
Designing a Novel General Sorting Network
Constructor Using Artificial Evolution

Michal Bidlo, Radek Bidlo, and Lukáš Sekanina

Abstract— A method is presented for the construction of arbitrary
even-input sorting networks exhibiting better properties than the
networks created using a conventional technique of the same type.
The method was discovered by means of a genetic algorithm com-
bined with an application-specific development. Similarly to human
inventions in the area of theoretical computer science, the evolved
invention was analyzed: its generality was proven and area and time
complexities were determined.

Keywords— Development, genetic algorithm, program, sorting net-
work.

I. INTRODUCTION

THE concept of sorting networks was introduced in 1954;

Knuth traced the history of this problem in his book [1].

Sorting networks are combinational circuits of N inputs and N

outputs. A compare–swap operation (a comparator) is usually

considered as a basic building block of a sorting network. The

main goal of the design of a sorting network is (1) to optimize

the area of the circuit (i.e. to reduce the number of compare–

swap operations) and (2) to optimize the delay of the sorting

network (the shorter delay, the faster sorting).

Since the direct design of efficient large sorting networks

(N > 8) is very difficult, various non-traditional methods have

been utilized. For instance, Choi and Moon have devised a fast

approximate measure for evaluating the potential quality of a

given sorting network and by combining with an effective local

search heuristic based on this measure, they have rediscovered

the best-known 16-input sorting network [3], [5]. Hillis has

used simulated evolution in combination with a species of

co-evolving parasites implemented on a parallel computer for

generating efficient 16-input sorting networks [4]. However,

the first 32 comparators were fixed at the beginning of the

design process in case of those methods. On the contrary,

Juillé has used a population-based model for searching in the

state space and incremental construction of the solutions by

means of which he has discovered a new area-efficient 13-

input sorting network and rediscovered the best-known 16-

input sorting network from scratch, i.e. without fixing any

comparators at the beginning of the design process [2]. Koza

has used the genetic programming approach to solve various

problems, including 7-input sorting networks [6].

Michal Bidlo is with Brno University of Technology, Faculty of Infor-
mation Technology, Božetěchova 2, 612 66 Brno, Czech Republic (e-mail:
bidlom@fit.vutbr.cz).

Radek Bidlo is with Brno University of Technology, Faculty of Infor-
mation Technology, Božetěchova 2, 612 66 Brno, Czech Republic (e-mail:
bidlor@fit.vutbr.cz).

Lukáš Sekanina is with Brno University of Technology, Faculty of Infor-
mation Technology, Božetěchova 2, 612 66 Brno, Czech Republic (e-mail:
sekanina@fit.vutbr.cz).

In contrast to the mentioned approaches, Sekanina and M.

Bidlo have devised a developmental method in combination

with a genetic algorithm for the design of arbitrarily large

sorting networks [7]. By using this approach, the conventional

insertion/selection principle for the design of sorting networks

has been rediscovered and some novel design methods have

been evolved.
The objective of this paper is (1) to describe the genetic

algorithm combined with the developmental system used for

the design of arbitrary even-input sorting networks, (2) to

present the best evolved algorithm which can be considered

as a new general sorting network design method together with

the resulting sorting networks, (3) to analyze the properties of

these sorting networks and compare them with the properties

of sorting networks created by means of the conventional in-

sertion/selection principle and (4) to introduce formal descrip-

tion of sorting networks and prove the ability of the evolved

algorithm to design arbitrary large sorting networks. Therefore,

the evolved algorithm will be analyzed using the methods of

theoretical computer science similarly to the analysis of human

inventions in the area of theoretical computer science.
The paper is organized as follows. Section II briefly de-

scribes the concept of sorting networks. Section III presents

the evolutionary algorithm combined with the developmental

method, which was used for the design of arbitrarily large

sorting networks. In Section IV, formal definitions of the

basic terms related to the sorting networks and the proof

of generality of the evolved design method are proposed.

Section V discusses the properties of the evolved method and

the resulting sorting networks. Concluding remarks and an

inspiration for the future research are given in Sect. VI.

