Search results for: surface pressure distribution
462 Optical Limiting Characteristics of Core-Shell Nanoparticles
Authors: G.Vinitha, A.Ramalingam
Abstract:
TiO2 nanoparticles were synthesized by hydrothermal method at 180°C from TiOSO4 aqueous solution with1m/l concentration. The obtained products were coated with silica by means of a seeded polymerization technique for a coating time of 1440 minutes to obtain well defined TiO2@SiO2 core-shell structure. The uncoated and coated nanoparticles were characterized by using X-Ray diffraction technique (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) to study their physico-chemical properties. Evidence from XRD and FTIR results show that SiO2 is homogenously coated on the surface of titania particles. FTIR spectra show that there exists an interaction between TiO2 and SiO2 and results in the formation of Ti-O-Si chemical bonds at the interface of TiO2 particles and SiO2 coating layer. The non linear optical limiting properties of TiO2 and TiO2@SiO2 nanoparticles dispersed in ethylene glycol were studied at 532nm using 5ns Nd:YAG laser pulses. Three-photon absorption is responsible for optical limiting characteristics in these nanoparticles and it is seen that the optical nonlinearity is enhanced in core-shell structures when compared with single counterparts. This effective three-photon type absorption at this wavelength, is of potential application in fabricating optical limiting devices.Keywords: hydrothermal method, optical limiting devicesseeded polymerization technique, three-photon type absorption
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820461 Identifying Dry Years by Using the Dependable Rainfall Index and Its Effects on the Olive Crop in Roudbar, Gilan, South Western of Caspian Sea
Authors: Bahman Ramezani Gourabi
Abstract:
Drought is one of the most important natural disasters which is probable to occur in all regions with completely different climates and in addition to causing death. It results in many economic losses and social consequences. For this reason. Studying the effects and losses caused by drought which include limitation or shortage of agricultural and drinking water resources. Decreased rainfall and increased evapotranspiration. Limited plant growth and decreased agricultural products. Especially those of dry-farming. Lower levels of surface and ground waters and increased immigrations. Etc. in the country is statistical period (1988-2007) for six stations in Roudbar town were used for statistical analysis and calculating humid and dry years. The dependable rainfall index (DRI) was the main method used in this research. Results showed that during the said statistical period and also during the years 1996-1998 and 2007. more than half of the stations had faced drought. With consideration of the conducted studies. Drawing diagrams and comparing the available data with those of dry and humid years it was found that drought affected agricultural products (e.g.olive) in a way that during the year 1996 1996 drought. Olive groves of Roudbar suffered the greatest damages. Whereupon about 70% of the crops were lost.
Keywords: Dependable rainfall, drought, annual rainfall, roudbar, olive, gilan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755460 Maximization of Lifetime for Wireless Sensor Networks Based on Energy Efficient Clustering Algorithm
Authors: Frodouard Minani
Abstract:
Since last decade, wireless sensor networks (WSNs) have been used in many areas like health care, agriculture, defense, military, disaster hit areas and so on. Wireless Sensor Networks consist of a Base Station (BS) and more number of wireless sensors in order to monitor temperature, pressure, motion in different environment conditions. The key parameter that plays a major role in designing a protocol for Wireless Sensor Networks is energy efficiency which is a scarcest resource of sensor nodes and it determines the lifetime of sensor nodes. Maximizing sensor node’s lifetime is an important issue in the design of applications and protocols for Wireless Sensor Networks. Clustering sensor nodes mechanism is an effective topology control approach for helping to achieve the goal of this research. In this paper, the researcher presents an energy efficiency protocol to prolong the network lifetime based on Energy efficient clustering algorithm. The Low Energy Adaptive Clustering Hierarchy (LEACH) is a routing protocol for clusters which is used to lower the energy consumption and also to improve the lifetime of the Wireless Sensor Networks. Maximizing energy dissipation and network lifetime are important matters in the design of applications and protocols for wireless sensor networks. Proposed system is to maximize the lifetime of the Wireless Sensor Networks by choosing the farthest cluster head (CH) instead of the closest CH and forming the cluster by considering the following parameter metrics such as Node’s density, residual-energy and distance between clusters (inter-cluster distance). In this paper, comparisons between the proposed protocol and comparative protocols in different scenarios have been done and the simulation results showed that the proposed protocol performs well over other comparative protocols in various scenarios.
