandy soil. Using constant discharge method in proposed permeability test, value of permeability coefficient under unsaturated condition can be obtained without establish soil water characteristic curve.
Keywords: Constant discharge method, in situ permeability test, sandy soil, unsaturated conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3459