Search results for: unbalanced networks.
1519 Trustworthy Link Failure Recovery Algorithm for Highly Dynamic Mobile Adhoc Networks
Authors: Y. Harold Robinson, M. Rajaram
Abstract:
The Trustworthy link failure recovery algorithm is introduced in this paper, to provide the forwarding continuity even with compound link failures. The ephemeral failures are common in IP networks and it also has some proposals based on local rerouting. To ensure forwarding continuity, we are introducing the compound link failure recovery algorithm, even with compound link failures. For forwarding the information, each packet carries a blacklist, which is a min set of failed links encountered along its path, and the next hop is chosen by excluding the blacklisted links. Our proposed method describes how it can be applied to ensure forwarding to all reachable destinations in case of any two or more link or node failures in the network. After simulating with NS2 contains lot of samples proved that the proposed protocol achieves exceptional concert even under elevated node mobility using Trustworthy link Failure Recovery Algorithm.Keywords: Wireless Sensor Networks, Predistribution Scheme, Cryptographic Techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18741518 A Parameter-Tuning Framework for Metaheuristics Based on Design of Experiments and Artificial Neural Networks
Authors: Felix Dobslaw
Abstract:
In this paper, a framework for the simplification and standardization of metaheuristic related parameter-tuning by applying a four phase methodology, utilizing Design of Experiments and Artificial Neural Networks, is presented. Metaheuristics are multipurpose problem solvers that are utilized on computational optimization problems for which no efficient problem specific algorithm exist. Their successful application to concrete problems requires the finding of a good initial parameter setting, which is a tedious and time consuming task. Recent research reveals the lack of approach when it comes to this so called parameter-tuning process. In the majority of publications, researchers do have a weak motivation for their respective choices, if any. Because initial parameter settings have a significant impact on the solutions quality, this course of action could lead to suboptimal experimental results, and thereby a fraudulent basis for the drawing of conclusions.Keywords: Parameter-Tuning, Metaheuristics, Design of Experiments, Artificial Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17771517 Traffic Load based Performance Analysis of DSR and STAR Routing Protocol
Authors: Rani Astya, S.C. Sharma
Abstract:
The wireless adhoc network is comprised of wireless node which can move freely and are connected among themselves without central infrastructure. Due to the limited transmission range of wireless interfaces, in most cases communication has to be relayed over intermediate nodes. Thus, in such multihop network each node (also called router) is independent, self-reliant and capable to route the messages over the dynamic network topology. Various protocols are reported in this field and it is very difficult to decide the best one. A key issue in deciding which type of routing protocol is best for adhoc networks is the communication overhead incurred by the protocol. In this paper STAR a table driven and DSR on demand protocols based on IEEE 802.11 are analyzed for their performance on different performance measuring metrics versus varying traffic CBR load using QualNet 5.0.2 network simulator.Keywords: Adhoc networks, wireless networks, CBR, routingprotocols, route discovery, simulation, performance evaluation, MAC, IEEE 802.11, STAR, DSR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18971516 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks
Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha
Abstract:
Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs – Sigmoid, ReLU, and Tanh – have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment on multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLU-ReLU) combination. Our results show that on using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).