Keywords: Base station, clustering algorithm, energy efficient, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853459 Molecular Dynamics Simulation of the Effect of the Solid Gas Interface Nanolayer on Enhanced Thermal Conductivity of Copper-CO2 Nanofluid
Authors: Zeeshan Ahmed, Ajinkya Sarode, Pratik Basarkar, Atul Bhargav, Debjyoti Banerjee
Abstract:
The use of CO2 in oil recovery and in CO2 capture and storage is gaining traction in recent years. These applications involve heat transfer between CO2 and the base fluid, and hence, there arises a need to improve the thermal conductivity of CO2 to increase the process efficiency and reduce cost. One way to improve the thermal conductivity is through nanoparticle addition in the base fluid. The nanofluid model in this study consisted of copper (Cu) nanoparticles in varying concentrations with CO2 as a base fluid. No experimental data are available on thermal conductivity of CO2 based nanofluid. Molecular dynamics (MD) simulations are an increasingly adopted tool to perform preliminary assessments of nanoparticle (NP) fluid interactions. In this study, the effect of the formation of a nanolayer (or molecular layering) at the gas-solid interface on thermal conductivity is investigated using equilibrium MD simulations by varying NP diameter and keeping the volume fraction (1.413%) of nanofluid constant to check the diameter effect of NP on the nanolayer and thermal conductivity. A dense semi-solid fluid layer was seen to be formed at the NP-gas interface, and the thickness increases with increase in particle diameter, which also moves with the NP Brownian motion. Density distribution has been done to see the effect of nanolayer, and its thickness around the NP. These findings are extremely beneficial, especially to industries employed in oil recovery as increased thermal conductivity of CO2 will lead to enhanced oil recovery and thermal energy storage.
Keywords: Copper-CO2 nanofluid, molecular interfacial layer, thermal conductivity, molecular dynamic simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117458 Impact of Gate Insulation Material and Thickness on Pocket Implanted MOS Device
Authors: Muhibul Haque Bhuyan
Abstract:
This paper reports on the impact study with the variation of the gate insulation material and thickness on different models of pocket implanted sub-100 nm n-MOS device. The gate materials used here are silicon dioxide (SiO2), aluminum silicate (Al2SiO5), silicon nitride (Si3N4), alumina (Al2O3), hafnium silicate (HfSiO4), tantalum pentoxide (Ta2O5), hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and lanthanum oxide (La2O3) upon a p-type silicon substrate material. The gate insulation thickness was varied from 2.0 nm to 3.5 nm for a 50 nm channel length pocket implanted n-MOSFET. There are several models available for this device. We have studied and simulated threshold voltage model incorporating drain and substrate bias effects, surface potential, inversion layer charge, pinch-off voltage, effective electric field, inversion layer mobility, and subthreshold drain current models based on two linear symmetric pocket doping profiles. We have changed the values of the two parameters, viz. gate insulation material and thickness gradually fixing the other parameter at their typical values. Then we compared and analyzed the simulation results. This study would be helpful for the nano-scaled MOS device designers for various applications to predict the device behavior.Keywords: Linear symmetric pocket profile, pocket implanted n-MOS Device, model, impact of gate material, insulator thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 392457 Assessment of Pier Foundations for Onshore Wind Turbines in Non-cohesive Soil
Authors: Mauricio Terceros, Jann-Eike Saathoff, Martin Achmus
Abstract:
In non-cohesive soil, onshore wind turbines are often found on shallow foundations with a circular or octagonal shape. For the current generation of wind turbines, shallow foundations with very large breadths are required. The foundation support costs thus represent a considerable portion of the total construction costs. Therefore, an economic optimization of the type of foundation is highly desirable. A conceivable alternative foundation type would be a pier foundation, which combines the load transfer over the foundation area at the pier base with the transfer of horizontal loads over the shaft surface of the pier. The present study aims to evaluate the load-bearing behavior of a pier foundation based on comprehensive parametric studies. Thereby, three-dimensional numerical simulations of both pier and shallow foundations are developed. The evaluation of the results focuses on the rotational stiffnesses of the proposed soil-foundation systems. In the design, the initial rotational stiffness is decisive for consideration of natural frequencies, whereas the rotational secant stiffness for a maximum load is decisive for serviceability considerations. A systematic analysis of the results at different load levels shows that the application of the typical pier foundation is presumably limited to relatively small onshore wind turbines.
