Search results for: mechanical tests
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2338

Search results for: mechanical tests

1948 Biodegradation Behavior of Cellulose Acetate with DS 2.5 in Simulated Soil

Authors: Roberta Ranielle M. de Freitas, Vagner R. Botaro

Abstract:

The relationship between biodegradation and mechanical behavior is fundamental for studies of the application of cellulose acetate films as a possible material for biodegradable packaging. In this work, the biodegradation of cellulose acetate (CA) with DS 2.5 was analyzed in simulated soil. CA films were prepared by casting and buried in the simulated soil. Samples were taken monthly and analyzed, the total time of biodegradation was 6 months. To characterize the biodegradable CA, the DMA technique was employed. The main result showed that the time of exposure to the simulated soil affects the mechanical properties of the films and the values of crystallinity. By DMA analysis, it was possible to conclude that as the CA is biodegraded, its mechanical properties were altered, for example, storage modulus has increased with biodegradation and the modulus of loss has decreased. Analyzes of DSC, XRD, and FTIR were also carried out to characterize the biodegradation of CA, which corroborated with the results of DMA. The observation of the carbonyl band by FTIR and crystalline indices obtained by XRD were important to evaluate the degradation of CA during the exposure time.

Keywords: Biodegradation, cellulose acetate, DMA, simulated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
1947 Effect of Silica Fume on the Properties of Steel-Fiber Reinforced Self-compacting Concrete

Authors: Ahmed Fathi Mohamed, Nasir Shafiq, M. F. Nuruddin, Ali Elheber

Abstract:

Implementing significant advantages in the supply of self-compacting concrete (SCC) is necessary because of the, negative features of SCC. Examples of these features are the ductility problem along with the very high cost of its constituted materials. Silica fume with steel fiber can fix this matter by improving the ductility and decreasing the total cost of SCC by varying the cement ingredients. Many different researchers have found that there have not been enough research carried out on the steel fiber-reinforced self-compacting concrete (SFRSCC) produced with silica fume. This paper inspects both the fresh and the mechanical properties of SFRSCC with silica fume, the fresh qualities where slump flow, slump T50 and V- funnel. While, the mechanical characteristics were the compressive strength, ultrasound pulse velocity (UPV) and elastic modulus of the concrete samples. The experimental results have proven that steel fiber can enhance the mechanical features. In addition, the silica fume within the entire hybrid mix may possibly adapt the fiber dispersion and strengthen deficits due to the fibers. It could also improve the strength plus the bond between the fiber and the matrix with a dense calcium silicate-hydrate gel in SFRSCC. The concluded result was predicted using linear mathematical models and was found to be in great agreement with the experimental results.

Keywords: Self-compacting concrete, silica fume, steel fiber, fresh and mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228
1946 Bone Generation through Mechanical Loading

Authors: R. S. A. Nesbitt, J. Macione, A. Debroy, S. P. Kotha

Abstract:

Bones are dynamic and responsive organs, they regulate their strength and mass according to the loads which they are subjected. Because, the Wnt/β-catenin pathway has profound effects on the regulation of bone mass, we hypothesized that mechanical loading of bone cells stimulates Wnt/β-catenin signaling, which results in the generation of new bone mass. Mechanical loading triggers the secretion of the Wnt molecule, which after binding to transmembrane proteins, causes GSK-3β (Glycogen synthase kinase 3 beta) to cease the phosphorylation of β-catenin. β-catenin accumulation in the cytoplasm, followed by its transport into the nucleus, binding to transcription factors (TCF/LEF) that initiate transcription of genes related to bone formation. To test this hypothesis, we used TOPGAL (Tcf Optimal Promoter β-galactosidase) mice in an experiment in which cyclic loads were applied to the forearm. TOPGAL mice are reporters for cells effected by the Wnt/β-catenin signaling pathway. TOPGAL mice are genetically engineered mice in which transcriptional activation of β- catenin, results in the production of an enzyme, β-galactosidase. The presence of this enzyme allows us to localize transcriptional activation of β-catenin to individual cells, thereby, allowing us to quantify the effects that mechanical loading has on the Wnt/β-catenin pathway and new bone formation. The ulnae of loaded TOPGAL mice were excised and transverse slices along different parts of the ulnar shaft were assayed for the presence of β-galactosidase. Our results indicate that loading increases β-catenin transcriptional activity in regions where this pathway is already primed (i.e. where basal activity is already higher) in a load magnitude dependent manner. Further experiments are needed to determine the temporal and spatial activation of this signaling in relation to bone formation.