II. SORTING NETWORKS: AN INFORMAL OVERVIEW

A sorting network (SN) is defined as a sequence of

compare–swap operations (let’s call them in short compara-

tors) that depends only on the number of elements to be sorted,

not on the values of the elements. A compare–swap of two

elements (a; b) compares and exchanges a and b so that we

obtain a ≤ b after the operation.
The main advantage of the sorting network is that the

sequence of compare–swap operations is fixed. Thus it is

suitable for parallel processing and hardware implementation.

Figure 1 shows the structure of a comparator in an example

of a 3-input sorting network.
The number of compare–swap components and delay are

two crucial parameters of sorting networks. A continuous

sequence of comparators whose inputs and outputs are inde-

pendent of each other can be grouped together to form so-

called parallel layer. Comparators inside a parallel layer can

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

833International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

14
4.

pd
f

MAX

MIN

MAX

MIN

MAX

MIN

in2

in1

in3

(a) (b)

Fig. 1. (a) A three-input sorting network consists of three comparators.
(b) Alternative symbol. This network can be described using the string
[1;2][2;3][1;2].

in2

in3

inN−1
network

sorting

N−input

inN

in1

inN+1

network

sorting

N−input

(a) (b)

in1

in2

in3

inN−1

inN

inN+1

Fig. 2. Creating (N + 1)-input sorter from an N -input sorter: (a) insertion
principle, (b) selection principle

be executed in parallel. Delay of a sorting network is defined

as the minimal number of its parallel layers, i.e. groups of

comparators that are executed sequentially. Designers try to

minimize the number of comparators, delay or both parame-

ters.

In order to determine whether an N -input sorting network

operates correctly, we should test N ! input combinations.

However, by applying the zero–one principle, the number of

test vectors can be reduced to 2N . Zero-one principle says

that if a sorting network sorts all the possible combinations

of 0’s and 1’s correctly, then it sorts correctly every arbitrary

sequence of values [1]. A sorting network is said to be valid

if it sorts all the possible 2N binary combinations correctly.

Sorting networks are usually designed for a fixed number

of inputs. However, some conventional approaches exist to the

design of arbitrarily large sorting networks. Figure 2 shows

two basic principles for constructing (N + 1)-input sorting

network when an N -input sorting network is given [1].

Although the sorting networks created by means of the in-

sertion or selection principle are much larger than the networks

designed directly for a particular N , these methods can be

treated as general design principles for building arbitrarily

large sorting networks. In the next sections, we will show

that it is possible to improve these approaches to obtain

substantially better arbitrarily large sorting networks.

III. AN EVOLUTIONARY DESIGN METHOD UTILIZING

DEVELOPMENT

Development is a biological process in which adult, mul-

ticellular organism is formed from a zygote. In the field of

the evolutionary design, usually a simplified model of the

development is applied to allow the target system to “grow”

and increase its complexity. When a sort of development is

included into an evolutionary algorithm, the chromosome has

to contain a prescription for constructing a target object rather

than a description of a target object itself.

A genetic algorithm has been used to design a constructor
(a program) that is able to create a larger sorting network

from a smaller sorting network (the smallest one is called

the embryo). The constructor — directly represented by the

chromosome — is a finite sequence of instructions, each of

which is encoded as three integers: operation code, arg. 1 and

arg. 2. Considering a comparator to be a basic building block

of a sorting network, the following types of instructions have

been chosen in order to manipulate the building blocks and

enable the sorting network to increase its number of inputs,

i.e. to “grow”.

1) Modify-instructions (ModS, ModM). these instructions

make a copy of a given comparator, take its indices of in-

puts, add up the instruction arguments respectively to the

first and second index and perform the modulo-division

of the modified indices by the number of inputs of the

sorting network being constructed in order to ensure that

the modified comparator belongs properly to the sorting

network. Thereby a new comparator is created. Two

variants of the Modify-instructions exist which differ in

updating the pointer pointing to the comparator being

processed (so-called the embryo-pointer – see the next

two paragraphs): ModS does not update the pointer,

i.e. the next instruction of the constructor processes the

same comparator as the previous instruction did and the

ModM instruction shifts the pointer to the following

comparator of the sorting network.

2) Copy-instructions (CpS, CpM). Let w denote the number

of inputs of the sorting network being created and k

denote the first argument of the instruction. A Copy-

instruction copies a sequence of w − k comparators

beginning with the comparator pointed by the embryo

pointer (see the next two paragraphs). The second ar-

gument of the Copy-instructions is meaningless. While

CpS instruction does not update the embryo pointer, the

CpM instruction moves the pointer by w−k comparators

ahead.

