Search results for: Magnesium oxide thin film
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 993

Search results for: Magnesium oxide thin film

603 Growth of Multi-Layered Graphene Using Organic Solvent-PMMA Film as the Carbon Source under Low Temperature Conditions

Authors: Alaa Y. Ali, Natalie P. Holmes, John Holdsworth, Warwick Belcher, Paul Dastoor, Xiaojing Zhou

Abstract:

Multi-layered graphene has been produced under low temperature chemical vapour deposition (CVD) growth conditions by utilizing an organic solvent and polymer film source. Poly(methylmethacrylate) (PMMA) was dissolved in chlorobenzene solvent and used as a drop-cast film carbon source on a quartz slide. A source temperature (Tsource) of 180 °C provided sufficient carbon to grow graphene, as identified by Raman spectroscopy, on clean copper foil catalytic surfaces.  Systematic variation of hydrogen gas (H2) flow rate from 25 standard cubic centimeters per minute (sccm) to 100 sccm and CVD temperature (Tgrowth) from 400 to 800 °C, yielded graphene films of varying quality as characterized by Raman spectroscopy. The optimal graphene growth parameters were found to occur with a hydrogen flow rate of 75 sccm sweeping the 180 °C source carbon past the Cu foil at 600 °C for 1 min. The deposition at 600 °C with a H2 flow rate of 75 sccm yielded a 2D band peak with ~53.4 cm-1 FWHM and a relative intensity ratio of the G to 2D bands (IG/I2D) of 0.21. This recipe fabricated a few layers of good quality graphene.

Keywords: Graphene, chemical vapour deposition, carbon source, low temperature growth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885
602 Ultrasensitive Hepatitis B Virus Detection in Blood Using Nano-Porous Silicon Oxide: Towards POC Diagnostics

Authors: N. Das, N. Samanta, L. Pandey, C. Roy Chaudhuri

Abstract:

Early diagnosis of infection like Hep-B virus in blood is important for low cost medical treatment. For this purpose, it is desirable to develop a point of care device which should be able to detect trace quantities of the target molecule in blood. In this paper, we report a nanoporous silicon oxide sensor which is capable of detecting down to 1fM concentration of Hep-B surface antigen in blood without the requirement of any centrifuge or pre-concentration. This has been made possible by the presence of resonant peak in the sensitivity characteristics. This peak is observed to be dependent only on the concentration of the specific antigen and not on the interfering species in blood serum. The occurrence of opposite impedance change within the pores and at the bottom of the pore is responsible for this effect. An electronic interface has also been designed to provide a display of the virus concentration.

Keywords: Impedance spectroscopy, Ultrasensitive detection in blood, Peak frequency, Electronic interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2674
601 Separation of Vitamin B2 and B12 byImpregnate HPTLC Plates with Boric Acid

Authors: Homayon Ahmad Panahi, Hossein Sid Kalal, Atyeh Rahimi

Abstract:

A high performance thin layer chromatography system (HPTLC) for the separation of vitamin B2 and B12 has been developed. The separation was successfully using a solvent system of methanol, water, ammonia 7.3.1 (V/V) as mobile phase on HPTLC plates impregnated with boric acid. The effect of other mobile phases on the separation of vitamins was also examined. The method is based on different behavior of investigated compounds in impregnated TLC plates with different amount of boric acid. The Rf values of vitamin B2 and B12 are considered on non impregnated and impregnated silica gel HPTLC plate with boric acid. The effect of boric acid in the mobile phase and on HPTLC plates on the RF values of the vitamins has also been studied.

Keywords: High performance thin layer chromatography, HPTLC, Vitamin B2, Vitamin B12, Separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
600 The Effect of CaO Addition on Mechanical Properties of Ceramic Tiles

Authors: Lucie Vodova, Radomir Sokolar, Jitka Hroudova

Abstract:

Stoneware clay, fired clay (as a grog), calcite waste and class C fly ash in various mixing rations were the basic raw materials for the mixture for production of dry pressed ceramic tiles. Mechanical properties (water absorption, bulk density, apparent porosity, flexural strength) as well as mineralogical composition were studied on samples with different source of calcium oxide after firing at 900, 1000, 1100 and 1200°C. It was found that samples with addition of calcite waste contain dmisteinbergit and anorthite. This minerals help to improve the strength of the body and reduce porosity fired at lower temperatures. Class C fly ash has not significantly influence on properties of the fired body as calcite waste.

