Search results for: contouring accuracy
1353 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain
Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas
Abstract:
Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.
Keywords: Agricultural robot, autonomous control, path-tracking control, tracked mobile robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11341352 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values
Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi
Abstract:
A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.
Keywords: eXtreme Gradient Boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impairment, multiclass classification, ADNI, support vector machine, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9581351 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images
Authors: Mehrnoosh Omati, Mahmod Reza Sahebi
Abstract:
The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.
Keywords: Coupled Markov random field, environment, object-based analysis, Polarimetric SAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8631350 Classifying Students for E-Learning in Information Technology Course Using ANN
Authors: S. Areerachakul, N. Ployong, S. Na Songkla
Abstract:
This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by Electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.
Keywords: Artificial neural network, classification, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14981349 Accurate Control of a Pneumatic System using an Innovative Fuzzy Gain-Scheduling Pattern
Authors: M. G. Papoutsidakis, G. Chamilothoris, F. Dailami, N. Larsen, A Pipe
Abstract:
Due to their high power-to-weight ratio and low cost, pneumatic actuators are attractive for robotics and automation applications; however, achieving fast and accurate control of their position have been known as a complex control problem. A methodology for obtaining high position accuracy with a linear pneumatic actuator is presented. During experimentation with a number of PID classical control approaches over many operations of the pneumatic system, the need for frequent manual re-tuning of the controller could not be eliminated. The reason for this problem is thermal and energy losses inside the cylinder body due to the complex friction forces developed by the piston displacements. Although PD controllers performed very well over short periods, it was necessary in our research project to introduce some form of automatic gain-scheduling to achieve good long-term performance. We chose a fuzzy logic system to do this, which proved to be an easily designed and robust approach. Since the PD approach showed very good behaviour in terms of position accuracy and settling time, it was incorporated into a modified form of the 1st order Tagaki- Sugeno fuzzy method to build an overall controller. This fuzzy gainscheduler uses an input variable which automatically changes the PD gain values of the controller according to the frequency of repeated system operations. Performance of the new controller was significantly improved and the need for manual re-tuning was eliminated without a decrease in performance. The performance of the controller operating with the above method is going to be tested through a high-speed web network (GRID) for research purposes.Keywords: Fuzzy logic, gain scheduling, leaky integrator, pneumatic actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17501348 Fake Account Detection in Twitter Based on Minimum Weighted Feature set
Authors: Ahmed El Azab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny
Abstract:
Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting the fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, and then the determined factors are applied using different classification techniques. A comparison of the results of these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent researches in the same area; this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts; moreover, the study can be applied on different social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.Keywords: Fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58371347 Variational Iteration Method for the Solution of Boundary Value Problems
Authors: Olayiwola M.O., Gbolagade A .W., Akinpelu F. O.
Abstract:
In this work, we present a reliable framework to solve boundary value problems with particular significance in solid mechanics. These problems are used as mathematical models in deformation of beams. The algorithm rests mainly on a relatively new technique, the Variational Iteration Method. Some examples are given to confirm the efficiency and the accuracy of the method.
Keywords: Variational iteration method, boundary value problems, convergence, restricted variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21021346 A New Center of Motion in Cabling Robots
Authors: A. Abbasi Moshaii, F. Najafi
Abstract:
In this paper a new model for center of motion creating is proposed. This new method uses cables. So, it is very useful in robots because it is light and has easy assembling process. In the robots which need to be in touch with some things this method is so useful. It will be described in the following. The accuracy of the idea is proved by two experiments. This system could be used in the robots which need a fixed point in the contact with some things and make a circular motion.Keywords: Center of Motion, Robotic cables, permanent touching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16681345 Elliptical Features Extraction Using Eigen Values of Covariance Matrices, Hough Transform and Raster Scan Algorithms
Authors: J. Prakash, K. Rajesh
Abstract:
In this paper, we introduce a new method for elliptical object identification. The proposed method adopts a hybrid scheme which consists of Eigen values of covariance matrices, Circular Hough transform and Bresenham-s raster scan algorithms. In this approach we use the fact that the large Eigen values and small Eigen values of covariance matrices are associated with the major and minor axial lengths of the ellipse. The centre location of the ellipse can be identified using circular Hough transform (CHT). Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain a small number of nonzero elements they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of circumference pixels is identified using raster scan algorithm which uses the geometrical symmetry property. This method does not require the evaluation of tangents or curvature of edge contours, which are generally very sensitive to noise working conditions. The proposed method has the advantages of small storage, high speed and accuracy in identifying the feature. The new method has been tested on both synthetic and real images. Several experiments have been conducted on various images with considerable background noise to reveal the efficacy and robustness. Experimental results about the accuracy of the proposed method, comparisons with Hough transform and its variants and other tangential based methods are reported.Keywords: Circular Hough transform, covariance matrix, Eigen values, ellipse detection, raster scan algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26411344 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework
Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin
Abstract:
During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.
