Search results for: Multivariate Statistical Analysis.
8943 Analysis of the Islands Tourists, Destination Information Sources and Service Satisfaction
Abstract:
The purpose of this study is to analyze the islands tourist travel information sources, as well as for the satisfaction of the tourist destination services. This study used questionnaires to the island of Taiwan to the Penghu Islands to engage in tourism activities tourist adopt the designated convenience sampling method, a total of 889 valid questionnaires were collected. After statistical analysis, this study found that: 1. tourists to the Penghu Islands travel information source for “friends and family came to Penghu". 2. Tourists feel the service of the outlying islands of Penghu, the highest feelings of “friendly local residents". 3. There are different demographic variables affect the tourist travel information source and service satisfaction. Based on the findings of this study not only for Penghu's tourism industry with the unit in charge of the proposed operating and suggestions for future research to other researchers.Keywords: Island tourism, destination, travel information, service satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14998942 Person-Environment Fit (PE Fit): Evidence from Brazil
Authors: Jucelia Appio, Danielle Deimling De Carli, Bruno Henrique Rocha Fernandes, Nelson Natalino Frizon
Abstract:
The purpose of this paper is to investigate if there are positive and significant correlations between the dimensions of Person-Environment Fit (Person-Job, Person-Organization, Person-Group and Person-Supervisor) at the “Best Companies to Work for” in Brazil in 2017. For that, a quantitative approach was used with a descriptive method being defined as a research sample the "150 Best Companies to Work for", according to data base collected in 2017 and provided by Fundação Instituto of Administração (FIA) of the University of São Paulo (USP). About the data analysis procedures, asymmetry and kurtosis, factorial analysis, Kaiser-Meyer-Olkin (KMO) tests, Bartlett sphericity and Cronbach's alpha were used for the 69 research variables, and as a statistical technique for the purpose of analyzing the hypothesis, Pearson's correlation analysis was performed. As a main result, we highlight that there was a positive and significant correlation between the dimensions of Person-Environment Fit, corroborating the H1 hypothesis that there is a positive and significant correlation between Person-Job Fit, Person-Organization Fit, Person-Group Fit and Person-Supervisor Fit.
Keywords: Human resource management, person-environment fit, strategic people management, best companies to work for.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9988941 Statistical Process Optimization Through Multi-Response Surface Methodology
Authors: S. Raissi, R- Eslami Farsani
Abstract:
In recent years, response surface methodology (RSM) has brought many attentions of many quality engineers in different industries. Most of the published literature on robust design methodology is basically concerned with optimization of a single response or quality characteristic which is often most critical to consumers. For most products, however, quality is multidimensional, so it is common to observe multiple responses in an experimental situation. Through this paper interested person will be familiarize with this methodology via surveying of the most cited technical papers. It is believed that the proposed procedure in this study can resolve a complex parameter design problem with more than two responses. It can be applied to those areas where there are large data sets and a number of responses are to be optimized simultaneously. In addition, the proposed procedure is relatively simple and can be implemented easily by using ready-made standard statistical packages.Keywords: Multi-Response Surface Methodology (MRSM), Design of Experiments (DOE), Process modeling, Quality improvement; Robust Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44588940 The Analysis of the Impact of Urbanization on Urban Meteorology from Urban Growth Management Perspective
Authors: Hansung Wan, Hyungkwan Cho, Kiho Sung, Hongkyu Kim
Abstract:
The amount of urban artificial heat which affects the urban temperature rise in urban meteorology was investigated in order to clarify the relationships between urbanization and urban meteorology in this study. The results of calculation to identify how urban temperate was increased through the establishment of a model for measuring the amount of urban artificial heat and theoretical testing revealed that the amount of urban artificial heat increased urban temperature by plus or minus 0.23 ˚ C in 2007 compared with 1996, statistical methods (correlation and regression analysis) to clarify the relationships between urbanization and urban weather were as follows. New design techniques and urban growth management are necessary from urban growth management point of view suggested from this research at city design phase to decrease urban temperature rise and urban torrential rain which can produce urban disaster in terms of urban meteorology by urbanization.Keywords: The amount of urban artificial heat, Urban growth management, Urbanization, Urban meteorology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15938939 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran
Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh
Abstract:
Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.