Keywords: Ceramic tiles, class C fly ash, calcite waste, calcium oxide, anorthite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3632
599 Effect on Physicochemical and Sensory Attributes of Bread Substituted with Different Levels of Matured Soursop (Anona muricata) Flour

Authors: Mardiana Ahamad Zabidi, Akmalluddin Md. Yunus

Abstract:

Soursop (Anona muricata) is one of the underutilized tropical fruits containing nutrients, particularly dietary fibre and antioxidant properties that are beneficial to human health. This objective of this study is to investigate the feasibility of matured soursop pulp flour (SPF) to be substituted with high-protein wheat flour in bread. Bread formulation was substituted with different levels of SPF (0%, 5%, 10% and 15%). The effect on physicochemical properties and sensory attributes were evaluated. Higher substitution level of SPF resulted in significantly higher (p<0.05) fibre, protein and ash content, while fat and carbohydrate content reduced significantly (p<0.05). FESEM showed that the bread crumb surface of control and 5% SPF appeared to distribute evenly and coalesced by thin gluten film. However, higher SPF substitution level in bread formulation exhibited a deleterious effect by formation of discontinuous gluten network. For texture profile analysis, 5% SPF bread resulted in the lowest value of hardness. The score of sensory evaluation showed that 5% SPF bread received good acceptability and is comparable with control bread.

Keywords: Bread, Physicochemical properties, Scanning electron microscopy (SEM), Sensory attributes, Soursop pulp flour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3132
598 Glutamic Acid Production from Potato by Brevibacterium linens

Authors: Marzieh Moosavi-Nasab, Masoumeh Izadi, Sara Hosseinpour

Abstract:

In this study, the possibility of using potato as a substrate for glutamic acid production by Brevibacterium linens was investigated. For preparation of fermentation medium, potato was hydrolyzed by hydrochloridric acid. The medium contained potato hydrolysate, tween 80, mineral solution, glucose, and potassium hydrogen phosphate. The initial pH of the medium was adjusted to 7-7.5. For achieving the optimum time with maximum yield, the beakers containing the medium and the inoculums were incubated in a rotary water bath flask shaker for one to five days. Thin layer choromatography was used for quantitative and qualitative assay of the glutamic acid produced. The results revealed that as fermentation time increased, pH of the fermentation medium significantly decreased (P<0.05). Furthermore, glutamic acid concentration in fermentation medium increased significantly (P<0.05). The highest amount of the glutamic acid obtained was 5.6 g/l on the forth day of fermentation.

Keywords: Brevibacterium linens, Fermentation, Glutamicacid, Thin layer choromatography

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
597 Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes

Authors: Barun Chakrabarti, Dan Nir, Vladimir Yufit, P. V. Aravind, Nigel Brandon

Abstract:

Fuel cell grade gas-diffusion layer carbon paper (CP) electrodes are subjected to electrophoresis in N,N’-dimethylformamide (DMF) consisting of reduced graphene oxide (rGO). The rGO modified electrodes are compared with CP in a single asymmetric all-vanadium redox battery system (employing a double serpentine flow channel for each half-cell). Peak power densities improved by 4% when the rGO deposits were facing the ion-exchange membrane (cell performance was poorer when the rGO was facing the flow field). Cycling of the cells showed least degradation of the CP electrodes that were coated with rGO in comparison to pristine samples.