Keywords: Onshore wind foundation, pier foundation, rotational stiffness of soil-foundation system, shallow foundation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 745456 Preparation and Cutting Performance of Boron-Doped Diamond Coating on Cemented Carbide Cutting Tools with High Cobalt Content
Authors: Zhaozhi Liu, Feng Xu, Junhua Xu, Xiaolong Tang, Ying Liu, Dunwen Zuo
Abstract:
Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cutting properties of CVD diamond coated cemented carbide cutting tool with high cobalt content. The preparation technology of boron-doped diamond (BDD) coating has been studied and the coated drills were prepared. BDD coating were deposited on the drills by using the optimized parameters and the SEM results show that there are no cracks or collapses in the coating. Cutting tests with the prepared drills against the silumin and aluminum base printed circuit board (PCB) have been studied. The results show that the wear amount of the coated drill is small and the machined surface has a better precision. The coating does not come off during the test, which shows good adhesion and cutting performance of the drill.
Keywords: Cemented carbide with high cobalt content, CVD boron-doped diamond, cutting test, drill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2725455 The Integration of Cleaner Production Innovation and Creativity for Supply Chain Sustainability of Bogor Batik SMEs
Authors: Sawarni Hasibuan, Juliza Hidayati
Abstract:
Competitiveness and sustainability issues not only put pressure on big companies, but also small and medium enterprises (SMEs). SMEs Batik Bogor is one of the local culture-based creative industries in Bogor city which is also dealing with the issue of sustainability. The purpose of this research is to develop framework of sustainability at SMEs Batik Indonesia case of SMEs Batik Bogor by integrating innovation of cleaner production in its supply chain. The approach used is desk study, field survey, in-depth interviews, and benchmarking best practices of SMEs sustainability. In-depth interviews involve stakeholders to identify the needs and standards of sustainability of SMEs Batik. Data analysis was done by benchmarking method, Multi Dimension Scaling (MDS) method, and Strength, Weakness, Opportunity, Threat (SWOT) analysis. The results recommend the framework of sustainability for SMEs Batik in Indonesia. The sustainability status of SMEs Batik Bogor is classified as Moderate Sustainable. Factors that support the sustainability of SMEs Batik Bogor such is a strong commitment of top management in adopting cleaner production innovation and creativity approach. Successful cleaner production innovations are implemented primarily in the substitution of dye materials from toxic to non-toxic, reducing the intensity of non-renewable energy use, as well as the reuse and recycle of solid waste. “Mosaic Batik” is one of the innovations of solid waste utilization of batik waste produced by company R&D center that gives benefit to three pillars of sustainability, that is financial benefit, environmental benefit, and social benefit. The sustainability of SMEs Batik Bogor cannot be separated from the support of Bogor City Government which proactively facilitates the promotion of sustainable innovation produced by SMEs Batik Bogor.Keywords: Cleaner production innovation, creativity, SMEs Batik, sustainability supply chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883454 Evaluation of Residual Stresses in Human Face as a Function of Growth
Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan
Abstract:
Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of living tissues to mechanical loads is necessary for a wide range of developing fields such as prosthetics design or computerassisted surgical interventions. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically, growth is one of the main sources. Extracting body organ’s shapes from medical imaging does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is gravity since an organ grows under its influence from birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. This paper presents an original computational framework based on gradual growth to determine the residual stresses due to growth. To illustrate the method, we apply it to a finite element model of a healthy human face reconstructed from medical images. The distribution of residual stress in facial tissues is computed, which can overcome the effect of gravity and maintain tissues firmness. Our assumption is that tissue wrinkles caused by aging could be a consequence of decreasing residual stress and thus not counteracting gravity. Taking into account these stresses seems therefore extremely important in maxillofacial surgery. It would indeed help surgeons to estimate tissues changes after surgery.Keywords: Finite element method, growth, residual stress, soft tissue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687453 Fast Factored DCT-LMS Speech Enhancement for Performance Enhancement of Digital Hearing Aid
Authors: Sunitha. S.L., V. Udayashankara
Abstract:
Background noise is particularly damaging to speech intelligibility for people with hearing loss especially for sensorineural loss patients. Several investigations on speech intelligibility have demonstrated sensorineural loss patients need 5-15 dB higher SNR than the normal hearing subjects. This paper describes Discrete Cosine Transform Power Normalized Least Mean Square algorithm to improve the SNR and to reduce the convergence rate of the LMS for Sensory neural loss patients. Since it requires only real arithmetic, it establishes the faster convergence rate as compare to time domain LMS and also this transformation improves the eigenvalue distribution of the input autocorrelation matrix of the LMS filter. The DCT has good ortho-normal, separable, and energy compaction property. Although the DCT does not separate frequencies, it is a powerful signal decorrelator. It is a real valued function and thus can be effectively used in real-time operation. The advantages of DCT-LMS as compared to standard LMS algorithm are shown via SNR and eigenvalue ratio computations. . Exploiting the symmetry of the basis functions, the DCT transform matrix [AN] can be factored into a series of ±1 butterflies and rotation angles. This factorization results in one of the fastest DCT implementation. There are different ways to obtain factorizations. This work uses the fast factored DCT algorithm developed by Chen and company. The computer simulations results show superior convergence characteristics of the proposed algorithm by improving the SNR at least 10 dB for input SNR less than and equal to 0 dB, faster convergence speed and better time and frequency characteristics.Keywords: Hearing Impairment, DCT Adaptive filter, Sensorineural loss patients, Convergence rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173452 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network
Authors: Sanae Attioui, Said Najah
Abstract:
The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.
Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506451 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.
Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766450 Optical Flow Technique for Supersonic Jet Measurements
Authors: H. D. Lim, Jie Wu, T. H. New, Shengxian Shi
Abstract:
This paper outlines the development of an experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 4 bar and exit Mach of 1.5. High-speed singleframe or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Despite these challenges however, this supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer.
Keywords: Schlieren, optical flow, supersonic jets, shock shear layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906449 Analysis of Hard Turning Process of AISI D3-Thermal Aspects
Authors: B. Varaprasad, C. Srinivasa Rao
Abstract:
In the manufacturing sector, hard turning has emerged as vital machining process for cutting hardened steels. Besides many advantages of hard turning operation, one has to implement to achieve close tolerances in terms of surface finish, high product quality, reduced machining time, low operating cost and environmentally friendly characteristics. In the present study, three-dimensional CAE (Computer Aided Engineering) based simulation of hard turning by using commercial software DEFORM 3D has been compared to experimental results of stresses, temperatures and tool forces in machining of AISI D3 steel using mixed Ceramic inserts (CC6050). In the present analysis, orthogonal cutting models are proposed, considering several processing parameters such as cutting speed, feed, and depth of cut. An exhaustive friction modeling at the tool-work interfaces is carried out. Work material flow around the cutting edge is carefully modeled with adaptive re-meshing simulation capability. In process simulations, feed rate and cutting speed are constant (i.e.,. 0.075 mm/rev and 155 m/min), and analysis is focused on stresses, forces, and temperatures during machining. Close agreement is observed between CAE simulation and experimental values.Keywords: Hard-turning, computer-aided engineering, computational machining, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356448 An Evaluation of Land Use Control in Hokkaido, Japan
Authors: Kayoko Yamamoto
Abstract:
This study focuses on an evaluation of Hokkaido which is the northernmost and largest prefecture by surface area in Japan and particularly on two points: the rivalry between all kinds of land use such as urban land and agricultural and forestry land in various cities and their surrounding areas and the possibilities for forestry biomass in areas other than those mentioned above and grasps which areas require examination of the nature of land use control and guidance through conducting land use analysis at the district level using GIS (Geographic Information Systems). The results of analysis in this study demonstrated that it is essential to divide the whole of Hokkaido into two areas: those within delineated city planning areas and those outside of delineated city planning areas and to conduct an evaluation of each land use control. In delineated urban areas, particularly urban areas, it is essential to re-examine land use from the point of view of compact cities or smart cities along with conducting an evaluation of land use control that focuses on issues of rivalry between all kinds of land use such as urban land and agricultural and forestry land. In areas outside of delineated urban areas, it is desirable to aim to build a specific community recycling range based on forest biomass utilization by conducting an evaluation of land use control concerning the possibilities for forest biomass focusing particularly on forests within and outside of city planning areas.Keywords: Land Use Control, Urbanization, Forestry Biomass, Geographic Information Systems (GIS), Hokkaido