Keywords: Activation Function, Universal Approximation function, Neural Networks, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541515 Assessment of Channel Unavailability Effect on the Wireless Networks Teletraffic Modeling and Analysis
Authors: Eman S. El-Din, Hesham M. El-Badawy, Salwa H. Elramly
Abstract:
Whereas cellular wireless communication systems are subject to short-and long-term fading. The effect of wireless channel has largely been ignored in most of the teletraffic assessment researches. In this paper, a mathematical teletraffic model is proposed to estimate blocking and forced termination probabilities of cellular wireless networks as a result of teletraffic behavior as well as the outage of the propagation channel. To evaluate the proposed teletraffic model, gamma inter-arrival and general service time distributions have been considered based on wireless channel fading effect. The performance is evaluated and compared with the classical model. The proposed model is dedicated and investigated in different operational conditions. These conditions will consider not only the arrival rate process, but also, the different faded channels models.Keywords: Cellular wireless networks, outage probability, traffic model, gamma inter-arrival distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14951514 Complex-Valued Neural Networks for Blind Equalization of Time-Varying Channels
Authors: Rajoo Pandey
Abstract:
Most of the commonly used blind equalization algorithms are based on the minimization of a nonconvex and nonlinear cost function and a neural network gives smaller residual error as compared to a linear structure. The efficacy of complex valued feedforward neural networks for blind equalization of linear and nonlinear communication channels has been confirmed by many studies. In this paper we present two neural network models for blind equalization of time-varying channels, for M-ary QAM and PSK signals. The complex valued activation functions, suitable for these signal constellations in time-varying environment, are introduced and the learning algorithms based on the CMA cost function are derived. The improved performance of the proposed models is confirmed through computer simulations.
Keywords: Blind Equalization, Neural Networks, Constant Modulus Algorithm, Time-varying channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18911513 Optimal Power Allocation to Diversity Branches of Cooperative MISO Sensor Networks
Authors: Rooholah Hasanizadeh, Saadan Zokaei
Abstract:
In the context of sensor networks, where every few dB saving counts, the novel node cooperation schemes are reviewed where MIMO techniques play a leading role. These methods could be treated as joint approach for designing physical layer of their communication scenarios. Then we analyzed the BER performance of transmission diversity schemes under a general fading channel model and proposed a power allocation strategy to the transmitting sensor nodes. This approach is then compared to an equal-power assignment method and its performance enhancement is verified by the simulation. Another key point of the contribution lies in the combination of optimal power allocation and sensor nodes- cooperation in a transmission diversity regime (MISO). Numerical results are given through figures to demonstrate the optimality and efficiency of proposed combined approach.Keywords: Optimal power allocation, cooperative MISO scheme, sensor networks, diversity branch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14101512 A New Protocol for Concealed Data Aggregation in Wireless Sensor Networks
Authors: M. Abbasi Dezfouli, S. Mazraeh, M. H. Yektaie
Abstract:
Wireless sensor networks (WSN) consists of many sensor nodes that are placed on unattended environments such as military sites in order to collect important information. Implementing a secure protocol that can prevent forwarding forged data and modifying content of aggregated data and has low delay and overhead of communication, computing and storage is very important. This paper presents a new protocol for concealed data aggregation (CDA). In this protocol, the network is divided to virtual cells, nodes within each cell produce a shared key to send and receive of concealed data with each other. Considering to data aggregation in each cell is locally and implementing a secure authentication mechanism, data aggregation delay is very low and producing false data in the network by malicious nodes is not possible. To evaluate the performance of our proposed protocol, we have presented computational models that show the performance and low overhead in our protocol.Keywords: Wireless Sensor Networks, Security, Concealed Data Aggregation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17351511 A General Model for Amino Acid Interaction Networks
Authors: Omar Gaci, Stefan Balev
Abstract:
In this paper we introduce the notion of protein interaction network. This is a graph whose vertices are the protein-s amino acids and whose edges are the interactions between them. Using a graph theory approach, we identify a number of properties of these networks. We compare them to the general small-world network model and we analyze their hierarchical structure.Keywords: interaction network, protein structure, small-world network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15781510 The Framework for Adaptive Games for Mobile Application Using Neural Networks
Authors: Widodo Budiharto, Michael Yoseph Ricky, Ro'fah Nur Rachmawati
Abstract:
The rapid development of the BlackBerry games industry and its development goals were not just for entertainment, but also used for educational of students interactively. Unfortunately the development of adaptive educational games on BlackBerry in Indonesian language that interesting and entertaining for learning process is very limited. This paper shows the research of development of novel adaptive educational games for students who can adjust the difficulty level of games based on the ability of the user, so that it can motivate students to continue to play these games. We propose a method where these games can adjust the level of difficulty, based on the assessment of the results of previous problems using neural networks with three inputs in the form of percentage correct, the speed of answer and interest mode of games (animation / lessons) and 1 output. The experimental results are presented and show the adaptive games are running well on mobile devices based on BlackBerry platform
Keywords: Adaptive games, neural networks, mobile games, BlackBerry
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18451509 Target Tracking in Sensor Networks: A Distributed Constraint Satisfaction Approach
Authors: R.Mostafaei, A.Habiboghli, M.R.Meybodi
Abstract:
In distributed resource allocation a set of agents must assign their resources to a set of tasks. This problem arises in many real-world domains such as distributed sensor networks, disaster rescue, hospital scheduling and others. Despite the variety of approaches proposed for distributed resource allocation, a systematic formalization of the problem, explaining the different sources of difficulties, and a formal explanation of the strengths and limitations of key approaches is missing. We take a step towards this goal by using a formalization of distributed resource allocation that represents both dynamic and distributed aspects of the problem. In this paper we present a new idea for target tracking in sensor networks and compare it with previous approaches. The central contribution of the paper is a generalized mapping from distributed resource allocation to DDCSP. This mapping is proven to correctly perform resource allocation problems of specific difficulty. This theoretical result is verified in practice by a simulation on a realworld distributed sensor network.
