Search results for: Viscous Flow Structure.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4746

Search results for: Viscous Flow Structure.

4356 A Genetic and Simulated Annealing Based Algorithms for Solving the Flow Assignment Problem in Computer Networks

Authors: Tarek M. Mahmoud

Abstract:

Selecting the routes and the assignment of link flow in a computer communication networks are extremely complex combinatorial optimization problems. Metaheuristics, such as genetic or simulated annealing algorithms, are widely applicable heuristic optimization strategies that have shown encouraging results for a large number of difficult combinatorial optimization problems. This paper considers the route selection and hence the flow assignment problem. A genetic algorithm and simulated annealing algorithm are used to solve this problem. A new hybrid algorithm combining the genetic with the simulated annealing algorithm is introduced. A modification of the genetic algorithm is also introduced. Computational experiments with sample networks are reported. The results show that the proposed modified genetic algorithm is efficient in finding good solutions of the flow assignment problem compared with other techniques.

Keywords: Genetic Algorithms, Flow Assignment, Routing, Computer network, Simulated Annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
4355 Flow and Heat Transfer Mechanism Analysis in Outward Convex Asymmetrical Corrugated Tubes

Authors: Huaizhi Han, Bingxi Li, Yurong He, Rushan Bie, Zhao Wu

Abstract:

The flow and heat transfer mechanism in convex corrugated tubes have been investigated through numerical simulations in this paper. Two kinds of tube types named as symmetric corrugated tube (SCT) and asymmetric corrugated tube (ACT) are modeled and studied numerically based on the RST model. The predictive capability of RST model is examined in the corrugation wall in order to check the reliability of RST model under the corrugation wall condition. We propose a comparison between the RST modelling the corrugation wall with existing direct numerical simulation of Maaß C and Schumann U [14]. The numerical results pressure coefficient at different profiles between RST and DNS are well matched. The influences of large corrugation tough radii to heat transfer and flow characteristic had been considered. Flow and heat transfer comparison between SCT and ACT had been discussed. The numerical results show that ACT exhibits higher overall heat transfer performance than SCT.

Keywords: Asymmetric corrugated tube, RST, DNS, flow and heat transfer mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
4354 Design and Production of Thin-Walled UHPFRC Footbridge

Authors: P. Tej, P. Kněž, M. Blank

Abstract:

The paper presents design and production of thin-walled U-profile footbridge made of UHPFRC. The main structure of the bridge is one prefabricated shell structure made of UHPFRC with dispersed steel fibers without any conventional reinforcement. The span of the bridge structure is 10 m and the clear width of 1.5 m. The thickness of the UHPFRC shell structure oscillated in an interval of 30-45 mm. Several calculations were made during the bridge design and compared with the experiments. For the purpose of verifying the calculations, a segment of 1.5 m was first produced, followed by the whole footbridge for testing. After the load tests were done, the design was optimized to cast the final footbridge.

Keywords: Footbridge, UHPFRC, non-linear analysis, shell structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756
4353 Unsteady Aerodynamics of Multiple Airfoils in Configuration

Authors: Hossain Aziz, Rinku Mukherjee

Abstract:

A potential flow model is used to study the unsteady flow past two airfoils in configuration, each of which is suddenly set into motion. The airfoil bound vortices are modeled using lumped vortex elements and the wake behind the airfoil is modeled by discrete vortices. This consists of solving a steady state flow problem at each time-step where unsteadiness is incorporated through the “zero normal flow on a solid surface" boundary condition at every time instant. Additionally, along with the “zero normal flow on a solid surface" boundary condition Kelvin-s condition is used to compute the strength of the latest wake vortex shed from the trailing edge of the airfoil. Location of the wake vortices is updated at each time-step to get the wake shape at each time instant. Results are presented to show the effect of airfoil-airfoil interaction and airfoil-wake interaction on the aerodynamic characteristics of each airfoil.

Keywords: Aerodynamics, Airfoils, Configuration, Unsteady.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
4352 Heat Transfer of an Impinging Jet on a Plane Surface

Authors: Jian-Jun Shu

Abstract:

A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.