Keywords: Time series modelling, ARIMA model, River runoff, Karkheh River, CLS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7998938 Pattern Recognition of Partial Discharge by Using Simplified Fuzzy ARTMAP
Authors: S. Boonpoke, B. Marungsri
Abstract:
This paper presents the effectiveness of artificial intelligent technique to apply for pattern recognition and classification of Partial Discharge (PD). Characteristics of PD signal for pattern recognition and classification are computed from the relation of the voltage phase angle, the discharge magnitude and the repeated existing of partial discharges by using statistical and fractal methods. The simplified fuzzy ARTMAP (SFAM) is used for pattern recognition and classification as artificial intelligent technique. PDs quantities, 13 parameters from statistical method and fractal method results, are inputted to Simplified Fuzzy ARTMAP to train system for pattern recognition and classification. The results confirm the effectiveness of purpose technique.Keywords: Partial discharges, PD Pattern recognition, PDClassification, Artificial intelligent, Simplified Fuzzy ARTMAP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30848937 Least Squares Method Identification of Corona Current-Voltage Characteristics and Electromagnetic Field in Electrostatic Precipitator
Authors: H. Nouri, I. E. Achouri, A. Grimes, H. Ait Said, M. Aissou, Y. Zebboudj
Abstract:
This paper aims to analysis the behavior of DC corona discharge in wire-to-plate electrostatic precipitators (ESP). Currentvoltage curves are particularly analyzed. Experimental results show that discharge current is strongly affected by the applied voltage. The proposed method of current identification is to use the method of least squares. Least squares problems that of into two categories: linear or ordinary least squares and non-linear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression analysis; it has a closed-form solution. A closed-form solution (or closed form expression) is any formula that can be evaluated in a finite number of standard operations. The non-linear problem has no closed-form solution and is usually solved by iterative.Keywords: Electrostatic precipitator, current-voltage characteristics, Least Squares method, electric field, magnetic field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20978936 Analysing and Classifying VLF Transients
Authors: Ernst D. Schmitter
Abstract:
Monitoring lightning electromagnetic pulses (sferics) and other terrestrial as well as extraterrestrial transient radiation signals is of considerable interest for practical and theoretical purposes in astro- and geophysics as well as meteorology. Managing a continuous flow of data, automation of the analysis and classification process is important. Features based on a combination of wavelet and statistical methods proved efficient for this task and serve as input into a radial basis function network that is trained to discriminate transient shapes from pulse like to wave like. We concentrate on signals in the Very Low Frequency (VLF, 3 -30 kHz) range in this paper, but the developed methods are independent of this specific choice.
Keywords: Transient signals, statistics, wavelets, neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18808935 Study of a BVAR(p) Process Applied to U.S. Commodity Market Data
Authors: Jan Sindelar
Abstract:
The paper presents an applied study of a multivariate AR(p) process fitted to daily data from U.S. commodity futures markets with the use of Bayesian statistics. In the first part a detailed description of the methods used is given. In the second part two BVAR models are chosen one with assumption of lognormal, the second with normal distribution of prices conditioned on the parameters. For a comparison two simple benchmark models are chosen that are commonly used in todays Financial Mathematics. The article compares the quality of predictions of all the models, tries to find an adequate rate of forgetting of information and questions the validity of Efficient Market Hypothesis in the semi-strong form.
Keywords: Vector auto-regression, forecasting, financial, Bayesian, efficient markets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11988934 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode
Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan
Abstract:
Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.Keywords: Cathode spot, vacuum arc discharge, transverse magnetic field, random walk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13988933 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.