Keywords: All-vanadium redox flow batteries, carbon paper electrodes, electrophoretic deposition, reduced graphene oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
596 Low cost Nano-membrane Fabrication and Electro-polishing System

Authors: Ajab Khan Kasi, Muhammad Waseem Ashraf, Jafar Khan Kasi, Shahzadi Tayyaba, NitinAfzulpurkar

Abstract:

This paper presents the development of low cost Nano membrane fabrication system. The system is specially designed for anodic aluminum oxide membrane. This system is capable to perform the processes such as anodization and electro-polishing. The designed machine was successfully tested for 'mild anodization' (MA) for 48 hours and 'hard anodization' (HA) for 3 hours at constant 0oC. The system is digitally controlled and guided for temperature maintenance during anodization and electro-polishing. The total cost of the developed machine is 20 times less than the multi-cooling systems available in the market which are generally used for this purpose.

Keywords: Anodic aluminum oxide, Nano-membrane, hardanodization, mild anodization, electro-polishing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
595 Thermal and Electrical Properties of Carbon Nanotubes Purified by Acid Digestion

Authors: Neslihan Yuca, Nilgün Karatepe, Fahrettin Yakuphanoğlu

Abstract:

Carbon nanotubes (CNTs) possess unique structural, mechanical, thermal and electronic properties, and have been proposed to be used for applications in many fields. However, to reach the full potential of the CNTs, many problems still need to be solved, including the development of an easy and effective purification procedure, since synthesized CNTs contain impurities, such as amorphous carbon, carbon nanoparticles and metal particles. Different purification methods yield different CNT characteristics and may be suitable for the production of different types of CNTs. In this study, the effect of different purification chemicals on carbon nanotube quality was investigated. CNTs were firstly synthesized by chemical vapor deposition (CVD) of acetylene (C2H2) on a magnesium oxide (MgO) powder impregnated with an iron nitrate (Fe(NO3)3·9H2O) solution. The synthesis parameters were selected as: the synthesis temperature of 800°C, the iron content in the precursor of 5% and the synthesis time of 30 min. The liquid phase oxidation method was applied for the purification of the synthesized CNT materials. Three different acid chemicals (HNO3, H2SO4, and HCl) were used in the removal of the metal catalysts from the synthesized CNT material to investigate the possible effects of each acid solution to the purification step. Purification experiments were carried out at two different temperatures (75 and 120 °C), two different acid concentrations (3 and 6 M) and for three different time intervals (6, 8 and 15 h). A 30% H2O2 : 3M HCl (1:1 v%) solution was also used in the purification step to remove both the metal catalysts and the amorphous carbon. The purifications using this solution were performed at the temperature of 75°C for 8 hours. Purification efficiencies at different conditions were evaluated by thermogravimetric analysis. Thermal and electrical properties of CNTs were also determined. It was found that the obtained electrical conductivity values for the carbon nanotubes were typical for organic semiconductor materials and thermal stabilities were changed depending on the purification chemicals.

Keywords: Carbon nanotubes, purification, acid digestion, thermalstability, electrical conductivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381
594 Development and Optimization of Automated Dry-Wafer Separation

Authors: Tim Giesen, Christian Fischmann, Fabian Böttinger, Alexander Ehm, Alexander Verl

Abstract:

In a state-of-the-art industrial production line of photovoltaic products the handling and automation processes are of particular importance and implication. While processing a fully functional crystalline solar cell an as-cut photovoltaic wafer is subject to numerous repeated handling steps. With respect to stronger requirements in productivity and decreasing rejections due to defects the mechanical stress on the thin wafers has to be reduced to a minimum as the fragility increases by decreasing wafer thicknesses. In relation to the increasing wafer fragility, researches at the Fraunhofer Institutes IPA and CSP showed a negative correlation between multiple handling processes and the wafer integrity. Recent work therefore focused on the analysis and optimization of the dry wafer stack separation process with compressed air. The achievement of a wafer sensitive process capability and a high production throughput rate is the basic motivation in this research.

Keywords: Automation, Photovoltaic Manufacturing, Thin Wafer, Material Handling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
593 Turning Thin-Walled Workpieces with Variable Depth of Cut

Authors: M. Sadilek, L. Petrkovska, J. Kratochvil

Abstract:

The article deals with the possibilities of increasing the efficiency of turning thin-walled workpieces. It proposes a new strategy for turning and it proposes new implementation of roughing cycles where a variable depth of cut is applied. Proposed roughing cycles are created in the CAD/CAM system. These roughing cycles are described in relation to their further use in practice.