Keywords: Flux, free impinging jet, solid-surface, uniform wall temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
4351 Fragility Analysis of Weir Structure Subjected to Flooding Water Damage

Authors: Oh Hyeon Jeon, WooYoung Jung

Abstract:

In this study, seepage analysis was performed by the level difference between upstream and downstream of weir structure for safety evaluation of weir structure against flooding. Monte Carlo Simulation method was employed by considering the probability distribution of the adjacent ground parameter, i.e., permeability coefficient of weir structure. Moreover, by using a commercially available finite element program (ABAQUS), modeling of the weir structure is carried out. Based on this model, the characteristic of water seepage during flooding was determined at each water level with consideration of the uncertainty of their corresponding permeability coefficient. Subsequently, fragility function could be constructed based on this response from numerical analysis; this fragility function results could be used to determine the weakness of weir structure subjected to flooding disaster. They can also be used as a reference data that can comprehensively predict the probability of failur,e and the degree of damage of a weir structure.

Keywords: Weir structure, seepage, flood disaster fragility, probabilistic risk assessment, Monte-Carlo Simulation, permeability coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
4350 Numerical Simulations of Cross-Flow around Four Square Cylinders in an In-Line Rectangular Configuration

Authors: Shams Ul Islam, Chao Ying Zhou, Farooq Ahmad

Abstract:

A two-dimensional numerical simulation of crossflow around four cylinders in an in-line rectangular configuration is studied by using the lattice Boltzmann method (LBM). Special attention is paid to the effect of the spacing between the cylinders. The Reynolds number ( Re ) is chosen to be e 100 R = and the spacing ratio L / D is set at 0.5, 1.5, 2.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0. Results show that, as in the case of four cylinders in an inline rectangular configuration , flow fields show four different features depending on the spacing (single square cylinder, stable shielding flow, wiggling shielding flow and a vortex shedding flow) are observed in this study. The effects of spacing ratio on physical quantities such as mean drag coefficient, Strouhal number and rootmean- square value of the drag and lift coefficients are also presented. There is more than one shedding frequency at small spacing ratios. The mean drag coefficients for downstream cylinders are less than that of the single cylinder for all spacing ratios. The present results using the LBM are compared with some existing experimental data and numerical studies. The comparison shows that the LBM can capture the characteristics of the bluff body flow reasonably well and is a good tool for bluff body flow studies.

Keywords: Four square cylinders, Lattice Boltzmann method, rectangular configuration, spacing ratios, vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2701
4349 Module and Comodule Structures on Path Space

Authors: Lili Chen, Chao Yuan

Abstract:

On path space kQ, there is a trivial kQa-module structure determined by the multiplication of path algebra kQa and a trivial kQc-comodule structure determined by the comultiplication of path coalgebra kQc. In this paper, on path space kQ, a nontrivial kQa-module structure is defined, and it is proved that this nontrivial left kQa-module structure is isomorphic to the dual module structure of trivial right kQc-comodule. Dually, on path space kQ, a nontrivial kQc-comodule structure is defined, and it is proved that this nontrivial right kQc-comodule structure is isomorphic to the dual comodule structure of trivial left kQa-module. Finally, the trivial and nontrivial module structures on path space are compared from the aspect of submodule, and the trivial and nontrivial comodule structures on path space are compared from the aspect of subcomodule.

Keywords: Quiver, path space, module, comodule, dual.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
4348 The Features of Formation of Russian Agriculture’s Sectoral Structure

Authors: Natalya G. Filimonova, Mariya G. Ozerova, Irina N. Ermakova

Abstract:

The long-term strategy of the economic development of Russia up to 2030 is based on the concept of sustainable growth. The determining factor of such development is complex changes in the economic system which may be achieved by making progressive changes in its structure. The structural changes determine the character and the direction of economic development, as well as they include all elements of this system without exception, and their regulated character ensures the most rapid aim achievement. This article has discussed the industrial structure of the agriculture in Russia. With the use of the system of indexes, the article has determined the directions, intensity, and speed of structural shifts. The influence of structural changes on agricultural production development has been found out. It is noticed that the changes in the industrial structure are synchronized with the changes in the organisation and economic structure. Efficiency assessment of structural changes allowed to trace the efficiency of structural changes and elaborate the main directions for agricultural policy improvement.

Keywords: Russian agriculture system, sectoral structure, organizational and economic structure, structural changes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353
4347 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series

Authors: Mohammad H. Fattahi

Abstract:

Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. Noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.