Keywords: Conditional Generative Adversarial Net, market and credit risk management, neural network, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11998932 A Statistical Study on Young UAE Driver’s Behavior towards Road Safety
Authors: Sadia Afroza, Rakiba Rouf
Abstract:
Road safety and associated behaviors have received significant attention in recent years, reflecting general public concern. This paper portrays a statistical scenario of the young drivers in UAE with emphasis on various concern points of young driver’s behavior and license issuance. Although there are many factors contributing to road accidents, statistically it is evident that age plays a major role in road accidents. Despite ensuring strict road safety laws enforced by the UAE government, there is a staggering correlation among road accidents and young driver’s at UAE. However, private organizations like BMW and RoadSafetyUAE have extended its support on conducting surveys on driver’s behavior with an aim to ensure road safety. Various strategies such as road safety law enforcement, license issuance, adapting new technologies like safety cameras and raising awareness can be implemented to improve the road safety concerns among young drivers.
Keywords: Driving behavior, GLDS, road safety, UAE drivers, young drivers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13788931 The Effectiveness of Ultrasound Treatment on the Germination Stimulation of Barley Seed and its Alpha-Amylase Activity
Authors: M. Yaldagard, S.A. Mortazavi, F. Tabatabaie
Abstract:
In the present study, the effects of ultrasound as emerging technology were investigated on germination stimulation, amount of alpha-amylase activity on dry barley seeds before steeping stage of malting process. All experiments were carried out at 20 KHz on the ultrasonic generator in 3 different ultrasonic intensities (20, 60 and 100% setting from total power of device) and time (5, 10 and 15 min) at constant temperature (30C). For determining the effects of these parameters on enzyme the Fuwa method assay based on the decreased staining value of blue starch–iodine complexes employed for measurement an activity. The results of these assays were analyzed by Qualitek4 software using the Taguchi statistical method to evaluate the factor-s effects on enzyme activity. It has been found that when malting barley is irradiated with an ultrasonic power, a stimulating effect occurs as to the enzyme activity.Keywords: ultrasound, alpha-amylase activity, stimulationand Taguchi statistical method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46188930 Mediating Role of Social Responsibility on the Relationship between Consumer Awareness of Green Marketing and Purchase Intentions
Authors: Norazah Mohd Suki, Norbayah Mohd Suki
Abstract:
This research aims to examine the influence of mediating effect of corporate social responsibility on the relationship between consumer awareness of green marketing and purchase intentions in the retail setting. Data from 200 valid questionnaires was analyzed using the partial least squares (PLS) approach for the analysis of structural equation models with SmartPLS computer program version 2.0 as research data does not necessarily have a multivariate normal distribution and is less sensitive to sample size than other covariance approaches. PLS results revealed that corporate social responsibility partially mediated the link between consumer awareness of green marketing and purchase intentions of the product in the retail setting. Marketing managers should allocate a sufficient portion of their budget to appropriate corporate social responsibility activities by engaging in voluntary programs for positive return on investment leading to increased business profitability and long run business sustainability. The outcomes of the mediating effects of corporate social responsibility add a new impetus to the growing literature and preceding discoveries on consumer green marketing awareness, which is inadequately researched in the Malaysian setting. Direction for future research is also presented.Keywords: Green marketing awareness, corporate social responsibility, partial least squares, purchase intention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15838929 Optimal Multilayer Perceptron Structure For Classification of HIV Sub-Type Viruses
Authors: Zeyneb Kurt, Oguzhan Yavuz
Abstract:
The feature of HIV genome is in a wide range because of it is highly heterogeneous. Hence, the infection ability of the virus changes related with different chemokine receptors. From this point, R5 and X4 HIV viruses use CCR5 and CXCR5 coreceptors respectively while R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the coreceptors of HIV genome. The aim of this study is to develop the optimal Multilayer Perceptron (MLP) for high classification accuracy of HIV sub-type viruses. To accomplish this purpose, the unit number in hidden layer was incremented one by one, from one to a particular number. The statistical data of R5X4, R5 and X4 viruses was preprocessed by the signal processing methods. Accessible residues of these virus sequences were extracted and modeled by Auto-Regressive Model (AR) due to the dimension of residues is large and different from each other. Finally the pre-processed dataset was used to evolve MLP with various number of hidden units to determine R5X4 viruses. Furthermore, ROC analysis was used to figure out the optimal MLP structure.Keywords: Multilayer Perceptron, Auto-Regressive Model, HIV, ROC Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14408928 AniMoveMineR: Animal Behavior Exploratory Analysis Using Association Rules Mining
Authors: Suelane Garcia Fontes, Silvio Luiz Stanzani, Pedro L. Pizzigatti Corrła Ronaldo G. Morato
Abstract:
Environmental changes and major natural disasters are most prevalent in the world due to the damage that humanity has caused to nature and these damages directly affect the lives of animals. Thus, the study of animal behavior and their interactions with the environment can provide knowledge that guides researchers and public agencies in preservation and conservation actions. Exploratory analysis of animal movement can determine the patterns of animal behavior and with technological advances the ability of animals to be tracked and, consequently, behavioral studies have been expanded. There is a lot of research on animal movement and behavior, but we note that a proposal that combines resources and allows for exploratory analysis of animal movement and provide statistical measures on individual animal behavior and its interaction with the environment is missing. The contribution of this paper is to present the framework AniMoveMineR, a unified solution that aggregates trajectory analysis and data mining techniques to explore animal movement data and provide a first step in responding questions about the animal individual behavior and their interactions with other animals over time and space. We evaluated the framework through the use of monitored jaguar data in the city of Miranda Pantanal, Brazil, in order to verify if the use of AniMoveMineR allows to identify the interaction level between these jaguars. The results were positive and provided indications about the individual behavior of jaguars and about which jaguars have the highest or lowest correlation.Keywords: Data mining, data science, trajectory, animal behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9188927 Fuzzy Gauge Capability (Cg and Cgk) through Buckley Approach
Authors: Seyed Habib A. Rahmati, Mohsen Sadegh Amalnick
Abstract:
Different terms of the Statistical Process Control (SPC) has sketch in the fuzzy environment. However, Measurement System Analysis (MSA), as a main branch of the SPC, is rarely investigated in fuzzy area. This procedure assesses the suitability of the data to be used in later stages or decisions of the SPC. Therefore, this research focuses on some important measures of MSA and through a new method introduces the measures in fuzzy environment. In this method, which works based on Buckley approach, imprecision and vagueness nature of the real world measurement are considered simultaneously. To do so, fuzzy version of the gauge capability (Cg and Cgk) are introduced. The method is also explained through example clearly.Keywords: SPC, MSA, gauge capability, Cg, Cgk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51788926 Review of Downscaling Methods in Climate Change and Their Role in Hydrological Studies
Authors: Nishi Bhuvandas, P. V. Timbadiya, P. L. Patel, P. D. Porey
Abstract:
Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. The world wide observed changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although the effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest.
Keywords: Climate Change, Downscaling, GCM, RCM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33758925 Non-Standard Monetary Policy Measures and Their Consequences
Authors: Aleksandra Nocoń (Szunke)
Abstract:
The study is a review of the literature concerning the consequences of non-standard monetary policy, which are used by central banks during unconventional periods, threatening banking sector instability. In particular, the attention was paid to the effects of non-standard monetary policy tools for financial markets. However, the empirical evidence about their effects and real consequences for financial markets is still not final. The main aim of the study is to survey consequences of standard and non-standard monetary policy instruments, implemented during the global financial crisis in the United States, United Kingdom and euro area, with particular attention to the results for the stabilization of global financial markets. The study consists mainly of the empirical review, indicating the impact of the implementation of these tools for financial markets. The following research methods were used in the study: literature studies, including domestic and foreign literature, cause and effect analysis and statistical analysis.