Keywords: Distributed CSP, Target Tracking, Sensor Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11921508 Networks with Unreliable Nodes and Edges: Monte Carlo Lifetime Estimation
Authors: Y. Shpungin
Abstract:
Estimating the lifetime distribution of computer networks in which nodes and links exist in time and are bound for failure is very useful in various applications. This problem is known to be NP-hard. In this paper we present efficient combinatorial approaches to Monte Carlo estimation of network lifetime distribution. We also present some simulation results.Keywords: Combinatorial spectrum, Monte Carlo, Networklifetime, Unreliable nodes and edges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18401507 Mobile Robot Navigation Using Local Model Networks
Authors: Hamdi. A. Awad, Mohamed A. Al-Zorkany
Abstract:
Developing techniques for mobile robot navigation constitutes one of the major trends in the current research on mobile robotics. This paper develops a local model network (LMN) for mobile robot navigation. The LMN represents the mobile robot by a set of locally valid submodels that are Multi-Layer Perceptrons (MLPs). Training these submodels employs Back Propagation (BP) algorithm. The paper proposes the fuzzy C-means (FCM) in this scheme to divide the input space to sub regions, and then a submodel (MLP) is identified to represent a particular region. The submodels then are combined in a unified structure. In run time phase, Radial Basis Functions (RBFs) are employed as windows for the activated submodels. This proposed structure overcomes the problem of changing operating regions of mobile robots. Read data are used in all experiments. Results for mobile robot navigation using the proposed LMN reflect the soundness of the proposed scheme.Keywords: Mobile Robot Navigation, Neural Networks, Local Model Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20211506 Intelligent Neural Network Based STLF
Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi
Abstract:
Short-Term Load Forecasting (STLF) plays an important role for the economic and secure operation of power systems. In this paper, Continuous Genetic Algorithm (CGA) is employed to evolve the optimum large neural networks structure and connecting weights for one-day ahead electric load forecasting problem. This study describes the process of developing three layer feed-forward large neural networks for load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. We find good performance for the large neural networks. The proposed methodology gives lower percent errors all the time. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.