Keywords: Bone Resorption and Formation, Mechanical Loading of Bone, Wnt Signaling Pathway & β-catenin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
1945 Optimization of Heat Treatment Due to Austenising Temperature, Time and Quenching Solution in Hadfield Steels

Authors: Sh. Hosseini, M. B. Limooei, M. Hossein Zade, E. Askarnia, Z. Asadi

Abstract:

Manganese steel (Hadfield) is one of the important alloys in industry due to its special properties. High work hardening ability with appropriate toughness and ductility are the properties that caused this alloy to be used in wear resistance parts and in high strength condition. Heat treatment is the main process through which the desired mechanical properties and microstructures are obtained in Hadfield steel. In this study various heat treatment cycles, differing in austenising temperature, time and quenching solution are applied. For this purpose, the same samples of manganese steel was heat treated in 9 different cycles, and then the mechanical properties and microstructures were investigated. Based on the results of the study, the optimum heat treatment cycle was obtained.

Keywords: Manganese steel (Hadfield), heat treatment, austenising temperature, austenising time, quenching solution, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4416
1944 Evaluation of AR-4BL-MAST with Multiple Markers Interaction Technique for Augmented Reality Based Engineering Application

Authors: Waleed Maqableh, Ahmad Al-Hamad, Manjit Sidhu

Abstract:

Augmented reality (AR) technology has the capability to provide many benefits in the field of education as a modern technology which aided learning and improved the learning experience. This paper evaluates AR based application with multiple markers interaction technique (touch-to-print) which is designed for analyzing the kinematics of 4BL mechanism in mechanical engineering. The application is termed as AR-4BL-MAST and it allows the users to touch the symbols on a paper in natural way of interaction. The evaluation of this application was performed with mechanical engineering students and human–computer interaction (HCI) experts to test its effectiveness as a tangible user interface application where the statistical results show its ability as an interaction technique, and it gives the users more freedom in interaction with the virtual mechanical objects.

Keywords: Augmented reality, engineering, four-bar linkage, Multimedia, user interface, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
1943 Estimation of the External Force for a Co-Manipulation Task Using the Drive Chain Robot

Authors: Sylvain Devie, Pierre-Philippe Robet, Yannick Aoustin, Maxime Gautier

Abstract:

The aim of this paper is to show that the observation of the external effort and the sensor-less control of a system is limited by the mechanical system. First, the model of a one-joint robot with a prismatic joint is presented. Based on this model, two different procedures were performed in order to identify the mechanical parameters of the system and observe the external effort applied on it. Experiments have proven that the accuracy of the force observer, based on the DC motor current, is limited by the mechanics of the robot. The sensor-less control will be limited by the accuracy in estimation of the mechanical parameters and by the maximum static friction force, that is the minimum force which can be observed in this case. The consequence of this limitation is that industrial robots without specific design are not well adapted to perform sensor-less precision tasks. Finally, an efficient control law is presented for high effort applications.