Keywords: Asset purchase facility, consequences of monetary policy instruments, non-standard monetary policy, Quantitative Easing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22318924 Housing Defect of Newly Completed House: An Analysis Using Condition Survey Protocol (CSP) 1 Matrix
Authors: I. Ismail, A.I. Che-Ani, N.M. Tawil, H. Yahaya, M.Z. Abd-Razak
Abstract:
Housing is a basic human right. The provision of new house shall be free from any defects, even for the defects that people do normally considered as 'cosmetic defects'. This paper studies about the building defects of newly completed house of 72 unit of double-storey terraced located in Bangi, Selangor. The building survey implemented using protocol 1 (visual inspection). As for new house, the survey work is very stringent in determining the defects condition and priority. Survey and reporting procedure is carried out based on CSP1 Matrix that involved scoring system, photographs and plan tagging. The analysis is done using Statistical Package for Social Sciences (SPSS). The finding reveals that there are 2119 defects recorded in 72 terraced houses. The cumulative score obtained was 27644 while the overall rating is 13.05. These results indicate that the construction quality of the newly terraced houses is low and not up to an acceptable standard as the new house should be.Keywords: terraced houses, building defects, construction, CSP1 Matrix, Malaysia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24078923 Object-Oriented Multivariate Proportional-Integral-Derivative Control of Hydraulic Systems
Authors: J. Fernandez de Canete, S. Fernandez-Calvo, I. García-Moral
Abstract:
This paper presents and discusses the application of the object-oriented modelling software SIMSCAPE to hydraulic systems, with particular reference to multivariable proportional-integral-derivative (PID) control. As a result, a particular modelling approach of a double cylinder-piston coupled system is proposed and motivated, and the SIMULINK based PID tuning tool has also been used to select the proper controller parameters. The paper demonstrates the usefulness of the object-oriented approach when both physical modelling and control are tackled.
Keywords: Object-oriented modeling, multivariable hydraulic system, multivariable PID control, computer simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11068922 A Hybrid Ontology Based Approach for Ranking Documents
Authors: Sarah Motiee, Azadeh Nematzadeh, Mehrnoush Shamsfard
Abstract:
Increasing growth of information volume in the internet causes an increasing need to develop new (semi)automatic methods for retrieval of documents and ranking them according to their relevance to the user query. In this paper, after a brief review on ranking models, a new ontology based approach for ranking HTML documents is proposed and evaluated in various circumstances. Our approach is a combination of conceptual, statistical and linguistic methods. This combination reserves the precision of ranking without loosing the speed. Our approach exploits natural language processing techniques to extract phrases from documents and the query and doing stemming on words. Then an ontology based conceptual method will be used to annotate documents and expand the query. To expand a query the spread activation algorithm is improved so that the expansion can be done flexible and in various aspects. The annotated documents and the expanded query will be processed to compute the relevance degree exploiting statistical methods. The outstanding features of our approach are (1) combining conceptual, statistical and linguistic features of documents, (2) expanding the query with its related concepts before comparing to documents, (3) extracting and using both words and phrases to compute relevance degree, (4) improving the spread activation algorithm to do the expansion based on weighted combination of different conceptual relationships and (5) allowing variable document vector dimensions. A ranking system called ORank is developed to implement and test the proposed model. The test results will be included at the end of the paper.Keywords: Document ranking, Ontology, Spread activation algorithm, Annotation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16308921 Optimization of Hemp Fiber Reinforced Concrete for Mix Design Method
Authors: Zoe Chang, Max Williams, Gautham Das
Abstract:
The purpose of this study is to evaluate the incorporation of hemp fibers (HF) in concrete. Hemp fiber reinforced concrete (HFRC) is becoming more popular as an alternative for regular mix designs. This study was done to evaluate the compressive strength of HFRC regarding mix procedure. HF were obtained from the manufacturer and hand processed to ensure uniformity in width and length. The fibers were added to concrete as both wet and dry mix to investigate and optimize the mix design process. Results indicated that the dry mix had a compressive strength of 1157 psi compared to the wet mix of 985 psi. This dry mix compressive strength was within range of the standard mix compressive strength of 1533 psi. The statistical analysis revealed that the mix design process needs further optimization and uniformity concerning the addition of HF. Regression analysis revealed that the standard mix design had a coefficient of 0.9 as compared to the dry mix of 0.375 indicating a variation in the mixing process. While completing the dry mix, the addition of plain HF caused them to intertwine creating lumps and inconsistency. However, during the wet mixing process, combining water and HF before incorporation allows the fibers to uniformly disperse within the mix hence the regression analysis indicated a better coefficient of 0.55. This study concludes that HRFC is a viable alternative to regular mixes however more research surrounding its characteristics needs to be conducted.