Keywords: Feed-forward Large Neural Network, Short-TermLoad Forecasting, Continuous Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18301505 A New Scheme for Improving the Quality of Service in Heterogeneous Wireless Network for Data Stream Sending
Authors: Ebadollah Zohrevandi, Rasoul Roustaei, Omid Moradtalab
Abstract:
In this paper, we first consider the quality of service problems in heterogeneous wireless networks for sending the video data, which their problem of being real-time is pronounced. At last, we present a method for ensuring the end-to-end quality of service at application layer level for adaptable sending of the video data at heterogeneous wireless networks. To do this, mechanism in different layers has been used. We have used the stop mechanism, the adaptation mechanism and the graceful degrade at the application layer, the multi-level congestion feedback mechanism in the network layer and connection cutting off decision mechanism in the link layer. At the end, the presented method and the achieved improvement is simulated and presented in the NS-2 software.Keywords: Congestion, Handoff, Heterogeneous wireless networks, Adaptation mechanism, Stop mechanism, Graceful degrade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14231504 Tree-on-DAG for Data Aggregation in Sensor Networks
Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik
Abstract:
Computing and maintaining network structures for efficient data aggregation incurs high overhead for dynamic events where the set of nodes sensing an event changes with time. Moreover, structured approaches are sensitive to the waiting time that is used by nodes to wait for packets from their children before forwarding the packet to the sink. An optimal routing and data aggregation scheme for wireless sensor networks is proposed in this paper. We propose Tree on DAG (ToD), a semistructured approach that uses Dynamic Forwarding on an implicitly constructed structure composed of multiple shortest path trees to support network scalability. The key principle behind ToD is that adjacent nodes in a graph will have low stretch in one of these trees in ToD, thus resulting in early aggregation of packets. Based on simulations on a 2,000-node Mica2- based network, we conclude that efficient aggregation in large-scale networks can be achieved by our semistructured approach.Keywords: Aggregation, Packet Merging, Query Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19311503 Minimizing Energy Consumption in Wireless Sensor Networks using Binary Integer Linear Programming
Authors: Chompunut Jantarasorn, Chutima Prommak
Abstract:
The important issue considered in the widespread deployment of Wireless Sensor Networks (WSNs) is an efficiency of the energy consumption. In this paper, we present a study of the optimal relay station planning problems using Binary Integer Linear Programming (BILP) model to minimize the energy consumption in WSNs. Our key contribution is that the proposed model not only ensures the required network lifetime but also guarantees the radio connectivity at high level of communication quality. Specially, we take into account effects of noise, signal quality limitation and bit error rate characteristics. Numerical experiments were conducted in various network scenarios. We analyzed the effects of different sensor node densities and distribution on the energy consumption.
Keywords: Binary Integer Linear Programming, BILP, Energy consumption, Optimal node placement and Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22031502 Continuity Planning in Supply Chain Networks: Degrees of Freedom and Application in the Risk Management Process
Authors: Marco Bötel, Tobias Gelau, Wendelin Gross
Abstract:
Supply chain networks are frequently hit by unplanned events which lead to disruptions and cause operational and financial consequences. It is neither possible to avoid disruption risk entirely, nor are network members able to prepare for every possible disruptive event. Therefore a continuity planning should be set up which supports effective operational responses in supply chain networks in times of emergencies. In this research network related degrees of freedom which determine the options for responsive actions are derived from interview data. The findings are further embedded into a common risk management process. The paper provides support for researchers and practitioners to identify the network related options for responsive actions and to determine the need for improving the reaction capabilities.Keywords: Supply Chain Risk Management, Business Continuity Planning, Degrees of Freedom, Risk Management Process, Mitigation Measures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19171501 Avoiding Catastrophic Forgetting by a Dual-Network Memory Model Using a Chaotic Neural Network
Authors: Motonobu Hattori
Abstract:
In neural networks, when new patterns are learned by a network, the new information radically interferes with previously stored patterns. This drawback is called catastrophic forgetting or catastrophic interference. In this paper, we propose a biologically inspired neural network model which overcomes this problem. The proposed model consists of two distinct networks: one is a Hopfield type of chaotic associative memory and the other is a multilayer neural network. We consider that these networks correspond to the hippocampus and the neocortex of the brain, respectively. Information given is firstly stored in the hippocampal network with fast learning algorithm. Then the stored information is recalled by chaotic behavior of each neuron in the hippocampal network. Finally, it is consolidated in the neocortical network by using pseudopatterns. Computer simulation results show that the proposed model has much better ability to avoid catastrophic forgetting in comparison with conventional models.