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551447 Haemodynamics Study in Subject Specific Carotid Bifurcation Using FSI
Authors: S. M. Abdul Khader, Anurag Ayachit, Raghuvir Pai, K. A. Ahmed, V. R. K. Rao, S. Ganesh Kamath
Abstract:
The numerical simulation has made tremendous advances in investigating the blood flow phenomenon through elastic arteries. Such study can be useful in demonstrating the disease progression and hemodynamics of cardiovascular diseases such as atherosclerosis. In the present study, patient specific case diagnosed with partially stenosed complete right ICA and normal left carotid bifurcation without any atherosclerotic plaque formation is considered. 3D patient specific carotid bifurcation model is generated based on CT scan data using MIMICS-4.0 and numerical analysis is performed using FSI solver in ANSYS-14.5. The blood flow is assumed to be incompressible, homogenous and Newtonian, while the artery wall is assumed to be linearly elastic. The two-way sequentially coupled transient FSI analysis is performed using FSI solver for three pulse cycles. The hemodynamic parameters such as flow pattern, Wall Shear Stress, pressure contours and arterial wall deformation are studied at the bifurcation and critical zones such as stenosis. The variation in flow behavior is studied throughout the pulse cycle. Also, the simulation results reveal that there is a considerable increase in the flow behavior in stenosed carotid in contrast to the normal carotid bifurcation system. The investigation also demonstrates the disturbed flow pattern especially at the bifurcation and stenosed zone elevating the hemodynamics, particularly during peak systole and later part of the pulse cycle. The results obtained agree well with the clinical observation and demonstrates the potential of patient specific numerical studies in prognosis of disease progression and plaque rupture.Keywords: Fluid-Structure Interaction, arterial stenosis, Wall Shear Stress, Carotid Artery Bifurcation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298446 Control of Braking Force under Loaded and Empty Conditions on Two Wheeler
Authors: M. S. Manikandan, K. V. Nithish Kumar, M. Krishnamoorthi, V. Ganesh
Abstract:
The Automobile Braking System has a crucial role for safety of the passenger and riding quality of the vehicle. The braking force mainly depends on normal reaction on the wheel and the co-efficient of friction between the tire and the road surface. Whenever a vehicle is loaded, the normal reaction on the rear wheel is increased. Thus the amount of braking force required to halt the vehicle with minimum stopping distance, is based on the pillion load on the vehicle. In this work, in order to vary the braking force in two wheelers, the mechanical leverage which operates the master cylinder is varied based on the pillion load. Thus the amount of braking force developed between ground and tire is varied. This optimum braking force on the disc brake helps in attaining the minimum vehicle stopping distance. In addition to that, it also helps in preventing sliding. Thus the system results in reducing the stopping distance of the two wheelers and providing a better braking efficiency than the conventional braking system.
Keywords: Braking force, Master cylinder, Mechanical leverage, Minimum stopping distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6194445 An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses
Authors: Ki Ok Choi, Sung Ho Hong, Dong Suck Kim, Don Mook Choi
Abstract:
Rack type warehouses are different from general buildings in the kinds, amount, and arrangement of stored goods, so the fire risk of rack type warehouses is different from those buildings. The fire pattern of rack type warehouses is different in combustion characteristic and storing condition of stored goods. The initial fire burning rate is different in the surface condition of materials, but the running time of fire is closely related with the kinds of stored materials and stored conditions. The stored goods of the warehouse are consisted of diverse combustibles, combustible liquid, and so on. Fire detection time may be delayed because the residents are less than office and commercial buildings. If fire detectors installed in rack type warehouses are inadaptable, the fire of the warehouse may be the great fire because of delaying of fire detection. In this paper, we studied what kinds of fire detectors are optimized in early detecting of rack type warehouse fire by real-scale fire tests. The fire detectors used in the tests are rate of rise type, fixed type, photo electric type, and aspirating type detectors. We considered optimum fire detecting method in rack type warehouses suggested by the response characteristic and comparative analysis of the fire detectors.