Keywords: hemp fibers, hemp reinforced concrete, wet and dry, freeze thaw testing, compressive strength
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5568920 Grocery Customer Behavior Analysis using RFID-based Shopping Paths Data
Authors: In-Chul Jung, Young S. Kwon
Abstract:
Knowing about the customer behavior in a grocery has been a long-standing issue in the retailing industry. The advent of RFID has made it easier to collect moving data for an individual shopper's behavior. Most of the previous studies used the traditional statistical clustering technique to find the major characteristics of customer behavior, especially shopping path. However, in using the clustering technique, due to various spatial constraints in the store, standard clustering methods are not feasible because moving data such as the shopping path should be adjusted in advance of the analysis, which is time-consuming and causes data distortion. To alleviate this problem, we propose a new approach to spatial pattern clustering based on the longest common subsequence. Experimental results using real data obtained from a grocery confirm the good performance of the proposed method in finding the hot spot, dead spot and major path patterns of customer movements.Keywords: customer path, shopping behavior, exploratoryanalysis, LCS, RFID
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31488919 Deterioration Assessment Models for Water Pipelines
Authors: L. Parvizsedghy, I. Gkountis, A. Senouci, T. Zayed, M. Alsharqawi, H. El Chanati, M. El-Abbasy, F. Mosleh
Abstract:
The aging and deterioration of water pipelines in cities worldwide result in more frequent water main breaks, water service disruptions, and flooding damage. Therefore, there is an urgent need for undertaking proper maintenance procedures to avoid breaks and disastrous failures. However, due to budget limitations, the maintenance of water pipeline networks needs to be prioritized through efficient deterioration assessment models. Previous studies focused on the development of structural or physical deterioration assessment models, which require expensive inspection data. But, this paper aims at developing deterioration assessment models for water pipelines using statistical techniques. Several deterioration models were developed based on pipeline size, material type, and soil type using linear regression analysis. The categorical nature of some variables affecting pipeline deterioration was considered through developing several categorical models. The developed models were validated with an average validity percentage greater than 95%. Moreover, sensitivity analysis was carried out against different classifications and it displayed higher importance of age of pipes compared to other factors. The developed models will be helpful for the water municipalities and asset managers to assess the condition of their pipes and prioritize them for maintenance and inspection purposes.
Keywords: Water pipelines, deterioration assessment models, regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11998918 The Benefits of Regional Brand for Companies
Authors: H. Starzyczna, M. Stoklasa, K. Matusinska
Abstract:
This article deals with the benefits of regional brands for companies in the Czech Republic. Research was focused on finding out the expected and actual benefits of regional brands for companies. The data were obtained by questionnaire survey and analysed by IBM SPSS. Representative sample of 204 companies was created. The research analysis disclosed the expected benefits that the regional brand should bring to companies. But the actual benefits are much worse. The statistical testing of hypotheses revealed that the benefits depend on the region of origin, which surprised both us and the regional coordinators.