Keywords: Control, Identification, Robot, Co-manipulation, Sensor-less.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 604
1942 Influence of Tool Profile on Mechanical Properties of Friction Stir Welded Aluminium Alloy 5083

Authors: A. Chandrashekar, H. N. Reddappa, B. S. Ajaykumar

Abstract:

A Friction stir welding tool is a critical component to the success of the process. The tool typically consists of a rotating round shoulder and a threaded cylindrical pin that heats the work piece, mostly by friction, and moves the softened alloy around it to form the joint. In this research work, an attempt has been made to investigate the relationship between FSW variables mainly tool profile, rotating speed, welding speed and the mechanical properties (tensile strength, yield strength, percentage elongation, and micro hardness) of friction stir welded aluminum alloy 5083 joints. From the experimental details, it can be assessed that the joint produced by using Triflute profile tool has contribute superior mechanical and structural properties as compared to Tapered unthreaded & Threaded tool for 1000rpm.

Keywords: Friction stir welding, Tool profile, Rotating speed, Strength, Speed ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444
1941 Calculation of the Ceramics Weibull Parameters

Authors: V. Fuis, T. Navrat

Abstract:

The paper deals with calculation of the parameters of ceramic material from a set of destruction tests of ceramic heads of total hip joint endoprosthesis. The standard way of calculation of the material parameters consists in carrying out a set of 3 or 4 point bending tests of specimens cut out from parts of the ceramic material to be analysed. In case of ceramic heads, it is not possible to cut out specimens of required dimensions because the heads are too small (if the cut out specimens were smaller than the normalised ones, the material parameters derived from them would exhibit higher strength values than those which the given ceramic material really has). On that score, a special testing jig was made, in which 40 heads were destructed. From the measured values of circumferential strains of the head-s external spherical surface under destruction, the state of stress in the head under destruction was established using the final elements method (FEM). From the values obtained, the sought for parameters of the ceramic material were calculated using Weibull-s weakest-link theory.

Keywords: Hip joint endoprosthesis, ceramic head, FEM analysis, Weibull's weakest-link theory, failure probability, material parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606
1940 Numerical Modeling of Direct Shear Tests on Sandy Clay

Authors: R. Ziaie Moayed , S. Tamassoki , E. Izadi

Abstract:

Investigation of sandy clay behavior is important since urban development demands mean that sandy clay areas are increasingly encountered, especially for transportation infrastructures. This paper presents the results of the finite element analysis of the direct shear test (under three vertical loading 44, 96 and 192 kPa) and discusses the effects of different parameters such as cohesion, friction angle and Young's modulus on the shear strength of sandy clay. The numerical model was calibrated against the experimental results of large-scale direct shear tests. The results have shown that the shear strength was increased with increase in friction angle and cohesion. However, the shear strength was not influenced by raising the friction angle at normal stress of 44 kPa. Also, the effect of different young's modulus factors on stress-strain curve was investigated.

Keywords: Shear strength, Finite element analysis, Large direct shear test, Sandy clay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5439
1939 Quantum Statistical Mechanical Formulations of Three-Body Problems via Non-Local Potentials

Authors: A. Maghari, V. H. Maleki

Abstract:

In this paper, we present a quantum statistical mechanical formulation from our recently analytical expressions for partial-wave transition matrix of a three-particle system. We report the quantum reactive cross sections for three-body scattering processes 1+(2,3)→1+(2,3) as well as recombination 1+(2,3)→1+(3,1) between one atom and a weakly-bound dimer. The analytical expressions of three-particle transition matrices and their corresponding cross-sections were obtained from the threedimensional Faddeev equations subjected to the rank-two non-local separable potentials of the generalized Yamaguchi form. The equilibrium quantum statistical mechanical properties such partition function and equation of state as well as non-equilibrium quantum statistical properties such as transport cross-sections and their corresponding transport collision integrals were formulated analytically. This leads to obtain the transport properties, such as viscosity and diffusion coefficient of a moderate dense gas.