Keywords: Chaotic behavior, wavelet, noise reduction, river flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
4346 Convective Heat Transfer of Viscoelastic Flow in a Curved Duct

Authors: M. Norouzi, M. H. Kayhani, M. R. H. Nobari, M. Karimi Demneh

Abstract:

In this paper, fully developed flow and heat transfer of viscoelastic materials in curved ducts with square cross section under constant heat flux have been investigated. Here, staggered mesh is used as computational grids and flow and heat transfer parameters have been allocated in this mesh with marker and cell method. Numerical solution of governing equations has being performed with FTCS finite difference method. Furthermore, Criminale-Eriksen- Filbey (CEF) constitutive equation has being used as viscoelastic model. CEF constitutive equation is a suitable model for studying steady shear flow of viscoelastic materials which is able to model both effects of the first and second normal stress differences. Here, it is shown that the first and second normal stresses differences have noticeable and inverse effect on secondary flows intensity and mean Nusselt number which is the main novelty of current research.

Keywords: Viscoelastic, fluid flow, heat convection, CEF model, curved duct, square cross section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
4345 Quantifying Freeway Capacity Reductions by Rainfall Intensities Based on Stochastic Nature of Flow Breakdown

Authors: Hoyoung Lee, Dong-Kyu Kim, Seung-Young Kho, R. Eddie Wilson

Abstract:

This study quantifies a decrement in freeway capacity during rainfall. Traffic and rainfall data were gathered from Highway Agencies and Wunderground weather service. Three inter-urban freeway sections and its nearest weather stations were selected as experimental sites. Capacity analysis found reductions of maximum and mean pre-breakdown flow rates due to rainfall. The Kruskal-Wallis test also provided some evidence to suggest that the variance in the pre-breakdown flow rate is statistically insignificant. Potential application of this study lies in the operation of real time traffic management schemes such as Variable Speed Limits (VSL), Hard Shoulder Running (HSR), and Ramp Metering System (RMS), where speed or flow limits could be set based on a number of factors, including rainfall events and their intensities.

Keywords: Capacity randomness, flow breakdown, freeway capacity, rainfall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
4344 Fibers Presence Effects on Air Flow of Attenuator of Spun-Bond Production System

Authors: Nasser Ghassembaglou, Abdullah Bolek, Oktay Yilmaz, Ertan Oznergiz, Hikmet Kocabas, Safak Yilmaz

Abstract:

Different designs of attenuator systems have been studied in this research; new analysis have been done on existed designs considering fibers effect on air flow; it was comprehended that, at fibers presence, there is an air flow which agglomerates fibers as a negative effect. So some new representations have been designed and CFD analysis has been done on them. Afterwards, one of these representations selected as the most optimum and effective design which is brought in this paper.

Keywords: Attenuator, CFD, nanofiber, spun-bond.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
4343 Performance Analysis of Fuzzy Logic Based Unified Power Flow Controller

Authors: Lütfü Saribulut, Mehmet Tümay, İlyas Eker

Abstract:

FACTS devices are used to control the power flow, to increase the transmission capacity and to optimize the stability of the power system. One of the most widely used FACTS devices is Unified Power Flow Controller (UPFC). The controller used in the control mechanism has a significantly effects on controlling of the power flow and enhancing the system stability of UPFC. According to this, the capability of UPFC is observed by using different control mechanisms based on P, PI, PID and fuzzy logic controllers (FLC) in this study. FLC was developed by taking consideration of Takagi- Sugeno inference system in the decision process and Sugeno-s weighted average method in the defuzzification process. Case studies with different operating conditions are applied to prove the ability of UPFC on controlling the power flow and the effectiveness of controllers on the performance of UPFC. PSCAD/EMTDC program is used to create the FLC and to simulate UPFC model.

Keywords: FACTS, Fuzzy Logic Controller, UPFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2882
4342 Computational Simulation of Turbulence Heat Transfer in Multiple Rectangular Ducts

Authors: Azli Abd. Razak, Yusli Yaakob, Mohd Nazir Ramli

Abstract:

This study comprehensively simulate the use of k-ε model for predicting flow and heat transfer with measured flow field data in a stationary duct with elucidates on the detailed physics encountered in the fully developed flow region, and the sharp 180° bend region. Among the major flow features predicted with accuracy are flow transition at the entrance of the duct, the distribution of mean and turbulent quantities in the developing, fully developed, and sharp 180° bend, the development of secondary flows in the duct cross-section and the sharp 180° bend, and heat transfer augmentation. Turbulence intensities in the sharp 180° bend are found to reach high values and local heat transfer comparisons show that the heat transfer augmentation shifts towards the wall and along the duct. Therefore, understanding of the unsteady heat transfer in sharp 180° bends is important. The design and simulation are related to concept of fluid mechanics, heat transfer and thermodynamics. Simulation study has been conducted on the response of turbulent flow in a rectangular duct in order to evaluate the heat transfer rate along the small scale multiple rectangular duct