Keywords: Brand, regional brands, product protective branding programs, brand benefits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14608917 Factors Related to Working Behavior
Authors: Charawee Butbumrung
Abstract:
This paper aimed to study the factors that relate to working behavior of employees at Pakkred Municipality, Nonthaburi Province. A questionnaire was utilized as the tool in collecting information. Descriptive statistics included frequency, percentage, mean and standard deviation. Independent- sample t- test, analysis of variance and Pearson Correlation were also used. The findings of this research revealed that the majority of the respondents were female, between 25- 35 years old, married, with a Bachelor degree. The average monthly salary of respondents was between 8,001- 12,000 Baht, and having about 4-7 years of working experience. Regarding the overall working motivation factors, the findings showed that interrelationship, respect, and acceptance were ranked as highly important factors, whereas motivation, remunerations & welfare, career growth, and working conditions were ranked as moderately important factors. Also, overall working behavior was ranked as high. The hypotheses testing revealed that different genders had a different working behavior and had a different way of working as a team, which was significant at the 0.05 confidence level, Moreover, there was a difference among employees with different monthly salary in working behavior, problem- solving and decision making, which all were significant at the 0.05 confidence level. Employees with different years of working experience were found to have work working behavior both individual and as a team at the statistical significance level of 0.01 and 0.05. The result of testing the relationship between motivation in overall working revealed that interrelationship, respect and acceptance from others, career growth, and working conditions related to working behavior at a moderate level, while motivation in performing duties and remunerations and welfares related to working behavior towards the same direction at a low level, with a statistical significance of 0.01.
Keywords: Employees of Pakkred Municipality, Factors, Nonthaburi Province, Working Behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15838916 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.
Keywords: Anomaly detection, autoencoder, data centers, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7428915 ORank: An Ontology Based System for Ranking Documents
Authors: Mehrnoush Shamsfard, Azadeh Nematzadeh, Sarah Motiee
Abstract:
Increasing growth of information volume in the internet causes an increasing need to develop new (semi)automatic methods for retrieval of documents and ranking them according to their relevance to the user query. In this paper, after a brief review on ranking models, a new ontology based approach for ranking HTML documents is proposed and evaluated in various circumstances. Our approach is a combination of conceptual, statistical and linguistic methods. This combination reserves the precision of ranking without loosing the speed. Our approach exploits natural language processing techniques for extracting phrases and stemming words. Then an ontology based conceptual method will be used to annotate documents and expand the query. To expand a query the spread activation algorithm is improved so that the expansion can be done in various aspects. The annotated documents and the expanded query will be processed to compute the relevance degree exploiting statistical methods. The outstanding features of our approach are (1) combining conceptual, statistical and linguistic features of documents, (2) expanding the query with its related concepts before comparing to documents, (3) extracting and using both words and phrases to compute relevance degree, (4) improving the spread activation algorithm to do the expansion based on weighted combination of different conceptual relationships and (5) allowing variable document vector dimensions. A ranking system called ORank is developed to implement and test the proposed model. The test results will be included at the end of the paper.Keywords: Document ranking, Ontology, Spread activation algorithm, Annotation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18888914 Estimation of PM2.5 Emissions and Source Apportionment Using Receptor and Dispersion Models
Authors: Swetha Priya Darshini Thammadi, Sateesh Kumar Pisini, Sanjay Kumar Shukla
Abstract:
Source apportionment using Dispersion model depends primarily on the quality of Emission Inventory. In the present study, a CMB receptor model has been used to identify the sources of PM2.5, while the AERMOD dispersion model has been used to account for missing sources of PM2.5 in the Emission Inventory. A statistical approach has been developed to quantify the missing sources not considered in the Emission Inventory. The inventory of each grid was improved by adjusting emissions based on road lengths and deficit in measured and modelled concentrations. The results showed that in CMB analyses, fugitive sources - soil and road dust - contribute significantly to ambient PM2.5 pollution. As a result, AERMOD significantly underestimated the ambient air concentration at most locations. The revised Emission Inventory showed a significant improvement in AERMOD performance which is evident through statistical tests.
Keywords: CMB, GIS, AERMOD, PM2.5, fugitive, emission inventory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 899