Keywords: Statistical mechanics, Nonlocal separable potential, three-body interaction, Faddeev equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079
1938 Intelligent Face-Up CMP System Integrated with On-Line Optical Measurements

Authors: Sheng-Ming Huang, Nan-Chyuan Tsai, Chih-Che Lin, Chun-Chi Lin

Abstract:

An innovative design for intelligent Chemical Mechanical Polishing (CMP) system is proposed and verified by experiments in this report. On-line measurement and real-time feedback are integrated to eliminate the shortcomings of traditional approaches, e.g., the batch-to-batch discrepancy of required polishing time, over consumption of chemical slurry, and non-uniformity across the wafer. The major advantage of the proposed method is that the finish of local surface roughness can be consistent, no matter where the inner-ring region or outer-ring region is concerned. Secondly, it is able to eliminate the Edge effect. Conventionally, the interfacial induced stress near the wafer edge is generally much higher than that near the wafer center. At last, by using the proposed intelligent chemical mechanical polishing strategy, the cost of the entire machining cycle can be much reduced while the quality of the finished goods certainly upgraded.

Keywords: Chemical Mechanical Polishing, Active Magnetic Actuator, On-Line Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
1937 Finite Element Application to Estimate Inservice Material Properties using Miniature Specimen

Authors: G. Partheepan, D.K. Sehgal, R.K. Pandey

Abstract:

This paper presents a method for determining the uniaxial tensile properties such as Young-s modulus, yield strength and the flow behaviour of a material in a virtually non-destructive manner. To achieve this, a new dumb-bell shaped miniature specimen has been designed. This helps in avoiding the removal of large size material samples from the in-service component for the evaluation of current material properties. The proposed miniature specimen has an advantage in finite element modelling with respect to computational time and memory space. Test fixtures have been developed to enable the tension tests on the miniature specimen in a testing machine. The studies have been conducted in a chromium (H11) steel and an aluminum alloy (AR66). The output from the miniature test viz. load-elongation diagram is obtained and the finite element simulation of the test is carried out using a 2D plane stress analysis. The results are compared with the experimental results. It is observed that the results from the finite element simulation corroborate well with the miniature test results. The approach seems to have potential to predict the mechanical properties of the materials, which could be used in remaining life estimation of the various in-service structures.

Keywords: ABAQUS, finite element, miniature test, tensileproperties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
1936 Density, Strength, Thermal Conductivity and Leachate Characteristics of Light-Weight Fired Clay Bricks Incorporating Cigarette Butts

Authors: Aeslina Abdul Kadir, Abbas Mohajerani, Felicity Roddick, John Buckeridge

Abstract:

Several trillion cigarettes produced worldwide annually lead to many thousands of kilograms of toxic waste. Cigarette butts (CBs) accumulate in the environment due to the poor biodegradability of the cellulose acetate filters. This paper presents some of the results from a continuing study on recycling CBs into fired clay bricks. Physico-mechanical properties of fired clay bricks manufactured with different percentages of CBs are reported and discussed. The results show that the density of fired bricks was reduced by up to 30 %, depending on the percentage of CBs incorporated into the raw materials. Similarly, the compressive strength of bricks tested decreased according to the percentage of CBs included in the mix. The thermal conductivity performance of bricks was improved by 51 and 58 % for 5 and 10 % CBs content respectively. Leaching tests were carried out to investigate the levels of possible leachates of heavy metals from the manufactured clay-CB bricks. The results revealed trace amounts of heavy metals.

Keywords: Cigarette butts, Fired clay bricks, Light bricks, Recycling waste, Thermal conductivity, Leachates, Leaching test

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4837
1935 Mechanical Properties of Pea Pods (Pisium sativum Var. Shamshiri)

Authors: M. Azadbakht, N. Tajari, R. Alimoradzade

Abstract:

Knowing pea pods mechanical resistance against dynamic forces are important for design of combine harvester. In pea combine harvesters, threshing is accomplished by two mechanical actions of impact and friction forces. In this research, the effects of initial moisture content and needed impact and friction energy on threshing of pea pods were studied. An impact device was built based on pendulum mechanism. The experiments were done at three initial moisture content levels of 12.1, 23.5 and 39.5 (%w.b.) for both impact and friction methods. Three energy levels of 0.088, 0.126 and 0.202 J were used for impact method and for friction method three energy levels of 0.784, 0.930 and 1.351 J. The threshing percentage was measured in each method. By using a frictional device, kinetic friction coefficients at above moisture contents were measured 0.257, 0.303 and 0.336, respectively. The results of variance analysis of the two methods showed that moisture content and energy have significant effects on the threshing percentage.