Table I summarizes the instruction set utilized in this paper.

First, the constructor is applied to the embryo in order to

build a larger sorting network. Then the same constructor is

applied to this sorting network and larger circuit emerges

again. This approach can be repeated so that the sorting

network “grows” continually and infinitely (see Fig. 3). The

goal is to obtain a valid sorting network after each constructor

application. The constructor possessing this ability is said to be

a general constructor. A single application of the constructor

represents a developmental step. The difference between the

number of inputs of two neighbouring sorting networks during

the development denotes the size of the developmental step.

Note that the sorting network resulted from an application of

the constructor contains all the comparators of its predecessor.

Fitness value is computed as the sum of the number of

test vectors sorted correctly using the resulting SN after

each developmental step. Since it is not possible to verify

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

834International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

14
4.

pd
f

TABLE I

INSTRUCTION SET UTILIZED IN THE DEVELOPMENT. LET [c; d] BE A COMPARATOR. BY APPLYING AN INSTRUCTION TO IT, A NEW COMPARATOR [c′; d′]

IS CREATED. EXPERIMENTS HAVE SHOWN TO BE USEFUL TO PUT [c′; d′] INTO THE NEWLY CREATED SORTING NETWORK ONLY IF

c′ < d′ ∧ c′ < N ∧ d′ ≤ N . N DENOTES THE NUMBER OF INPUTS OF THE EMERGING SORTING NETWORK, ip, ep AND np REPRESENT INSTRUCTION

POINTER, EMBRYO POINTER AND NEXT-POSITION POINTER RESPECTIVELY.

Instruction Arg1 Arg2 Description

0: ModS a b c′ = c + a, d′ = d + b, ip = ip + 1, np = np + 1
1: ModM a b c′ = c + a, d′ = d + b, ip = ip + 1, np = np + 1, ep = ep + 1
2: CpS k − copy N − k comparators, ip = ip + 1, np = np + N − k

3: CpM k − copy N − k comparators, ip = ip + 1, np = np + N − k, ep = ep + N − k

4: Nop − − no operation (an empty instruction)

0 121 2 3 4 5 76 8 9 10 20 21 23221917 181615141311

ip=0

the constructor

embryo

ep=0 np=ee=5

1

2

3

4

5

6

7

8

Γ Γ Γ

Fig. 3. The principle of designing larger sorting networks from smaller
sorting networks by means of a constructor. The growth of the SN is
illustrated using the best evolved constructor Γ=(ModS 2 2)(ModS 4 4)(ModS
3 4)(ModM 2 3)(ModM 2 0)(CpM 4 2)(ModS 2 2)(CpM 4 4). The initial
configuration of pointers is shown.

all the sorting networks, only three developmental steps are

considered for the fitness calculation. For instance, using a 4-

input embryo and the developmental step of size 2, Fitness =
F (6)+F (8)+F (10), where F (i) is the number of test vectors

sorted correctly by the developed i-input sorting network.

The generality of the evolved constructors is verified for the

construction of up to 28-input sorting networks.

Figure 3 shows the principle of the developmental method

and the growth of the sorting network using the best evolved

constructor. A 4-input embryo was utilized. The instructions

are executed sequentially; the instruction pointed by instruc-

tion pointer (ip) processes the comparator pointed by embryo

pointer (ep) and the resulting comparator is placed to the first

free position pointed by next-position pointer (np). Before an

application of the constructor, the end of embryo poses the

first free position in the sorting network being created. Let

us denote it symbolically ee. After executing an instruction,

the pointers are updated according to Tab. I. A developmental

step is finished if the last instruction of the constructor is

executed or if the end of embryo is reached (ep = ee), i.e.

the constructor cannot process the comparators produced by

itself in the actual developmental step. At the beginning of the

developmental process, ep and ip are initialized to 0, ee and

np are set to the first free position. After each developmental

step, ip is initialized to 0, ep and np keep their values resulted

from the last developental step and ee is set to the first free

position.