Keywords: Heat transfer, turbulence, rectangular duct, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
4341 Development of Vibration Sensor with Wide Frequency Range Based on Condenser Microphone -Estimation System for Flow Rate in Water Pipes-

Authors: Hironori Kakuta, Kajiro Watanabe, Yosuke Kurihara

Abstract:

Water leakage is a serious problem in the maintenance of a waterworks facility. Monitoring the water flow rate is one way to locate leakage. However, conventional flowmeters such as the wet-type flowmeter and the clamp-on type ultrasonic flowmeter require additional construction for their installation and are therefore quite expensive. This paper proposes a novel estimation system for the flow rate in a water pipeline, which employs a vibration sensor. This assembly can be attached to any water pipeline without the need for additional high-cost construction. The vibration sensor is designed based on a condenser microphone. This sensor detects vibration caused by water flowing through a pipeline. It is possible to estimate the water flow rate by measuring the amplitude of the output signal from the vibration sensor. We confirmed the validity of the proposed sensing system experimentally.

Keywords: Condenser microphone, Flow rate estimation, Piping vibration, Water pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
4340 Deoiling Hydrocyclones Flow Field-A Comparison between k-Epsilon and LES

Authors: Maysam Saidi, Reza Maddahian, Bijan Farhanieh

Abstract:

In this research a comparison between k-epsilon and LES model for a deoiling hydrocyclone is conducted. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Potential of prediction for both methods of this complex swirl flow is discussed. Large eddy simulation method results have more similarity to experiment and its results are presented in figures from different hydrocyclone cross sections.

Keywords: Deoiling hydrocyclones, k-epsilon model, Largeeddy simulation, OpenFOAM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
4339 Behavior of Droplets in Microfluidic System with T-Junction

Authors: A. Guellati, F-M Lounis, N. Guemras, K. Daoud

Abstract:

Micro droplet formation is considered as a growing emerging area of research due to its wide-range application in chemistry as well as biology. The mechanism of micro droplet formation using two immiscible liquids running through a T-junction has been widely studied. We believe that the flow of these two immiscible phases can be of greater important factor that could have an impact on out-flow hydrodynamic behavior, the droplets generated and the size of the droplets. In this study, the type of the capillary tubes used also represents another important factor that can have an impact on the generation of micro droplets. The tygon capillary tubing with hydrophilic inner surface doesn't allow regular out-flows due to the fact that the continuous phase doesn't adhere to the wall of the capillary inner surface. Teflon capillary tubing, presents better wettability than tygon tubing, and allows to obtain steady and regular regimes of out-flow, and the micro droplets are homogeneoussize. The size of the droplets is directly dependent on the flows of the continuous and dispersed phases. Thus, as increasing the flow of the continuous phase, to flow of the dispersed phase stationary, the size of the drops decreases. Inversely, while increasing the flow of the dispersed phase, to flow of the continuous phase stationary, the size of the droplet increases.

Keywords: Microfluidic system, micro droplets generation, T-junction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
4338 Numerical Investigation of the Effect of Flow and Heat Transfer of a Semi-Cylindrical Obstacle Located in a Channel

Authors: Omer F. Can, Nevin Celik

Abstract:

In this study, a semi-cylinder obstacle placed in a channel is handled to determine the effect of flow and heat transfer around the obstacle. Both faces of the semi-cylinder are used in the numerical analysis. First, the front face of the semi-cylinder is stated perpendicular to flow, than the rear face is placed. The study is carried out numerically, by using commercial software ANSYS 11.0. The well-known κ-ε model is applied as the turbulence model. Reynolds number is in the range of 104 to 105 and air is assumed as the flowing fluid. The results showed that, heat transfer increased approximately 15 % in the front faze case, while it enhanced up to 28 % in the rear face case.

Keywords: External flow, semi-cylinder obstacle, heat transfer, friction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3182
4337 Countercurrent Flow Simulation of Gas-Solid System in a Purge Column Using Computational Fluid Dynamics Techniques

Authors: T. J. Jamaleddine

Abstract:

Purge columns or degasser vessels are widely used in the polyolefin process for removing trapped hydrocarbons and in-excess catalyst residues from the polymer particles. A uniform distribution of purged gases coupled with a plug-flow characteristic inside the column system is desirable to obtain optimum desorption characteristics of trapped hydrocarbon and catalyst residues. Computational Fluid Dynamics (CFD) approach is a promising tool for design optimization of these vessels. The success of this approach is profoundly dependent on the solution strategy and the choice of geometrical layout at the vessel outlet. Filling the column with solids and initially solving for the solids flow minimized numerical diffusion substantially. Adopting a cylindrical configuration at the vessel outlet resulted in less numerical instability and resembled the hydrodynamics flow of solids in the hopper segment reasonably well.