Keywords: Pea pod, Energy, Friction, Impact, Initial moisture content, Threshing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
1934 Permanent Magnet Machine Can Be a Vibration Sensor for Itself

Authors: M. Barański

Abstract:

This article presents a new vibration diagnostic method designed to (PM) machines with permanent magnets. Those devices are commonly used in small wind and water systems or vehicles drives. The author’s method is very innovative and unique. Specific structural properties of PM machines are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical PM machines and there was no method found to determine the technical condition of such machine basing on their own signals. In this article will be discussed: the method genesis, the similarity of machines with permanent magnet to vibration sensor and simulation and laboratory tests results. The method of determination the technical condition of electrical machine with permanent magnets basing on its own signals is the subject of patent application and it is the main thesis of author’s doctoral dissertation.

Keywords: Electrical vehicle, generator, permanent magnet, traction drive, vibrations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271
1933 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites

Authors: J. R. Büttler, T. Pham

Abstract:

Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.

Keywords: Dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite, T-peel test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 677
1932 Investigation of Thermal and Mechanical Loading on Functional Graded Material Plates

Authors: Mine Uslu Uysal

Abstract:

This paper interested in the mechanical deformation behavior of shear deformable functionally graded ceramic-metal (FGM) plates. Theoretical formulations are based on power law theory when build up functional graded material. The mechanical properties of the plate are graded in the thickness direction according to a power-law Displacement and stress is obtained using finite element method (FEM). The load is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. An FGM’s gradation in material properties allows the designer to tailor material response to meet design criteria. An FGM made of ceramic and metal can provide the thermal protection and load carrying capability in one material thus eliminating the problem of thermo-mechanical deformation behavior. This thesis will explore analysis of FGM flat plates and shell panels, and their applications to r structural problems. FGMs are first characterized as flat plates under pressure in order to understand the effect variation of material properties has on structural response. In addition, results are compared to published results in order to show the accuracy of modeling FGMs using ABAQUS software.

Keywords: Functionally graded material, finite element method, thermal and structural loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3518
1931 Mechanical Design and Theoretical Analysis of a Four Fingered Prosthetic Hand Incorporating Embedded SMA Bundle Actuators

Authors: Kevin T. O'Toole, Mark M. McGrath

Abstract:

The psychological and physical trauma associated with the loss of a human limb can severely impact on the quality of life of an amputee rendering even the most basic of tasks very difficult. A prosthetic device can be of great benefit to the amputee in the performance of everyday human tasks. This paper outlines a proposed mechanical design of a 12 degree-of-freedom SMA actuated artificial hand. It is proposed that the SMA wires be embedded intrinsically within the hand structure which will allow for significant flexibility for use either as a prosthetic hand solution, or as part of a complete lower arm prosthetic solution. A modular approach is taken in the design facilitating ease of manufacture and assembly, and more importantly, also allows the end user to easily replace SMA wires in the event of failure. A biomimetric approach has been taken during the design process meaning that the artificial hand should replicate that of a human hand as far as is possible with due regard to functional requirements. The proposed design has been exposed to appropriate loading through the use of finite element analysis (FEA) to ensure that it is structurally sound. Theoretical analysis of the mechanical framework was also carried out to establish the limits of the angular displacement and velocity of the finger tip as well finger tip force generation. A combination of various polymers and Titanium, which are suitably lightweight, are proposed for the manufacture of the design.