Keywords: Artificial intelligence, depression detection, facial emotion recognition, natural language processing, mental disorder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11781343 Implementation of an On-Line PD Measurement System Using HFCT
Authors: F. Haghjoo, M. Sarlak, S.M. Shahrtash
Abstract:
In order to perform on-line measuring and detection of PD signals, a total solution composing of an HFCT, A/D converter and a complete software package is proposed. The software package includes compensation of HFCT contribution, filtering and noise reduction using wavelet transform and soft calibration routines. The results have shown good performance and high accuracy.Keywords: Partial Discharge, Measurement, On-line, HFCT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18181342 Subpixel Detection of Circular Objects Using Geometric Property
Authors: Wen-Yen Wu, Wen-Bin Yu
Abstract:
In this paper, we propose a method for detecting circular shapes with subpixel accuracy. First, the geometric properties of circles have been used to find the diameters as well as the circumference pixels. The center and radius are then estimated by the circumference pixels. Both synthetic and real images have been tested by the proposed method. The experimental results show that the new method is efficient.Keywords: Subpixel, least squares estimation, circle detection, Hough transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21371341 COVID_ICU_BERT: A Fine-tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes
Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo
Abstract:
Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as physiological vital signs, images and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful to influence the judgement of clinical sentiment in ICU clinical notes. This paper presents two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of a clinical transformer model that can reliably predict clinical sentiment for notes of COVID patients in ICU. We train the model on clinical notes for COVID-19 patients, ones not previously seen by Bio_ClinicalBERT or Bio_Discharge_Summary_BERT. The model which was based on Bio_ClinicalBERT achieves higher predictive accuracy than the one based on Bio_Discharge_Summary_BERT (Acc 93.33%, AUC 0.98, and Precision 0.96). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and Precision 0.92).
Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761340 Compliance Modelling and Optimization of Kerf during WEDM of Al7075/SiCP Metal Matrix Composite
Authors: Thella Babu Rao, A. Gopala Krishna
Abstract:
This investigation presents the formulation of kerf (width of slit) and optimal control parameter settings of wire electrochemical discharge machining which results minimum possible kerf while machining Al7075/SiCp MMCs. WEDM is proved its efficiency and effectiveness to cut the hard ceramic reinforced MMCs within the permissible budget. Among the distinct performance measures of WEDM process, kerf is an important performance characteristic which determines the dimensional accuracy of the machined component while producing high precision components. The lack of available of the machinability information such advanced MMCs result the more experimentation in the manufacturing industries. Therefore, extensive experimental investigations are essential to provide the database of effect of various control parameters on the kerf while machining such advanced MMCs in WEDM. Literature reviled the significance some of the electrical parameters which are prominent on kerf for machining distinct conventional materials. However, the significance of reinforced particulate size and volume fraction on kerf is highlighted in this work while machining MMCs along with the machining parameters of pulse-on time, pulse-off time and wire tension. Usually, the dimensional tolerances of machined components are decided at the design stage and a machinist pay attention to produce the required dimensional tolerances by setting appropriate machining control variables. However, it is highly difficult to determine the optimal machining settings for such advanced materials on the shop floor. Therefore, in the view of precision of cut, kerf (cutting width) is considered as the measure of performance for the model. It was found from the literature that, the machining conditions of higher fractions of large size SiCp resulting less kerf where as high values of pulse-on time result in a high kerf. A response surface model is used to predict the relative significance of various control variables on kerf. Consequently, a powerful artificial intelligence called genetic algorithms (GA) is used to determine the best combination of the control variable settings. In the next step the conformation test was conducted for the optimal parameter settings and found good agreement between the GA kerf and measured kerf. Hence, it is clearly reveal that the effectiveness and accuracy of the developed model and program to analyze the kerf and to determine its optimal process parameters. The results obtained in this work states that, the resulted optimized parameters are capable of machining the Al7075/SiCp MMCs more efficiently and with better dimensional accuracy.