Keywords: Fire detector, rack, response characteristic, warehouse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 986444 Internal Structure Formation in High Strength Fiber Concrete during Casting
Authors: Olga Kononova, Andrejs Krasnikovs , Videvuds Lapsa, Jurijs Kalinka, Angelina Galushchak
Abstract:
Post cracking behavior and load –bearing capacity of the steel fiber reinforced high-strength concrete (SFRHSC) are dependent on the number of fibers are crossing the weakest crack (bridged the crack) and their orientation to the crack surface. Filling the mould by SFRHSC, fibers are moving and rotating with the concrete matrix flow till the motion stops in each internal point of the concrete body. Filling the same mould from the different ends SFRHSC samples with the different internal structures (and different strength) can be obtained. Numerical flow simulations (using Newton and Bingham flow models) were realized, as well as single fiber planar motion and rotation numerical and experimental investigation (in viscous flow) was performed. X-ray pictures for prismatic samples were obtained and internal fiber positions and orientations were analyzed. Similarly fiber positions and orientations in cracked cross-section were recognized and were compared with numerically simulated. Structural SFRHSC fracture model was created based on single fiber pull-out laws, which were determined experimentally. Model predictions were validated by 15x15x60cm prisms 4 point bending tests.Keywords: fibers, orientation, high strength concrete, flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447443 Investigation of Bubble Growth during Nucleate Boiling Using CFD
Authors: K. Jagannath, Akhilesh Kotian, S. S. Sharma, Achutha Kini U., P. R. Prabhu
Abstract:
Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained are compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results.Keywords: Bubble growth, computational fluid dynamics, detachment diameter, terminal velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121442 Review of Downscaling Methods in Climate Change and Their Role in Hydrological Studies
Authors: Nishi Bhuvandas, P. V. Timbadiya, P. L. Patel, P. D. Porey
Abstract:
Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. The world wide observed changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although the effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest.
Keywords: Climate Change, Downscaling, GCM, RCM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3378441 Computer Study of Cluster Mechanism of Anti-greenhouse Effect
Authors: A. Galashev
Abstract:
Absorption spectra of infra-red (IR) radiation of the disperse water medium absorbing the most important greenhouse gases: CO2 , N2O , CH4 , C2H2 , C2H6 have been calculated by the molecular dynamics method. Loss of the absorbing ability at the formation of clusters due to a reduction of the number of centers interacting with IR radiation, results in an anti-greenhouse effect. Absorption of O3 molecules by the (H2O)50 cluster is investigated at its interaction with Cl- ions. The splitting of ozone molecule on atoms near to cluster surface was observed. Interaction of water cluster with Cl- ions causes the increase of integrated intensity of emission spectra of IR radiation, and also essential reduction of the similar characteristic of Raman spectrum. Relative integrated intensity of absorption of IR radiation for small water clusters was designed. Dependences of the quantity of weight on altitude for vapor of monomers, clusters, droplets, crystals and mass of all moisture were determined. The anti-greenhouse effect of clusters was defined as the difference of increases of average global temperature of the Earth, caused by absorption of IR radiation by free water molecules forming clusters, and absorption of clusters themselves. The greenhouse effect caused by clusters makes 0.53 K, and the antigreenhouse one is equal to 1.14 K. The increase of concentration of CO2 in the atmosphere does not always correlate with the amplification of greenhouse effect.Keywords: Greenhouse gases, infrared absorption and Raman spectra, molecular dynamics method, water clusters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488440 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations
Authors: A. Javed, K. Djidjeli, J. T. Xing
Abstract:
The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.
Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2833439 Microalbuminuria in Essential Hypertension
Authors: Sharan Badiger, Prema T. Akkasaligar, Sandeep HM, Biradar MS
Abstract:
Essential hypertension (HTN) usually clusters with other cardiovascular risk factors such as age, overweight, diabetes, insulin resistance and dyslipidemia. The target organ damage (TOD) such as left ventricular hypertrophy, microalbuminuria (MA), acute coronary syndrome (ACS), stroke and cognitive dysfunction takes place early in course of hypertension. Though the prevalence of hypertension is high in India, the relationship between microalbuminuria and target organ damage in hypertension is not well studied. This study aim at detecting MA in essential hypertension and its relation to severity of HTN, duration of HTN, body mass index (BMI), age and TOD such as HTN retinopathy and acute coronary syndrome The present study was done in 100 patients of essential hypertension non diabetics admitted to B.L.D.E.University-s Sri B.M.Patil Medical College, Bijapur, from October 2008 to April 2011. The patients underwent detailed history and clinical examination. Early morning 5 ml of urine sample was collected & MA was estimated by immunoturbidometry method. The relationship of MA with the duration & severity of HTN, BMI, age, sex and TOD's like hypertensive retinopathy, ACS was assessed by univariate analysis. The prevalence of MA in this study was found to be 63 %. In that 42% were male & 21% were female. In this study a significant association between MA and the duration of hypertension (p = 0.036) & (OR =0.438). Longer the duration of hypertension, more possibility of microalbumin in urine. Also there was a significant association between severity of hypertension and MA (p=0.045) and (OR=0.093). MA was positive in 50 (79.4%) patients out of 63, whose blood pressure was >160/100 mm Hg. In this study a significant association between MA and the grades of hypertensive retinopathy (p =0.011) and acute coronary syndrome (p = 0.041) (OR =2.805). Gender and BMI did not pose high risk for MA in this study.The prevalence of MA in essential hypertension is high in this part of the community and MA will increase the risk of developing target organ damage.Early screening of patients with essential hypertension for MA and aggressive management of positive cases might reduce the burden of chronic kidney diseases and cardiovascular diseases in the community.
Keywords: Acute coronary syndrome, Essential hypertension, Microalbuminuria, Target organ damage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392438 Application Research on Large Profiled Statues of Steel-Concrete Composite Shear Wall
Authors: Zhao Cai-qi, Ma Jun
Abstract:
Twin steel plates-concrete composite shear walls are composed of a pair of steel plate layers and a concrete layer sandwiched between them, which have the characteristics of both reinforced concrete shear walls and steel plate shear walls. Twin steel plates-composite shear walls contain very high ultimsate bearing capacity and ductility, which have great potential to be applied in the super high-rise buildings and special structures. In this paper, we analyzed the basic characteristics and stress mechanism of the twin steel plates-composite shear walls. Specifically, we analyzed the effects of the steel plate thickness, wall thickness and concrete strength on the bearing capacity of the twin steel plates-composite shear walls. The analysis results indicate that: (1) the initial shear stiffness and ultimate shear-carrying capacity is not significantly affected by the thickness of concrete wall but by the class of concrete, (2) both factors significantly impact the shear distribution of the shear walls in ultimate shear-carrying capacity. The technique of twin steel plates-composite shear walls has been successfully applied in the construction of an 88-meter Huge Statue of Buddha located in Hunan Province, China. The analysis results and engineering experiences showed that the twin steel plates-composite shear walls have great potential for future research and applications.Keywords: Twin steel plates-concrete composite shear wall, huge statue of Buddha, shear capacity, initial lateral stiffness, overturning moment bearing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124437 Modeling the Fischer-Tropsch Reaction In a Slurry Bubble Column Reactor
Authors: F. Gholami, M. Torabi Angaji, Z. Gholami
Abstract:
Fischer-Tropsch synthesis is one of the most important catalytic reactions that convert the synthetic gas to light and heavy hydrocarbons. One of the main issues is selecting the type of reactor. The slurry bubble reactor is suitable choice for Fischer- Tropsch synthesis because of its good qualification to transfer heat and mass, high durability of catalyst, low cost maintenance and repair. The more common catalysts for Fischer-Tropsch synthesis are Iron-based and Cobalt-based catalysts, the advantage of these catalysts on each other depends on which type of hydrocarbons we desire to produce. In this study, Fischer-Tropsch synthesis is modeled with Iron and Cobalt catalysts in a slurry bubble reactor considering mass and momentum balance and the hydrodynamic relations effect on the reactor behavior. Profiles of reactant conversion and reactant concentration in gas and liquid phases were determined as the functions of residence time in the reactor. The effects of temperature, pressure, liquid velocity, reactor diameter, catalyst diameter, gasliquid and liquid-solid mass transfer coefficients and kinetic coefficients on the reactant conversion have been studied. With 5% increase of liquid velocity (with Iron catalyst), H2 conversions increase about 6% and CO conversion increase about 