Keywords: Hand prosthesis, mechanical design, shape memory alloys, wire bundle actuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2591
1930 Assessing the Seismic Performance of Threaded Rebar Coupler System

Authors: Do-Kyu, Hwang, Ho-Young Kim, Ho-Hyeoung Choi, Gi-Beom Park, Jae-Hoon Lee

Abstract:

Currently there are many use of threaded reinforcing bars in construction fields because those do not need additional screw processing when connecting reinforcing bar by threaded coupler. In this study, reinforced concrete bridge piers using threaded rebar coupler system at the plastic hinge area were tested to evaluate seismic performance. The test results showed that threads of the threaded rebar coupler system could be loosened while under tension-compression cyclic loading because tolerance and rib face angle of a threaded rebar coupler system are greater than that of a conventional ribbed rebar coupler system. As a result, cracks were concentrated just outside of the mechanical coupler and stiffness of reinforced concrete bridge pier decreased. Therefore, it is recommended that connection ratio of mechanical couplers in one section shall be below 50% in order that cracks are not concentrated just outside of the mechanical coupler. Also, reduced stiffness of the specimen should be considered when using the threaded rebar coupler system.

Keywords: Reinforced concrete column, seismic performance, threaded rebar coupler, threaded reinforcing bar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3684
1929 The Effect of Surface Modifiers on the Mechanical and Morphological Properties of Waste Silicon Carbide Filled High-Density Polyethylene

Authors: R. Dangtungee, A. Rattanapan, S. Siengchin

Abstract:

Waste silicon carbide (waste SiC) filled high-density polyethylene (HDPE) with and without surface modifiers were studied. Two types of surface modifiers namely; high-density polyethylene-grafted-maleic anhydride (HDPE-g-MA) and 3-aminopropyltriethoxysilane have been used in this study. The composites were produced using a two roll mill, extruder and shaped in a hydraulic compression molding machine. The mechanical properties of polymer composites such as flexural strength and modulus, impact strength, tensile strength, stiffness and hardness were investigated over a range of compositions. It was found that, flexural strength and modulus, tensile modulus and hardness increased, whereas impact strength and tensile strength decreased with the increasing in filler contents, compared to the neat HDPE. At similar filler content, the effect of both surface modifiers increased flexural modulus, impact strength, tensile strength and stiffness but reduced the flexural strength. Morphological investigation using SEM revealed that the improvement in mechanical properties was due to enhancement of the interfacial adhesion between waste SiC and HDPE.

Keywords: High-density polyethylene, HDPE-g-MA, mechanical properties, morphological properties, silicon carbide, waste silicon carbide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
1928 Influence of Post Weld Heat Treatment on Mechanical and Metallurgical Properties of TIG Welded Aluminium Alloy Joints

Authors: Gurmeet Singh Cheema, Navjotinder Singh, Gurjinder Singh, Amardeep Singh Kang

Abstract:

Aluminium and its alloys have excellent corrosion resistant properties, ease of fabrication and high specific strength to weight ratio. In this investigation an attempt has been made to study the effect of different post weld heat treatment methods on the mechanical and metallurgical properties of TIG welded joints of the commercial aluminium alloy. Three different methods of post weld heat treatments are solution heat treatment, artificial ageing and combination of solution heat treatment and artificial aging are given to TIG welded aluminium joints. Mechanical and metallurgical properties of As welded joints of the aluminium alloys and post weld heat treated joints of the aluminium alloys were examined.

Keywords: Aluminium Alloys, Post weld Heat Treatment, TIG welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3217
1927 Nanomechanical Characterization of Titanium Alloy Modified by Nitrogen Ion Implantation

Authors: Josef Sepitka, Petr Vlcak, Tomas Horazdovsky, Vratislav Perina

Abstract:

An ion implantation technique was used for designing the surface area of a titanium alloy and for irradiation-enhanced hardening of the surface. The Ti6Al4V alloy was treated by nitrogen ion implantation at fluences of 2·1017 and 4·1017 cm-2 and at ion energy 90 keV. The depth distribution of the nitrogen was investigated by Rutherford Backscattering Spectroscopy. The gradient of mechanical properties was investigated by nanoindentation. The continuous measurement mode was used to obtain depth profiles of the indentation hardness and the reduced storage modulus of the modified surface area. The reduced storage modulus and the hardness increase with increasing fluence. Increased fluence shifts the peak of the mechanical properties as well as the peak of nitrogen concentration towards to the surface. This effect suggests a direct relationship between mechanical properties and nitrogen distribution.