The experimental research has focused on monitoring the durability of cutting tool and increases its tool life. It compares the turning where the standard roughing cycle is used and the turning where the proposed roughing cycle with variable depth of cut is applied. In article are monitored tool wear during cutting with the sintered carbide cutting edge. The result verifies theoretical prerequisites of tool wear.

Keywords: Variable depth of cut, CAD-CAM system, turning, durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
592 Protective Effect of Thymoquinone against Nephrotoxicity Induced by Cadmium in Rats

Authors: Amr A. Fouad, Hamed A. Alwadaani, Iyad Jresat

Abstract:

The present study investigated the protective effect of thymoquinone (TQ), against cadmium-induced kidney injury in rats. Cadmium chloride (1.2 mg Cd/kg/day, s.c.), was given for nine weeks. TQ treatment (40 mg/kg/day, p.o.) started on the same day of cadmium administration and continued for nine weeks. TQ significantly decreased serum creatinine, renal malondialdehyde and nitric oxide, and significantly increased renal reduced glutathione in rats received cadmium. Histopathological examination showed that TQ markedly minimized renal tissue damage induced by cadmium. Immunohistochemical analysis revealed that TQ markedly decreased the cadmium-induced expression of inducible nitric oxide synthase, tumor necrosis factor-α, cyclooxygenase-2, and caspase-3 in renal tissue. It was concluded that TQ significantly protected against cadmium nephrotoxicity in rats, through its antioxidant, antiinflammatory, and antiapoptotic actions.

Keywords: Thymoquinone, cadmium, kidney, rats.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
591 A Study of Calcination and Carbonation of Cockle Shell

Authors: N.A. Rashidi, M. Mohamed, S.Yusup

Abstract:

Calcium oxide (CaO) as carbon dioxide (CO2) adsorbent at the elevated temperature has been very well-received thus far. The CaO can be synthesized from natural calcium carbonate (CaCO3) sources through the reversible calcination-carbonation process. In the study, cockle shell has been selected as CaO precursors. The objectives of the study are to investigate the performance of calcination and carbonation with respect to different temperature, heating rate, particle size and the duration time. Overall, better performance is shown at the calcination temperature of 850oC for 40 minutes, heating rate of 20oC/min, particle size of < 0.125mm and the carbonation temperature is at 650oC. The synthesized materials have been characterized by nitrogen physisorption and surface morphology analysis. The effectiveness of the synthesized cockle shell in capturing CO2 (0.72 kg CO2/kg adsorbent) which is comparable to the commercialized adsorbent (0.60 kg CO2/kg adsorbent) makes them as the most promising materials for CO2 capture.

Keywords: Calcination, Calcium oxide, Carbonation, Cockle shell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3574
590 Protective Effect of Thymoquinone against Arsenic-Induced Testicular Toxicity in Rats

Authors: Amr A. Fouad, Waleed H. Albuali, Iyad Jresat

Abstract:

The protective effect of thymoquinone (TQ) was investigated in rats exposed to testicular injury induced by sodium arsenite (10mg/kg/day, orally, for two days). TQ treatment (10mg/kg/day, intraperitoneal injection) was applied for five days, starting three day before arsenic administration. TQ significantly attenuated the arsenic-induced decreases of serum testosterone, and testicular reduced glutathione level, and significantly decreased the elevations of testicular malondialdehyde and nitric oxide levels resulted from arsenic administration. Also, TQ ameliorated the arsenic-induced testicular tissue injury observed by histopathological examination. In addition, TQ decreased the arsenic-induced expression of inducible nitric oxide synthase and caspase-3 in testicular tissue. It was concluded that TQ may represent a potential candidate to protect against arsenic-induced testicular injury. 