Keywords: catastrophic forgetting, chaotic neural network, complementary learning systems, dual-network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21021500 Visualisation and Navigation in Large Scale P2P Service Networks
Authors: H. Unger, H. Coltzau
Abstract:
In Peer-to-Peer service networks, where peers offer any kind of publicly available services or applications, intuitive navigation through all services in the network becomes more difficult as the number of services increases. In this article, a concept is discussed that enables users to intuitively browse and use large scale P2P service networks. The concept extends the idea of creating virtual 3D-environments solely based on Peer-to-Peer technologies. Aside from browsing, users shall have the possibility to emphasize services of interest using their own semantic criteria. The appearance of the virtual world shall intuitively reflect network properties that may be of interest for the user. Additionally, the concept comprises options for load- and traffic-balancing. In this article, the requirements concerning the underlying infrastructure and the graphical user interface are defined. First impressions of the appearance of future systems are presented and the next steps towards a prototypical implementation are discussed.
Keywords: Internet Operating System, Peer-To-Peer, Service Exploration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12831499 A Maximum Parsimony Model to Reconstruct Phylogenetic Network in Honey Bee Evolution
Authors: Usha Chouhan, K. R. Pardasani
Abstract:
Phylogenies ; The evolutionary histories of groups of species are one of the most widely used tools throughout the life sciences, as well as objects of research with in systematic, evolutionary biology. In every phylogenetic analysis reconstruction produces trees. These trees represent the evolutionary histories of many groups of organisms, bacteria due to horizontal gene transfer and plants due to process of hybridization. The process of gene transfer in bacteria and hybridization in plants lead to reticulate networks, therefore, the methods of constructing trees fail in constructing reticulate networks. In this paper a model has been employed to reconstruct phylogenetic network in honey bee. This network represents reticulate evolution in honey bee. The maximum parsimony approach has been used to obtain this reticulate network.Keywords: Hybridization, HGT, Reticulate networks, Recombination, Species, Parsimony.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16071498 A Distributed Topology Control Algorithm to Conserve Energy in Heterogeneous Wireless Mesh Networks
Authors: F. O. Aron, T. O. Olwal, A. Kurien, M. O. Odhiambo
Abstract:
A considerable amount of energy is consumed during transmission and reception of messages in a wireless mesh network (WMN). Reducing per-node transmission power would greatly increase the network lifetime via power conservation in addition to increasing the network capacity via better spatial bandwidth reuse. In this work, the problem of topology control in a hybrid WMN of heterogeneous wireless devices with varying maximum transmission ranges is considered. A localized distributed topology control algorithm is presented which calculates the optimal transmission power so that (1) network connectivity is maintained (2) node transmission power is reduced to cover only the nearest neighbours (3) networks lifetime is extended. Simulations and analysis of results are carried out in the NS-2 environment to demonstrate the correctness and effectiveness of the proposed algorithm.Keywords: Topology Control, Wireless Mesh Networks, Backbone, Energy Efficiency, Localized Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13941497 Improvement of Blood Detection Accuracy using Image Processing Techniques suitable for Capsule Endoscopy
Authors: Yong-Gyu Lee, Gilwon Yoon
Abstract:
Bleeding in the digestive duct is an important diagnostic parameter for patients. Blood in the endoscopic image can be determined by investigating the color tone of blood due to the degree of oxygenation, under- or over- illumination, food debris and secretions, etc. However, we found that how to pre-process raw images obtained from the capsule detectors was very important. We applied various image process methods suitable for the capsule endoscopic image in order to remove noises and unbalanced sensitivities for the image pixels. The results showed that much improvement was achieved by additional pre-processing techniques on the algorithm of determining bleeding areas.