The following settings of the evolutionary system was

chosen with the parameters determined experimentally. The

constructors were evolved as variable-length chromosomes in

constant-length arrays whose maximal length was limited by

10 instructions. The instructions are encoded in the chromo-

some as a sequence of triples operation code, argument 1,
argument 2. A special Nop instruction is utilized in order to

allow the chromosome to vary its effective length (see Tab.

I). A simple genetic algorithm was utilized with population

size 60, tournament selection operator and one-point crossover

operator with the crossover rate 0.7. Mutation operator was

applied to each chromosome with the mutation probability

0.023 by random selection of an instruction in which either the

operation code or one of its arguments is randomly mutated.

The evolutionary algorithm is stopped if a constructor is

found which creates fully functional sorting networks in three

developmental steps or until 100000 generations passes. For

the experiment presented in this paper 100 independent runs

of the evolutionary developmental system were performed of

which 40 general constructors were evolved.

The sorting networks produced by the best evolved con-

structor contain redundant comparators (in Fig. 3, the marked

comparators at positions 5 and 13). However, these com-

parators can be removed from the SN without any loss of

its functionality. After their removal, the delay of sorting

networks is reduced substantially and, moreover, they require

less comparators in comparison with conventional SNs. Table

II and Fig. 4 survey the properties of the evolved sorting net-

works in comparison with the conventional insertion/selection

principle.

In fact, the presented system was able to design a wide va-

riety of structures of growing sorting networks [7]. Moreover,

polymorphic1 sorting networks have been discovered which

sorts the input sequence into the non-decreasing order in one

mode and into the non-increasing order in another mode [11].

In the next section, we focus on analyzing the best evolved

constructor presented herein.

IV. IS THE EVOLVED CONSTRUCTOR GENERAL?

The previous section has demonstrated a rare case in which

EA discovered a new design principle (rather than a single

solution!). It remains to prove that the evolved constructor is

1A polymorphic circuit is a special kind of electronic circuit whose behavior
depends on some external conditions, e.g. temperature, light, Vdd, external
voltage etc., while the circuit structure remains unchanged, i.e. the circuit is
inherently multifunctional [9], [10].

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

835International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

14
4.

pd
f

TABLE II

THE NUMBER OF COMPARATORS AND DELAY OF THE SORTING NETWORKS CREATED BY MEANS OF THE EVOLVED CONSTRUCTOR IN COMPARISON WITH

THE CONVENTIONAL INSERTION OR SELECTION ALGORITHM

#inputs 6 8 10 12 14 16 18 20 22 24 26 28

Evolved SN: the number of comparators 13 24 38 55 75 98 124 153 185 220 258 299
Evolved SN: the number of redundant comparators 1 2 3 4 5 6 7 8 9 10 11 12
Evolved SN: the num. of comps. after removing the redundant ones 12 22 35 51 70 92 117 145 176 210 247 287
Conventional SN: the number of comparators 15 28 45 66 91 120 153 190 231 276 325 378
Evolved SN: delay 7 12 17 22 27 32 37 42 47 52 57 62
Evolved SN: delay after removing the redundant comparators 6 9 12 15 18 21 24 27 30 33 36 39
Conventional SN: delay 9 13 17 21 25 29 33 37 41 45 49 53

 0 0

 100
 5000

 200

 10000

 300

 15000

 400

 20000

 500

 25000

 600

 30000

 50

 35000

 100 0 150 50 200 100 250 150

de
la

y
(#

pa
ra

lle
l l

ay
er

s)

 200

#inputs

conventional insertion/selection sorting networks

 250

optimized evolved sorting networks

#c
om

pa
ra

to
rs

#inputs

conventional insertion/selection sorting networks
optimized evolved sorting networks

Fig. 4. Area- and delay-complexity of the optimized evolved sorting networks in comparison with the conventional insertion/selection principle

really a general constructor. In order to do that the following

definitions have been formulated [8].

Definition 1: Let I = {1, 2, . . . , N} be an index set and

let A be a set with an order relation ≤. A data sequence is a

mapping a : I → A. The set of all data sequences of length

N over A is denoted by AN .

Definition 2: The sorting problem consists of reordering

an arbitrary data sequence a1, a2, . . . , aN , ai ∈ A for i =
1, 2, . . . , N , to a data sequence aΦ(1), aΦ(2), . . . aΦ(N) such

that aΦ(i) ≤ aΦ(j) for i < j, where Φ is a permutation of the

index set I = {1, 2, . . . , N}.