Keywords: Nitrogen ion implantation, titanium-based nanolayer, storage modulus, hardness, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245
1926 Test Method Development for Evaluation of Process and Design Effect on Reinforced Tube

Authors: Cathal Merz, Gareth O’Donnell

Abstract:

Coil reinforced thin-walled (CRTW) tubes are used in medicine to treat problems affecting blood vessels within the body through minimally invasive procedures. The CRTW tube considered in this research makes up part of such a device and is inserted into the patient via their femoral or brachial arteries and manually navigated to the site in need of treatment. This procedure replaces the requirement to perform open surgery but is limited by reduction of blood vessel lumen diameter and increase in tortuosity of blood vessels deep in the brain. In order to maximize the capability of these procedures, CRTW tube devices are being manufactured with decreasing wall thicknesses in order to deliver treatment deeper into the body and to allow passage of other devices through its inner diameter. This introduces significant stresses to the device materials which have resulted in an observed increase in the breaking of the proximal segment of the device into two separate pieces after it has failed by buckling. As there is currently no international standard for measuring the mechanical properties of these CRTW tube devices, it is difficult to accurately analyze this problem. The aim of the current work is to address this discrepancy in the biomedical device industry by developing a measurement system that can be used to quantify the effect of process and design changes on CRTW tube performance, aiding in the development of better performing, next generation devices. Using materials testing frames, micro-computed tomography (micro-CT) imaging, experiment planning, analysis of variance (ANOVA), T-tests and regression analysis, test methods have been developed for assessing the impact of process and design changes on the device. The major findings of this study have been an insight into the suitability of buckle and three-point bend tests for the measurement of the effect of varying processing factors on the device’s performance, and guidelines for interpreting the output data from the test methods. The findings of this study are of significant interest with respect to verifying and validating key process and design changes associated with the device structure and material condition. Test method integrity evaluation is explored throughout.

Keywords: Buckling, coil reinforced thin-walled tubes, fracture, test method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 631
1925 Improvement in Properties of Ni-Cr-Mo-V Steel through Process Control

Authors: Arnab Majumdar, Sanjoy Sadhukhan

Abstract:

Although gun barrel steels are an important variety from defense view point, available literatures are very limited. In the present work, an IF grade Ni-Cr-Mo-V high strength low alloy steel is produced in Electric Earth Furnace-ESR Route. Ingot was hot forged to desired dimension with a reduction ratio of 70-75% followed by homogenization, hardening and tempering treatment. Sample chemistry, NMIR, macro and micro structural analyses were done. Mechanical properties which include tensile, impact, and fracture toughness were studied. Ultrasonic testing was done to identify internal flaws. The existing high strength low alloy Ni-Cr-Mo-V steel shows improved properties in modified processing route and heat treatment schedule in comparison to properties noted earlier for manufacturing of gun barrels. The improvement in properties seems to withstand higher explosive loads with the same amount of steel in gun barrel application.

Keywords: Gun barrel steels, IF grade, physical properties, thermal and mechanical processing, mechanical properties, ultrasonic testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2388
1924 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC

Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan

Abstract:

Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.

Keywords: Concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, direct tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
1923 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure

Authors: T. Nozu, K. Hibi, T. Nishiie

Abstract:

This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.