Keywords: blood detection, capsule endoscopy, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18921496 Designing a Novel General Sorting Network Constructor Using Artificial Evolution
Authors: Michal Bidlo, Radek Bidlo, Lukas Sekanina
Abstract:
A method is presented for the construction of arbitrary even-input sorting networks exhibiting better properties than the networks created using a conventional technique of the same type. The method was discovered by means of a genetic algorithm combined with an application-specific development. Similarly to human inventions in the area of theoretical computer science, the evolved invention was analyzed: its generality was proven and area and time complexities were determined.Keywords: Development, genetic algorithm, program, sorting network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12861495 Weaknesses and Strengths Analysis over Wireless Network Security Standards
Authors: Daniel Padilla, Edward Guillen
Abstract:
Several wireless networks security standards have been proposed and widely implemented in both business and home environments in order to protect the network from unauthorized access. However, the implementation of such standards is usually achieved by network administrators without even knowing the standards- weaknesses and strengths. The intention of this paper is to evaluate and analyze the impact over the network-s security due to the implementation of the wireless networks security standards WEP, WPA and WLAN 802.1X.
Keywords: 802.1X, vulnerabilities analysis, WEP, wireless security, WPA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23871494 Thermal Analysis of the Fuse with Unequal Fuse Links Using Finite Element Method
Authors: Adrian T.Pleşca
Abstract:
In this paper a three dimensional thermal model of high breaking capacity fuse with unequal fuse links is proposed for both steady-state or transient conditions. The influence of ambient temperature and electric current on the temperature distribution inside the fuse, has been investigated. A thermal analysis of the unbalanced distribution of the electric current through the fuse elements and their influence on fuse link temperature rise, has been performed. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.Keywords: Electric fuse, fuse links, temperature distribution, thermal analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28111493 Seismic Alert System based on Artificial Neural Networks
Authors: C. M. A. Robles G., R. A. Hernandez-Becerril
Abstract:
We board the problem of creating a seismic alert system, based upon artificial neural networks, trained by using the well-known back-propagation and genetic algorithms, in order to emit the alarm for the population located into a specific city, about an eminent earthquake greater than 4.5 Richter degrees, and avoiding disasters and human loses. In lieu of using the propagation wave, we employed the magnitude of the earthquake, to establish a correlation between the recorded magnitudes from a controlled area and the city, where we want to emit the alarm. To measure the accuracy of the posed method, we use a database provided by CIRES, which contains the records of 2500 quakes incoming from the State of Guerrero and Mexico City. Particularly, we performed the proposed method to generate an issue warning in Mexico City, employing the magnitudes recorded in the State of Guerrero.Keywords: Seismic Alert System, Artificial Neural Networks, Genetic Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17251492 Investigation of Artificial Neural Networks Performance to Predict Net Heating Value of Crude Oil by Its Properties
Authors: Mousavian, M. Moghimi Mofrad, M. H. Vakili, D. Ashouri, R. Alizadeh
Abstract:
The aim of this research is to use artificial neural networks computing technology for estimating the net heating value (NHV) of crude oil by its Properties. The approach is based on training the neural network simulator uses back-propagation as the learning algorithm for a predefined range of analytically generated well test response. The network with 8 neurons in one hidden layer was selected and prediction of this network has been good agreement with experimental data.
Keywords: Neural Network, Net Heating Value, Crude Oil, Experimental, Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15881491 Recognition of Noisy Words Using the Time Delay Neural Networks Approach
Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha
Abstract:
This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.
Keywords: Neural networks, Noise, Speech Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19361490 Key Issues and Challenges of Intrusion Detection and Prevention System: Developing Proactive Protection in Wireless Network Environment
Authors: M. Salman, B. Budiardjo, K. Ramli
Abstract:
Nowadays wireless technology plays an important role in public and personal communication. However, the growth of wireless networking has confused the traditional boundaries between trusted and untrusted networks. Wireless networks are subject to a variety of threats and attacks at present. An attacker has the ability to listen to all network traffic which becoming a potential intrusion. Intrusion of any kind may lead to a chaotic condition. In addition, improperly configured access points also contribute the risk to wireless network. To overcome this issue, a security solution that includes an intrusion detection and prevention system need to be implemented. In this paper, first the security drawbacks of wireless network will be analyzed then investigate the characteristics and also the limitations on current wireless intrusion detection and prevention system. Finally, the requirement of next wireless intrusion prevention system will be identified including some key issues which should be focused on in the future to overcomes those limitations.Keywords: intrusion detection, intrusion prevention, wireless networks, proactive protection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3938