Keywords: Al7075SiCP MMC, kerf, WEDM, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20191339 Creating Streamribbons Based on Mass Conservative Streamlines
Authors: Zhenquan Li, Niharika Singh
Abstract:
Streamribbon is used to visualize the rotation of the fluid flow. The rotation of flow is useful in fluid mechanics, engineering and geophysics. This paper introduces the construction technique of streamribbon using the streamline which is generated based on the law of mass conservation. The accuracy of constructed streamribbons is shown through two examples.Keywords: Mass conservation, streamline, streamtube, streamribbon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12071338 Specialized Web Robot for Objectionable Web Content Classification
Authors: SuGil Choi, SeungWan Han, Chi-Yoon Jeong, TaekYong Nam
Abstract:
This paper proposes a specialized Web robot to automatically collect objectionable Web contents for use in an objectionable Web content classification system, which creates the URL database of objectionable Web contents. It aims at shortening the update period of the DB, increasing the number of URLs in the DB, and enhancing the accuracy of the information in the DB.
Keywords: Web robot, objectionable Web content classification, URL database, URL rating
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18851337 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: B. Golchin, N. Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.
Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6651336 A Hybrid Mesh Free Local RBF- Cartesian FD Scheme for Incompressible Flow around Solid Bodies
Authors: A. Javed, K. Djidjeli, J. T. Xing, S. J. Cox
Abstract:
A method for simulating flow around the solid bodies has been presented using hybrid meshfree and mesh-based schemes. The presented scheme optimizes the computational efficiency by combining the advantages of both meshfree and mesh-based methods. In this approach, a cloud of meshfree nodes has been used in the domain around the solid body. These meshfree nodes have the ability to efficiently adapt to complex geometrical shapes. In the rest of the domain, conventional Cartesian grid has been used beyond the meshfree cloud. Complex geometrical shapes can therefore be dealt efficiently by using meshfree nodal cloud and computational efficiency is maintained through the use of conventional mesh-based scheme on Cartesian grid in the larger part of the domain. Spatial discretization of meshfree nodes has been achieved through local radial basis functions in finite difference mode (RBF-FD). Conventional finite difference scheme has been used in the Cartesian ‘meshed’ domain. Accuracy tests of the hybrid scheme have been conducted to establish the order of accuracy. Numerical tests have been performed by simulating two dimensional steady and unsteady incompressible flows around cylindrical object. Steady flow cases have been run at Reynolds numbers of 10, 20 and 40 and unsteady flow problems have been studied at Reynolds numbers of 100 and 200. Flow Parameters including lift, drag, vortex shedding, and vorticity contours are calculated. Numerical results have been found to be in good agreement with computational and experimental results available in the literature.
Keywords: CFD, Meshfree particle methods, Hybrid grid, Incompressible Navier Strokes equations, RBF-FD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29051335 Forecasting Foreign Direct Investment with Modified Diffusion Model
Authors: Bi-Huei Tsai
Abstract:
Prior research has not effectively investigated how the profitability of Chinese branches affect FDIs in China [1, 2], so this study for the first time incorporates realistic earnings information to systematically investigate effects of innovation, imitation, and profit factors of FDI diffusions from Taiwan to China. Our nonlinear least square (NLS) model, which incorporates earnings factors, forms a nonlinear ordinary differential equation (ODE) in numerical simulation programs. The model parameters are obtained through a genetic algorithms (GA) technique and then optimized with the collected data for the best accuracy. Particularly, Taiwanese regulatory FDI restrictions are also considered in our modified model to meet the realistic conditions. To validate the model-s effectiveness, this investigation compares the prediction accuracy of modified model with the conventional diffusion model, which does not take account of the profitability factors. The results clearly demonstrate the internal influence to be positive, as early FDI adopters- consistent praises of FDI attract potential firms to make the same move. The former erects a behavior model for the latter to imitate their foreign investment decision. Particularly, the results of modified diffusion models show that the earnings from Chinese branches are positively related to the internal influence. In general, the imitating tendency of potential consumers is substantially hindered by the losses in the Chinese branches, and these firms would invest less into China. The FDI inflow extension depends on earnings of Chinese branches, and companies will adjust their FDI strategies based on the returns. Since this research has proved that earning is an influential factor on FDI dynamics, our revised model explicitly performs superior in prediction ability than conventional diffusion model.Keywords: diffusion model, genetic algorithms, nonlinear leastsquares (NLS) model, prediction error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16131334 Accurate And Efficient Global Approximation using Adaptive Polynomial RSM for Complex Mechanical and Vehicular Performance Models
Authors: Y. Z. Wu, Z. Dong, S. K. You
Abstract:
Global approximation using metamodel for complex mathematical function or computer model over a large variable domain is often needed in sensibility analysis, computer simulation, optimal control, and global design optimization of complex, multiphysics systems. To overcome the limitations of the existing response surface (RS), surrogate or metamodel modeling methods for complex models over large variable domain, a new adaptive and regressive RS modeling method using quadratic functions and local area model improvement schemes is introduced. The method applies an iterative and Latin hypercube sampling based RS update process, divides the entire domain of design variables into multiple cells, identifies rougher cells with large modeling error, and further divides these cells along the roughest dimension direction. A small number of additional sampling points from the original, expensive model are added over the small and isolated rough cells to improve the RS model locally until the model accuracy criteria are satisfied. The method then combines local RS cells to regenerate the global RS model with satisfactory accuracy. An effective RS cells sorting algorithm is also introduced to improve the efficiency of model evaluation. Benchmark tests are presented and use of the new metamodeling method to replace complex hybrid electrical vehicle powertrain performance model in vehicle design optimization and optimal control are discussed.Keywords: Global approximation, polynomial response surface, domain decomposition, domain combination, multiphysics modeling, hybrid powertrain optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19081333 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil
Authors: M. Seguini, D. Nedjar
Abstract:
An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.Keywords: Finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19441332 Sensing Pressure for Authentication System Using Keystroke Dynamics
Authors: Hidetoshi Nonaka, Masahito Kurihara
Abstract:
In this paper, an authentication system using keystroke dynamics is presented. We introduced pressure sensing for the improvement of the accuracy of measurement and durability against intrusion using key-logger, and so on, however additional instrument is needed. As the result, it has been found that the pressure sensing is also effective for estimation of real moment of keystroke.