The definition of a sorting network is based on comparator

networks introduced in [1]. Herein we consider a comparator

[i; j] as a circuit element that sorts the i-th and the j-th element

of a data sequence into the nondecreasing order.

Definition 3: A comparator is a mapping [i; j] : AN →
AN , i, j ∈ {1, 2, . . . , N}, where [i; j](a)i = min(ai, aj),
[i; j](a)j = max(ai, aj), [i; j](a)k = ak for all k �= i, k �= j,

i < j and for all a ∈ AN .

We can simplify the formal notation of the comparator as

follows. Let [i; j] be a comparator applied to a data sequence

a ∈ AN . If [i; j](a)i = aj and [i; j](a)j = ai, then we say

that the comparator [i; j] swaps ai with aj in a.

Definition 4: A parallel layer, S, is a composition of com-

parators S = [i1; j1]·[i2; j2]·. . .·[ik; jk], k ≥ 0 such that ir and

js are distinct for all ir = 1, . . . , N − 1, js = 2, . . . , N, ir �=
js, for all r = 1, . . . , k, s = 1, . . . , k, r �= s. Comparators

within a parallel layer are executed in parallel.

Definition 5: A comparator network is a composition of

parallel layers.

Note that the orientation of a comparator in a comparator

network is important. We assume that every [i; j] satisfies i <

j. That being supposed, if ai > aj , then [i; j] swaps ai with

aj in a ∈ AN . Moreover, the order of parallel layers in a

comparator network is important since it defines the reordering

algorithm. However, the order of the comparators within a

parallel layer is not important because they are independent

of each other.

Definition 6: A sorting network is a comparator network

that sorts all the data sequences correctly.

Because of uniformity in terminology with respect to the

previous sections, we will use the term sorting network in the

rest of the paper even before proving the correctness of the

appropriate comparator network.

Definition 7: Let S be a sorting network with even number

of N = 2k inputs, k ≥ 0. We define k to be the degree of S.

Since we are applying the zero–one principle for testing

the correctness of the sorting networks, the elements of a data

sequence contain only binary values, i.e. ai ∈ {0, 1} for all

i = 1, . . . , N .

By means of the evolved constructor from Fig. 3, we are

able to create 6-input sorting network from a 4-input sorting

network, 8-input sorting network from a 6-input sorting net-

work and so on by appending comparators into the preceeding

solution. In general, we extend N -input sorting network to

(N + 2)-input sorting network in each developmental step.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

836International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

14
4.

pd
f

Since we have required the sorting networks to be correct after

each developmental step (i.e. to be able to sort all possible data

sequences), we can generalize this approach for arbitrary even-

input sorting network and formulate the following theorem:

Theorem 1: Every arbitrary k-degree sorting network can

be used as a base for constructing (k + 1)-degree sorting

network by appending 3k + 1 comparators, specifically [2k +
1; 2k + 2], [2k; 2k + 2], [2k − 1; 2k + 1], . . ., [1; 3] and [2; 3],
[4; 5], . . ., [2k; 2k + 1].

Proof: We make the proof by induction on the degree of

sorting network, i. Recall that zero–one principle is applied in

this proof.

Basis

Let the degree i = 0. Increasing i by one, we get a 2-input

sorting network containing just one comparator, specifically

[1; 2]. Proof of its correctness follows directly from Def. 3.

Induction Hypothesis

Assume that Theorem 1 holds for all i ≤ k, where k is a

positive integer.

Induction Step

Consider an arbitrary k-degree sorting network and use The-

orem 1 to create (k + 1)-degree sorting network. According

to the induction hypothesis, the obtained sorting network is

correct. Let z denote the number of 0’s contained in the data

sequence a1a2 . . . a2k. Since the k-degree sorting network is

correct, it produces non-decreasing data sequence of z 0’s

followed by 2k−z 1’s. We have to prove that the comparators

[2k+1; 2k+2], [2k; 2k+2], [2k−1; 2k+1], . . ., [1; 3] and [2; 3],
[4; 5], . . ., [2k; 2k + 1] appended by the constructor are able

to put all the possible binary combinations of elements a2k+1

and a2k+2 of the data sequence into their proper positions.