Keywords: Thymoquinone, arsenic, testes, rats.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2795
589 Fabrication and Characterization of Al2O3 Based Electrical Insulation Coatings Around SiC Fibers

Authors: S. Palaniyappan, P. K. Chennam, M. Trautmann, H. Ahmad, T. Mehner, T. Lampke, G. Wagner

Abstract:

In structural-health monitoring of fiber reinforced plastics (FRPs), every single inorganic fiber sensor that are integrated into the bulk material requires an electrical insulation around itself, when the surrounding reinforcing fibers are electrically conductive. This results in a more accurate data acquisition only from the sensor fiber without any electrical interventions. For this purpose, thin nano-films of aluminium oxide (Al2O3)-based electrical-insulation coatings have been fabricated around the Silicon Carbide (SiC) single fiber sensors through reactive DC magnetron sputtering technique. The sputtered coatings were amorphous in nature and the thickness of the coatings increased with an increase in the sputter time. Microstructural characterization of the coated fibers performed using scanning electron microscopy (SEM) confirmed a homogeneous circumferential coating with no detectable defects or cracks on the surface. X-ray diffraction (XRD) analyses of the as-sputtered and 2 hours annealed coatings (825 & 1125 ˚C) revealed the amorphous and crystalline phases of Al2O3 respectively. Raman spectroscopic analyses produced no characteristic bands of Al2O3, as the thickness of the films was in the nanometer (nm) range, which is too small to overcome the actual penetration depth of the laser used. In addition, the influence of the insulation coatings on the mechanical properties of the SiC sensor fibers has been analyzed.

Keywords: Al2O3 insulation coating, reactive sputtering, SiC single fiber sensor, single fiber tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891
588 Synthesis and Characterization of Cu-NanoWire Arrays by EMD Using ITO-Template

Authors: Jyoti Narayan, S. Choudhary

Abstract:

Nanowire arrays of copper with uniform diameters have been synthesized by potentiostatic electrochemical metal deposition (EMD) of copper sulphate and potassium chloride solution within the nano-channels of porous Indium-Tin Oxide (ITO), also known as Tin doped Indium Oxide templates. The nanowires developed were fairly continuous with diameters ranging from 110-140 nm along the entire length. Single as well as poly-crystalline copper wires have been prepared by application of appropriate potential during the EMD process. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), small angle electron diffraction (SAED) and atomic force microscopy (AFM) were used to characterize the synthesized nano wires at room temperature. The electrochemical response of synthesized products was evaluated by cyclic voltammetry while surface energy analysis was carried out using a Goniometer.

Keywords: Electro-deposition, Metallic nano-wires, Nanomaterials, Template synthesis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2836
587 Environmental Friendly Polyurethane Coatings Based On Hyperbranched Resin

Authors: Ashraf M. Elsaid, Magd M. Badr, Mohamed S. Selim

Abstract:

Water borne polyurethane (PU) based on newly prepared hyperbranched poly (amine-ester) (HBPAE) was applied and evaluated as organic coating material. HBPAE was prepared through one-pot synthesis between trimethylol propane as a core and AB2 branched monomer which was obtained via Michal addition of methyl methacrylate (MMA) and diethanol amine (DEA). PU was prepared from HBPAE using different ratios of toluene diisocyanate (TDI) to form cured coating film. The prepared HBPAE was characterized using; GPC, FT-IR and 1H-NMR. The mechanical properties (impact, hardness, adhesion, and flexibility), thermal properties (DSC and TGA) and chemical resistance of the applied film were estimated. The results indicated 50% of TDI is the selected ratio. This formulation represents a promising candidate to be used as coating material.

Keywords: Curing, Hyperbranched polymer, Polyurethane, Urethane-acrylates, water borne Coatings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3280
586 Preparation and Characterization of Organic Silver Precursors for Conductive Ink

Authors: Wendong Yang, Changhai Wang, Valeria Arrighi

Abstract:

Low ink sintering temperature is desired for flexible electronics, as it would widen the application of the ink on temperature-sensitive substrates where the selection of silver precursor is very critical. In this paper, four types of organic silver precursors, silver carbonate, silver oxalate, silver tartrate and silver itaconate, were synthesized using an ion exchange method, firstly. Various characterization methods were employed to investigate their physical phase, chemical composition, morphologies and thermal decomposition behavior. It was found that silver oxalate had the ideal thermal property and showed the lowest decomposition temperature. An ink was then formulated by complexing the as-prepared silver oxalate with ethylenediamine in organic solvents. Results show that a favorable conductive film with a uniform surface structure consisting of silver nanoparticles and few voids could be produced from the ink at a sintering temperature of 150 °C.