Keywords: Deflagration, Large Eddy Simulation, Turbulent combustion, Vented enclosure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
1922 Design and Fabrication of Stent with Negative Poisson’s Ratio

Authors: S. K. Bhullar, J. Ko, F. Ahmed, M. B. G. Jun

Abstract:

The negative Poisson’s ratios can be described in terms of models based on the geometry of the system and the way this geometry changes due to applied loads. As the Poisson’s ratio does not depend on scale hence deformation can take place at the nano to macro level the only requirement is the right combination of the geometry. Our thrust in this paper is to combine our knowledge of tailored enhanced mechanical properties of the materials having negative Poisson’s ratio with the micromachining and electrospining technology to develop a novel stent carrying a drug delivery system. Therefore, the objective of this paper includes (i) fabrication of a micromachined metal sheet tailored with structure having negative Poisson’s ratio through rotating solid squares geometry using femtosecond laser ablation; (ii) rolling fabricated structure and welding to make a tubular structure (iii) wrapping it with nanofibers of biocompatible polymer PCL (polycaprolactone) for drug delivery (iv) analysis of the functional and mechanical performance of fabricated structure analytically and experimentally. Further, as the applications concerned, tubular structures have potential in biomedical for example hollow tubes called stents are placed inside to provide mechanical support to a damaged artery or diseased region and to open a blocked esophagus thus allowing feeding capacity and improving quality of life.

Keywords: Micromachining, electrospining, auxetic materials, enhanced mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3584
1921 Effects of Axial Loads and Soil Density on Pile Group Subjected to Triangular Soil Movement

Authors: Ihsan Al-Abboodi, Tahsin Toma-Sabbagh

Abstract:

Laboratory tests have been carried out to investigate the response of 2x2 pile group subjected to triangular soil movement. The pile group was instrumented with displacement and tilting devices at the pile cap and strain gauges on two piles of the group. In this paper, results from four model tests were presented to study the effects of axial loads and soil density on the lateral behavior of piles. The responses in terms of bending moment, shear force, soil pressure, deflection, and rotation of piles were compared. Test results indicate that increasing the soil strength could increase the measured moment, shear, soil pressure, and pile deformations. Most importantly, adding loads to the pile cap induces additional moment to the head of front-pile row unlike the back-pile row which was influenced insignificantly.

Keywords: Pile group, passive piles, lateral soil movement, soil density, axial loads.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
1920 Influence of Hygro-Chemo-Mechanical Degradation on Performance of Concrete Gravity Dam

Authors: Kalyan Kumar Mandal, Damodar Maity

Abstract:

The degradation of concrete due to various hygrochemo- mechanical actions is inevitable for the structures particularly built to store water. Therefore, it is essential to determine the material properties of dam-like structures due to ageing to predict the behavior of such structures after a certain age. The degraded material properties are calculated by introducing isotropic degradation index. The predicted material properties are used to study the behavior of aged dam at different ages. The dam is modeled by finite elements and displacement and is considered as an unknown variable. The parametric study reveals that the displacement is quite larger for comparatively lower design life of the structure because the degradation of elastic properties depends on the design life of the dam. The stresses in dam cam be unexpectedly large at any age with in the design life. The outcomes of the present study indicate the importance of the consideration ageing effect of concrete exposed to water for the safe design of dam throughout its life time.

Keywords: Hygro-chemo-mechanical, isotropic degradation, finite element method, Koyna earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
1919 Scaling Strategy of a New Experimental Rig for Wheel-Rail Contact

Authors: Meysam Naeimi, Zili Li, Rolf Dollevoet

Abstract:

A new small–scale test rig developed for rolling contact fatigue (RCF) investigations in wheel–rail material. This paper presents the scaling strategy of the rig based on dimensional analysis and mechanical modelling. The new experimental rig is indeed a spinning frame structure with multiple wheel components over a fixed rail-track ring, capable of simulating continuous wheelrail contact in a laboratory scale. This paper describes the dimensional design of the rig, to derive its overall scaling strategy and to determine the key elements’ specifications. Finite element (FE) modelling is used to simulate the mechanical behavior of the rig with two sample scale factors of 1/5 and 1/7. The results of FE models are compared with the actual railway system to observe the effectiveness of the chosen scales. The mechanical properties of the components and variables of the system are finally determined through the design process.

Keywords: New test rig, rolling contact fatigue, rail, small scale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294