The situation is illustrated in Fig. 5.

1
1

0
00

0

0
0
1
1

1

1
1

k−degree

(2k−input)

SORTING

NETWORK

a(1)
a(2)

a(z−1)
a(z)

a(z+1)
a(z+2)

a(2k−2)
a(2k−1)

a(2k)

a(2k+1)
a(2k+2)

Fig. 5. The principle of creating (k + 1)-degree sorting network from a
k-degree sorting network

a) a2k+1 = 0 and a2k+2 = 0
The situation is illustrated in Fig. 6a. Consider 0 ≤ z <

2k. Observe that comparators [2k; 2k+2], [2k−1; 2k+1],
. . ., [z + 1; z + 3] successively swap the input values

processing zero-elements a2k+1 and a2k+2 of the data

sequence. There are only zero-inputs in comparators

[z; z + 2], [z − 1; z + 1], . . ., [1; 3] so their execution has

no effect. Similarly, none of comparators [2; 3], [4, 5], . . .,

[2k; 2k + 1] needs to swap its inputs. If z = 2k, then the

data sequence has been already sorted.

b) a2k+1 = 0 and a2k+2 = 1
The situation is illustrated in Fig. 6b. Let 0 ≤ z < 2k.

Comparators [2k − 1; 2k + 1], [2k − 3; 2k − 1], . . ., [z +
(z mod 2) + 1; z + (z mod 2) + 3] successively swap

the input values processing zero-element a2k+1 of the

data sequence. If z is odd and 0 < z < 2k, then the

comparator [z + 1; z + 2] swap its inputs to finish the

resulting order of the data sequence. If z = 2k, then the

data sequence has been already sorted.

c) a2k+1 = 1 and a2k+2 = 0
Consider 0 ≤ z < 2k. Observe that after swapping a2k+1

with a2k+2 by the comparator [2k+1; 2k+2], the sorting

proceeds in the same way as in the case (b); consider Fig.

6b with a2k+1 = 1 and a2k+2 = 0.

d) a2k+1 = 1 and a2k+2 = 1
In this case, the data sequence has been already sorted.

Observe that for every combination of values a2k+1 and

a2k+2, the (k+1)-degree sorting network has processed all the

data sequences correctly, i.e. the evolved approach is general.

V. DISCUSSION

The proposed method is based on the same idea as the

conventional insertion or selection principle – creating a larger

sorting network from a smaller one by appending some

comparators. Unlike the insertion or selection algorithm, the

evolved program constructs (n + 2)-input sorting network

from an even-n-input sorting network. Thus there are some

restrictions in the design process in comparison with the con-

ventional approaches. However, the sorting networks obtained

by means of the evolved approach are substantially better

in terms of both the number of comparators and delay than

the conventional SNs (see Tab. II). For example, we can

construct 18-input sorting network from the best known 16-

input sorting network and the resulting network exhibits better

properties than the network created by means of insertion or

selection principle. Equations (1), respective (2) express the

area complexity of the evolved, respective conventional sorting

networks and equations (3), respective (4) express the delay

complexity of the evolved, respective conventional sorting

networks depending on the number of inputs N , N ≤ 4. Al-

though the asymptotic complexities are identical, the evolved

algorithm constructs sorting networks with better properties

(the number of comparators and delay) than the conventional

insertion or selection principle. As we have proved, the

evolved approach forms an improved general method which

is similar to the conventional insertion or selection principle.

Although it is focused primarily on the construction of even-

input sorting networks, the resulting circuits can be reduced

to odd-input sorting networks, which retain better properties

in comparison with conventional SNs as demonstrated in [7].