Keywords: Conductive ink, electrical property, film, organic silver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066
585 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms

Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna

Abstract:

In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.

Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2711
584 Uniformity of Dose Distribution in Radiation Fields Surrounding the Spine using Film Dosimetry and Comparison with 3D Treatment Planning Software

Authors: Sadegh Masoudi , Vahid Fayaz , Hassan Zandi, Asieh Tavakol

Abstract:

The overall penumbra is usually defined as the distance, p20–80, separating the 20% and 80% of the dose on the beam axis at the depth of interest. This overall penumbra accounts also for the fact that some photons emitted by the distal parts of the source are only partially attenuated by the collimator. Medulloblastoma is the most common type of childhood brain tumor and often spreads to the spine. Current guidelines call for surgery to remove as much of the tumor as possible, followed by radiation of the brain and spinal cord, and finally treatment with chemotherapy. The purpose of this paper was to present results on an Uniformity of dose distribution in radiation fields surrounding the spine using film dosimetry and comparison with 3D treatment planning software.

Keywords: Absorbed Dose , Spine , Radiotherapy, 3D treatment planning software

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
583 Various Modifications of Electrochemical Barrier Layer Thinning of Anodic Aluminum Oxide

Authors: W. J. Stępniowski, W. Florkiewicz, M. Norek, M. Michalska-Domańska, E. Kościuczyk, T. Czujko

Abstract:

In this paper, two options of anodic alumina barrier layer thinning have been demonstrated. The approaches varied with the duration of the voltage step. It was found that too long step of the barrier layer thinning process leads to chemical etching of the nanopores on their top. At the bottoms pores are not fully opened what is disadvantageous for further applications in nanofabrication. On the other hand, while the duration of the voltage step is controlled by the current density (value of the current density cannot exceed 75% of the value recorded during previous voltage step) the pores are fully opened. However, pores at the bottom obtained with this procedure have smaller diameter, nevertheless this procedure provides electric contact between the bare aluminum (substrate) and electrolyte, what is suitable for template assisted electrodeposition, one of the most cost-efficient synthesis method in nanotechnology.

Keywords: Anodic aluminum oxide, anodization, barrier layer thinning, nanopores.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2620
582 Swelling Behaviour of Kappa Carrageenan Hydrogel in Neutral Salt Solution

Authors: Sperisa Distantina, Fadilah Fadilah, Mujtahid Kaavessina

Abstract:

Hydrogel films were prepared from kappa carrageenan by crosslinking with glutaraldehyde. Carrageenan films extracted from Kappaphycus alvarezii seaweed were immersed in glutaraldehyde solution for 2 min and then cured at 110 °C for 25 min. The obtained crosslinked films were washed with ethanol to remove the unreacted glutaraldehyde and then air dried to constant weights. The aim of this research was to study the swelling degree behaviour of the hydrogel film to neutral salts solution, namely NaCl, KCl, and CaCl2. The results showed that swelling degree of crosslinked films varied non-monotonically with salinity of NaCl. Swelling degree decreased with the increasing of KCl concentration. Swelling degree of crosslinked film in CaCl2 solution was lower than that in NaCl and in KCl solutions.

Keywords: Hydrogel, carrageenan, glutaraldehyde, swelling, salt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
581 The Destruction of Confucianism and Socialism in Chinese Popular Comedy Films

Authors: Shu Hui

Abstract:

Since 2010, the genre of comedy became predominant in film market in China. However, compared with the huge commercial success, these films received severe public criticism. These films are referred as trash (lan pian) by the public because of the fragment narrative, the non-professional photographing and advocating money warship. The paper aims to explain the contradictive phenomena between the higher box office and the lower mouth of word within hegemony theory. Four popular comedies that ranked top 20 in domestic revenue in the year the film released will be chosen to analyze their popularity in general. Differing from other popular films, these comedies’ popularity is generated from their disruptive pleasures instead of good stories or photographing. The destruction in Confucianism and socialism formulated the public consent or popularity, and caused the public criticism as well. Moreover, the happy-endings restore the normality at the superficial level.