Keywords: CFD, gas-solids flow, gas purging, species transport, purge column, degasser vessel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 664
4336 Counterpropagation Neural Network for Solving Power Flow Problem

Authors: Jayendra Krishna, Laxmi Srivastava

Abstract:

Power flow (PF) study, which is performed to determine the power system static states (voltage magnitudes and voltage angles) at each bus to find the steady state operating condition of a system, is very important and is the most frequently carried out study by power utilities for power system planning, operation and control. In this paper, a counterpropagation neural network (CPNN) is proposed to solve power flow problem under different loading/contingency conditions for computing bus voltage magnitudes and angles of the power system. The counterpropagation network uses a different mapping strategy namely counterpropagation and provides a practical approach for implementing a pattern mapping task, since learning is fast in this network. The composition of the input variables for the proposed neural network has been selected to emulate the solution process of a conventional power flow program. The effectiveness of the proposed CPNN based approach for solving power flow is demonstrated by computation of bus voltage magnitudes and voltage angles for different loading conditions and single line-outage contingencies in IEEE 14-bus system.

Keywords: Admittance matrix, counterpropagation neural network, line outage contingency, power flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430
4335 A Noble Flow Rate Control based on Leaky Bucket Method for Multi-Media OBS Networks

Authors: Kentaro Miyoko, Yoshihiko Mori, Yugo Ikeda, Yoshihiro Nishino, Yong-Bok Choi, Hiromi Okada

Abstract:

Optical burst switching (OBS) has been proposed to realize the next generation Internet based on the wavelength division multiplexing (WDM) network technologies. In the OBS, the burst contention is one of the major problems. The deflection routing has been designed for resolving the problem. However, the deflection routing becomes difficult to prevent from the burst contentions as the network load becomes high. In this paper, we introduce a flow rate control methods to reduce burst contentions. We propose new flow rate control methods based on the leaky bucket algorithm and deflection routing, i.e. separate leaky bucket deflection method, and dynamic leaky bucket deflection method. In proposed methods, edge nodes which generate data bursts carry out the flow rate control protocols. In order to verify the effectiveness of the flow rate control in OBS networks, we show that the proposed methods improve the network utilization and reduce the burst loss probability through computer simulations.

Keywords: Optical burst switching, OBS, flow rate control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
4334 Modification of the Conventional Power Flow Analysis for the Deployment of an HVDC Grid System in the Indian Subcontinent

Authors: Farhan Beg

Abstract:

The Indian subcontinent is facing a massive challenge with regards to the energy security in member countries, i.e. providing a reliable source of electricity to facilitate development across various sectors of the economy and thereby achieve the developmental targets it has set for itself. A highly precarious situation exists in the subcontinent which is observed in the series of system failures which most of the times leads to system collapses-blackouts. To mitigate the issues related with energy security as well as keep in check the increasing supply demand gap, a possible solution that stands in front of the subcontinent is the deployment of an interconnected electricity ‘Supergrid’ designed to carry huge quanta of power across the sub continent as well as provide the infra structure for RES integration. This paper assesses the need and conditions for a Supergrid deployment and consequently proposes a meshed topology based on VSC HVDC converters for the Supergrid modeling.

Keywords: Super grid, Wind and Solar Energy, HVDC, Electricity management, Load Flow Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
4333 Evaluation of Aerodynamic Noise Generation by a Generic Side Mirror

Authors: Yiping Wang, Zhengqi Gu, Weiping Li, Xiaohui Lin

Abstract:

The aerodynamic noise radiation from a side view mirror (SVM) in the high-speed airflow is calculated by the combination of unsteady incompressible fluid flow analysis and acoustic analysis. The transient flow past the generic SVM is simulated with variable turbulence model, namely DES Detached Eddy Simulation and LES (Large Eddy Simulation). Detailed velocity vectors and contour plots of the time-varying velocity and pressure fields are presented along cut planes in the flow-field. Mean and transient pressure are also monitored at several points in the flow field and compared to corresponding experimentally data published in literature. The acoustic predictions made using the Ffowcs-Williams-Hawkins acoustic analogy (FW-H) and the boundary element (BEM).