Keywords: Biometric authentication, Keystroke dynamics, Pressure sensing, Time-frequency analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22221331 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.
Keywords: Machine learning, stock market trading, logistic principal component analysis, automated stock investment system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10981330 Optical Flow Technique for Supersonic Jet Measurements
Authors: H. D. Lim, Jie Wu, T. H. New, Shengxian Shi
Abstract:
This paper outlines the development of an experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 4 bar and exit Mach of 1.5. High-speed singleframe or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Despite these challenges however, this supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer.
Keywords: Schlieren, optical flow, supersonic jets, shock shear layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19041329 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring
Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti
Abstract:
Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.
Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7081328 A Hybrid Multi-Criteria Hotel Recommender System Using Explicit and Implicit Feedbacks
Authors: Ashkan Ebadi, Adam Krzyzak
Abstract:
Recommender systems, also known as recommender engines, have become an important research area and are now being applied in various fields. In addition, the techniques behind the recommender systems have been improved over the time. In general, such systems help users to find their required products or services (e.g. books, music) through analyzing and aggregating other users’ activities and behavior, mainly in form of reviews, and making the best recommendations. The recommendations can facilitate user’s decision making process. Despite the wide literature on the topic, using multiple data sources of different types as the input has not been widely studied. Recommender systems can benefit from the high availability of digital data to collect the input data of different types which implicitly or explicitly help the system to improve its accuracy. Moreover, most of the existing research in this area is based on single rating measures in which a single rating is used to link users to items. This paper proposes a highly accurate hotel recommender system, implemented in various layers. Using multi-aspect rating system and benefitting from large-scale data of different types, the recommender system suggests hotels that are personalized and tailored for the given user. The system employs natural language processing and topic modelling techniques to assess the sentiment of the users’ reviews and extract implicit features. The entire recommender engine contains multiple sub-systems, namely users clustering, matrix factorization module, and hybrid recommender system. Each sub-system contributes to the final composite set of recommendations through covering a specific aspect of the problem. The accuracy of the proposed recommender system has been tested intensively where the results confirm the high performance of the system.
Keywords: Tourism, hotel recommender system, hybrid, implicit features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19001327 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.
Keywords: Affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, Signal Detection Theory, student engagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12621326 A Novel Approach towards Segmentation of Breast Tumors from Screening Mammograms for Efficient Decision Support System
Authors: M.Suganthi, M.Madheswaran
Abstract:
This paper presents a novel approach to finding a priori interesting regions in mammograms. In order to delineate those regions of interest (ROI-s) in mammograms, which appear to be prominent, a topographic representation called the iso-level contour map consisting of iso-level contours at multiple intensity levels and region segmentation based-thresholding have been proposed. The simulation results indicate that the computed boundary gives the detection rate of 99.5% accuracy.Keywords: Breast Cancer, Mammogram, and Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14811325 A Novel Impulse Detector for Filtering of Highly Corrupted Images
Authors: Umesh Ghanekar
Abstract:
As the performance of the filtering system depends upon the accuracy of the noise detection scheme, in this paper, we present a new scheme for impulse noise detection based on two levels of decision. In this scheme in the first stage we coarsely identify the corrupted pixels and in the second stage we finally decide whether the pixel under consideration is really corrupt or not. The efficacy of the proposed filter has been confirmed by extensive simulations.Keywords: Impulse detection, noise removal, image filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14091324 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods
Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin
Abstract:
Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.
Keywords: Burgers’ equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516