Keywords: Confucianism, destruction, reconciliation, socialism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981
580 Thermal and Visual Performance of Solar Control Film

Authors: Norzita Jaafar, Nor Zaini Zakaria, Azni Zain Ahmed, Razidah Ismail

Abstract:

The use of solar control film on windows as one of solar passive strategies for building have becoming important and is gaining recognition. Malaysia located close to equator is having warm humid climate with long sunshine hours and abundant solar radiation throughout the year. Hence, befitting solar control on windows is absolutely necessary to capture the daylight whilst moderating thermal impact and eliminating glare problems. This is one of the energy efficient strategies to achieve thermal and visual comfort in buildings. Therefore, this study was carried out to investigate the effect of window solar controls on thermal and visual performance of naturally ventilated buildings. This was conducted via field data monitoring using a test building facility. Four types of window glazing systems were used with three types of solar control films. Data were analysed for thermal and visual impact with reference to thermal and optical characteristics of the films. Results show that for each glazing system, the surface temperature of windows are influenced by the Solar Energy Absorption property, the indoor air temperature are influenced by the Solar Energy Transmittance and Solar Energy Reflectance, and the daylighting by Visible Light Transmission and Shading Coefficient. Further investigations are underway to determine the mathematical relation between thermal energy and visual performance with the thermal and optical characteristics of solar control films.

Keywords: window, solar control film, natural ventilation, thermal performance, visual performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
579 Multi-Modal Film Boiling Simulations on Adaptive Octree Grids

Authors: M. Wasy Akhtar

Abstract:

Multi-modal film boiling simulations are carried out on adaptive octree grids. The liquid-vapor interface is captured using the volume-of-fluid framework adjusted to account for exchanges of mass, momentum, and energy across the interface. Surface tension effects are included using a volumetric source term in the momentum equations. The phase change calculations are conducted based on the exact location and orientation of the interface; however, the source terms are calculated using the mixture variables to be consistent with the one field formulation used to represent the entire fluid domain. The numerical model on octree representation of the computational grid is first verified using test cases including advection tests in severely deforming velocity fields, gravity-based instabilities and bubble growth in uniformly superheated liquid under zero gravity. The model is then used to simulate both single and multi-modal film boiling simulations. The octree grid is dynamically adapted in order to maintain the highest grid resolution on the instability fronts using markers of interface location, volume fraction, and thermal gradients. The method thus provides an efficient platform to simulate fluid instabilities with or without phase change in the presence of body forces like gravity or shear layer instabilities.

Keywords: Boiling flows, dynamic octree grids, heat transfer, interface capturing, phase change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 717
578 Comparative Studies on Dissimilar Metals thin Sheets Using Laser Beam Welding - A Review

Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan

Abstract:

Laser beam welding for the dissimilar Titanium and Aluminium thin sheets is an emerging area which is having wider applications in aerospace, aircraft, automotive, electronics and in other industries due to its high speed, non-contact, precision with low heat effects, least welding distortion, low labor costs and convenient operation. Laser beam welding of dissimilar metal combinations are increasingly demanded due to high energy densities with small fusion and heat affected zones. Furthermore, no filler or electrode material is required and contamination of weld is also very small. The present study is to reviews the influence of different parameters like laser power, welding speed, power density, beam diameter, focusing distance and type of shielding gas on the mechanical properties of dissimilar metal combinations like SS/Al, Cu/Al and Ti/Al focusing on aluminum to other materials. Research findings reveal that Ti/Al combination gives better metallurgical and mechanical properties than other combinations such as SS/Al and Cu/Al.

Keywords: Laser Beam Welding, dissimilar metals, SS/Al, Cu/Al and Ti/Al sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2664
577 Geochemistry of Coal Ash in the Equatorial Wet Disposal System Environment

Authors: Kolay P. K., Singh H.