C(N)evol =
3

8
N2 −

1

4
N = O(N2) (1)

C(N)conv =
1

2
N2 + N = O(N2) (2)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

837International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

14
4.

pd
f

a(1)
a(2)

a(z)
a(z+1)
a(z+2)

a(2k+2)=1
a(2k+1)=0

a(2k−2)

1
1

1
10

1

0
0

0
0

a(z+3)
0

1

1
1

0
0

0
0

0
0
1
1

1
1
1
1
1

0
0

0
1
1

1
1
1

1
1

k−
de

gr
ee

 (
2k

−
in

pu
t)

 s
or

tin
g

ne
tw

or
k

a(2k−1)
a(2k)

0
1

1

a(1)
a(2)

a(z)
a(z+1)
a(z+2)

a(2k+2)=0
a(2k+1)=0

a(2k−2)

1
1

1
1

0
0

0

0
0

0
0

a(z+3)
0

1

1
0

0
0

0
0

0
0
0
1

1
1
1
1
1

0
0

0
1
1

1
1
1

0
1

k−
de

gr
ee

 (
2k

−
in

pu
t)

 s
or

tin
g

ne
tw

or
k

a(2k−1)
a(2k)

0

(a) (b)

Fig. 6. Processing data sequences: (a) a2k+1 = 0, a2k+2 = 0, (b) a2k+1 = 0, a2k+2 = 1

D(N)evol =
3

2
N − 3 = O(N) (3)

D(N)conv = 2N − 3 = O(N) (4)

VI. CONCLUSIONS

In the paper, an improved general method has been pre-

sented for the construction of arbitrary even-input sorting net-

works, which was discovered by means of a genetic algorithm

combined with an application-specific development. In con-

trast to the conventional method, the evolved algorithm utilizes

a greater developmental step and more complex arrangement

of the comparators. Similarly to human inventions in the

area of theoretical computer science, the evolved invention

was analyzed: its generality was proven and area and time

complexities were determined.

We suppose that similar construction methods exist at least

for the size of the developmental step equal to a power

of two. According to the results presented herein, it could

be expected that the greater developmental step the better

properties of resulting sorting networks. These issues form

the basic hypotheses for our future research.

ACKNOWLEDGMENT

The research was performed with the support of the

Grant Agency of the Czech Republic under No. 102/06/0599

Methods of Polymorphic Digital Circuit Design and No.

102/05/H050 Integrated Approach to Education of PhD Stu-
dents in the Area of Parallel and Distributed Systems.

REFERENCES

[1] Knuth, D. E.: The Art of Computer Programming: Sorting and Searching
(2nd ed.). Addison Wesley, 1998

[2] Juillé, H.: Evolution of Non-Deterministic Incremental Algorithms as a
New Approach for Search in State Spaces.In: Proc. of 6th Int. Conference
on Genetic Algorithms, Morgan Kaufmann, 1995, p. 351–358

[3] Choi, S., Moon, B.: A Hybrid Genetic Search for the Sorting Network
Problem with Evolving Parallel Layers. In: Genetic and Evolutionary
Computation Conference, San Francisco, 2001, p. 258–265

[4] Hillis, W. D.: Co-evolving Parasites Improve Simulated Evolution as an
Optimization Procedure. Physica D 42, 1990, p. 228–234

[5] Choi, S., Moon, B.: More Effective Genetic Search for the Sorting
Network Problem. In: Genetic and Evolutionary Computation Conference,
New York, 2002, p. 335–342

[6] Koza, J. R. et al.: Genetic Programming III: Darwinian Invention and
Problem Solving. Morgan Kaufmann Publishers, San Francisco, CA, 1999

[7] Sekanina, L., Bidlo, M.: Evolutionary Design of Arbitrarily Large Sorting
Networks Using Development. Genetic Programming and Evolvable
Machines. Vol. 6, Num. 3, 2005, p. 319–347

[8] Lang, H. W.: Algorithmen. Institut fűr medieninformatik und technis-
che informatik. http://www.iti.fh-flensburg.de/lang/algorithmen/algo.htm
(March 2006)

[9] Stoica, A. et al.: Polymorphic Electronics. Proc. of International Confer-
encee on Evolvable Systems: From Biology to Hardware, LNCS 2210,
Springer, 2001, p. 291–302

[10] Stoica, A. et al.: On Polymorphic Circuits and Their Design Using
Evolutionary Algorithms. Proc. of IASTED International Confernece on
Applied Informatics, AI 2002, Innsbruck, AU, 2002

[11] Bidlo, M., Sekanina, L.: Providing Information from the Environment
for Growing Electronic Circuits Through Polymorphic Gates. Proc. of
Genetic and Evolutionary Computation Conference – Workshops 2005,
ACM, New York, US, 2005, p. 242–248

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:3, 2008

838International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

3,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/6

14
4.

pd
f