Keywords: Aerodynamic noise, BEM, DES, FW-H acousticanalogy, LES

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2937
4332 Flow Field Analysis of Submerged Horizontal Plate Type Breakwater

Authors: Ke Wang, Zhi-Qiang Zhang, Z. Chen

Abstract:

A submerged horizontal plate type breakwater is pointed out as an efficient wave protection device for cage culture in marine fishery. In order to reveal the wave elimination principle of this type breakwater, boundary element method is utilized to investigate this problem. The flow field and the trajectory of water particles are studied carefully. The flow field analysis shows that: the interaction of incident wave and adverse current above the plate disturbs the water domain drastically. This can slow down the horizontal velocity and vertical velocity of the water particles.

Keywords: boundary element method, plate type breakwater, flow field analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
4331 The Application of the Queuing Theory in the Traffic Flow of Intersection

Authors: Shuguo Yang, Xiaoyan Yang

Abstract:

It is practically significant to research the traffic flow of intersection because the capacity of intersection affects the efficiency of highway network directly. This paper analyzes the traffic conditions of an intersection in certain urban by the methods of queuing theory and statistical experiment, sets up a corresponding mathematical model and compares it with the actual values. The result shows that queuing theory is applied in the study of intersection traffic flow and it can provide references for the other similar designs.

Keywords: Intersection, Queuing theory, Statistical experiment, System metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7542
4330 New Insight into Fluid Mechanics of Lorenz Equations

Authors: Yu-Kai Ting, Jia-Ying Tu, Chung-Chun Hsiao

Abstract:

New physical insights into the nonlinear Lorenz equations related to flow resistance is discussed in this work. The chaotic dynamics related to Lorenz equations has been studied in many papers, which is due to the sensitivity of Lorenz equations to initial conditions and parameter uncertainties. However, the physical implication arising from Lorenz equations about convectional motion attracts little attention in the relevant literature. Therefore, as a first step to understand the related fluid mechanics of convectional motion, this paper derives the Lorenz equations again with different forced conditions in the model. Simulation work of the modified Lorenz equations without the viscosity or buoyancy force is discussed. The time-domain simulation results may imply that the states of the Lorenz equations are related to certain flow speed and flow resistance. The flow speed of the underlying fluid system increases as the flow resistance reduces. This observation would be helpful to analyze the coupling effects of different fluid parameters in a convectional model in future work.

Keywords: Galerkin method, Lorenz equations, Navier-Stokes equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
4329 General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels

Authors: Abdulrahman Abdulrahman

Abstract:

A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel.

Keywords: Analytical solution, combined channel, exponential channel, side weirs, trapezoidal channel, water surface profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
4328 Nodal Load Profiles Estimation for Time Series Load Flow Using Independent Component Analysis

Authors: Mashitah Mohd Hussain, Salleh Serwan, Zuhaina Hj Zakaria

Abstract:

This paper presents a method to estimate load profile in a multiple power flow solutions for every minutes in 24 hours per day. A method to calculate multiple solutions of non linear profile is introduced. The Power System Simulation/Engineering (PSS®E) and python has been used to solve the load power flow. The result of this power flow solutions has been used to estimate the load profiles for each load at buses using Independent Component Analysis (ICA) without any knowledge of parameter and network topology of the systems. The proposed algorithm is tested with IEEE 69 test bus system represents for distribution part and the method of ICA has been programmed in MATLAB R2012b version. Simulation results and errors of estimations are discussed in this paper.

Keywords: Electrical Distribution System, Power Flow Solution, Distribution Network, Independent Component Analysis, Newton Raphson, Power System Simulation for Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2916
4327 Coil and Jacket's Effects on Internal Flow Behavior and Heat Transfer in Stirred Tanks

Authors: B. Lakghomi, E. Kolahchian, A. Jalali, F. Farhadi

Abstract:

Different approaches for heating\cooling of stirred tanks, coils and jackets, are investigated using computational fluid dynamics (CFD).A time-dependant sliding mesh approach is applied to simulate the flow in both conditions. The investigations are carried out under the turbulent flow conditions for a Rushton impeller and heating elements are considered isothermal. The flow behavior and temperature distribution are studied for each case and heat transfer coefficient is calculated. Results show different velocity profiles for each case. Unsteady temperature distribution is not similar for different cases .In the case of the coiled stirred vessel more uniform temperature and higher heat transfer coefficient is resulted.

Keywords: CFD, coil and jacket, heat transfer, stirred tank.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4911