Abstract:

The coal utilization in thermal power plants in Malaysia has increased significantly which produces an enormous amount of coal combustion by-product (CCBP) or coal ash and poses severe disposal problem. As each coal ash is distinct, this study presents the geochemistry of the coal ash, in particular fly ash, produced from the combustion of local coal from Kuching Sarawak, Malaysia. The geochemical composition of the ash showed a high amount of silica, alumina, iron oxides and alkalies which was found to be a convenient starting material for the hydrothermal synthesis of zeolites with the higher Na2O percentage being a positive factor for its alkaline activation; while the mineral phases are mainly quartz, mullite, calcium oxide, silica, and iron oxide hydrate. The geochemical changes upon alkali activation that can be predicted in a similar type of ash have been described in this paper. The result shows that this particular ash has a good potential for a high value industrial product like zeolites upon alkali activation.

Keywords: Coal ash, chemical composition, mineralogical composition, alkali activation, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
576 Developing Manufacturing Process for the Graphene Sensors

Authors: Abdullah Faqihi, John Hedley

Abstract:

Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.

Keywords: Laser scribing, LightScribe DVD, graphene oxide, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629
575 Modeling and Simulation for Physical Vapor Deposition: Multiscale Model

Authors: Jürgen Geiser, Robert Röhle

Abstract:

In this paper we present modeling and simulation for physical vapor deposition for metallic bipolar plates. In the models we discuss the application of different models to simulate the transport of chemical reactions of the gas species in the gas chamber. The so called sputter process is an extremely sensitive process to deposit thin layers to metallic plates. We have taken into account lower order models to obtain first results with respect to the gas fluxes and the kinetics in the chamber. The model equations can be treated analytically in some circumstances and complicated multi-dimensional models are solved numerically with a software-package (UG unstructed grids, see [1]). Because of multi-scaling and multi-physical behavior of the models, we discuss adapted schemes to solve more accurate in the different domains and scales. The results are discussed with physical experiments to give a valid model for the assumed growth of thin layers.

Keywords: Convection-diffusion equations, multi-scale problem, physical vapor deposition, reaction equations, splitting methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
574 Effects of Varying Fermentation Periods on the Chemical Composition of African Yam Bean (Sphenostylis stenocarpa) and Acha (Digitaria exilis) Flour Blends and Sensory Properties of Their Products

Authors: P. N. Okeke, J. N. Chikwendu

Abstract:

The study evaluated the effects of varying fermentation periods on the nutrients and anti-nutrients composition of African yam bean (Sphenostylis stenocarpa) and acha (Digitaria exilis) flour blends and sensory properties of their products. The African yam bean seeds and acha grains were fermented for 24 hrs, 48 and 72 hrs, dried (sun drying) and milled into fine flour. The fermented flours were used in a ratio of 70:30 (Protein basis) to formulate composite flour for meat pie and biscuits production. Both the fermented and unfermented flours and products were analyzed for chemical composition using the standard method. The data were statistically analyzed using SPSS version 15 to determine the mean and standard deviation. The 24, 48, and 72 hrs fermentation periods increased protein (22.81, 26.15 and 24.00% respectively). The carbohydrate, ash and moisture contents of the flours were also increased as a result of fermentation (68.01-76.83, 2.26-4.88, and 8.36-13.00% respectively). The 48 hrs fermented flour blends had the highest increase in ash relative to the control (4.88%). Fermentation increased zinc, iron, magnesium and phosphorus content of the flours. Treatment drastically reduced the anti-nutrient (oxalate, saponin, tannin, phytate, and hemagglutinin) levels of the flours. Both meat pie and biscuits had increased protein relative to the control (27.36-34.28% and 23.66-25.09%). However, the protein content of the meat pie increased more than that of the biscuits. Zinc, Iron, Magnesium and phosphorus levels increased in both meat pie and biscuits. Organoleptic attributes of the products (meat pie and biscuits) were slightly lower than the control except those of the 72 hrs fermented flours.

Keywords: Fermentation, African yam bean, Acha, biscuits, meat-pie.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219