4%, With 8% increase of liquid velocity (with Cobalt catalyst), H2 conversions increase about 26% and CO conversion increase about 4%. With 20% increase of gas-liquid mass transfer coefficient (with Iron catalyst), H2 conversions increase about 12% and CO conversion increase about 10% and with Cobalt catalyst H2 conversions increase about 10% and CO conversion increase about 6%. Results show that the process is sensitive to gas-liquid mass transfer coefficient and optimum condition operation occurs in maximum possible liquid velocity. This velocity must be more than minimum fluidization velocity and less than terminal velocity in such a way that avoid catalysts particles from leaving the fluidized bed.Keywords: Modeling, Fischer-Tropsch Synthesis, Slurry Bubble Column Reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3023436 Primary Level Teachers’ Response to Gender Representation in Textbook Contents
Authors: Pragya Paneru
Abstract:
This paper explores altogether 10 primary teachers’ views on gender representation in primary level textbooks. Data were collected from the teachers who taught in private schools in the Kailali and Kathmandu districts. This research uses a semi-structured interview method to obtain information regarding teachers’ attitudes toward gender representations in textbook contents. The interview data were analysed by using critical skills of qualitative research. The findings revealed that most of the teachers were unaware and regarded gender issues as insignificant to discuss in primary-level classes. Most of them responded to the questions personally and claimed that there were no gender issues in their classrooms. Some of the teachers connected gender issues with contexts other than textbook representations such as school discrimination in the distribution of salary among male and female teachers, school practices of awarding girls rather than boys as the most disciplined students, following girls’ first rule in the assembly marching, encouraging only girls in the stage shows, and involving students in gender-specific activities such as decorating works for girls and physical tasks for boys. The interview also revealed teachers’ covert gendered attitudes in their remarks. Nevertheless, most of the teachers accepted that gender-biased contents have an impact on learners and this problem can be solved with more gender-centred research in the education field, discussions, and training to increase awareness regarding gender issues. Agreeing with the suggestion of teachers, this paper recommends proper training and awareness regarding how to confront gender issues in textbooks.
Keywords: Content analysis, gender equality, school education, critical awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254435 Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector
Authors: I-Huan Chiu, Kazuhiko Ninomiya, Shin’ichiro Takeda, Meito Kajino, Miho Katsuragawa, Shunsaku Nagasawa, Atsushi Shinohara, Tadayuki Takahashi, Ryota Tomaru, Shin Watanabe, Goro Yabu
Abstract:
In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have a higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of a polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical obervation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the nondestructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research.
Keywords: DSSD, muon, muonic X-ray, imaging, non-destructive analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268434 Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media
Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh
Abstract:
In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.
Keywords: Micro-polar theory, Galerkin method, MEMS, micro-fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658433 Depositional Environment and Source Potential of Devonian Source Rock, Ghadames Basin, Southern Tunisia
Authors: S. Mahmoudi, A. Belhaj Mohamed, M. Saidi, F. Rezgui
Abstract:
Depositional environment and source potential of the different organic-rich levels of Devonian age (up to 990m thick) from the onshore EC-1 well (Southern Tunisia) were investigated based on the analysis of more than 130 cutting samples by different geochemical techniques (Rock-Eval pyrolysis, GC-MS). The obtained results including Rock Eval Pyrolysis data and biomarker distribution (terpanes, steranes and aromatics) have been used to describe the depositional environment and to assess the thermal maturity of the Devonian organic matter. These results show that the Emsian deposits exhibit poor to fair TOC contents. The associated organic matter is composed of mixed kerogen (type II/III), as indicated by the predominance of C29 steranes over C27 and C28 homologous, that was deposited in a slightly reduced environment favoring organic matter preservation. Thermal maturity assessed from Tmax, TNR and MPI-1 values shows a mature stage of organic matter. The Middle Devonian (Eifelian) shales are rich in type II organic matter that was deposited in an open marine depositional environment. The TOC values are high and vary between 2 and 7% indicating good to excellent source rock. The relatively high HI values (reaching 547 mg HC/g TOC) and the low values of t19/t23 tricyclic terpane ratio (< 0.2) confirm the marine origin of the organic matter (type II). During the Upper Devonian, the organic matter was deposited under variable redox conditions, oxic to suboxic which is clearly indicated by the low C35/C34 hopanes ratio, immature to marginally mature with the vitrinite reflectance ranging from 0.5 to 0.7 Ro and Tmax value of 426°C-436 °C and the TOC values range between 0.8% to 4%.
Keywords: Depositional environment, Devonian, Source rock.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449