Search results for: Generation inventory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1405

Search results for: Generation inventory

1015 Congestion Management in a Deregulated Power System with Micro Grid

Authors: Guguloth Ramesh, T. K. Sunil Kumar

Abstract:

This paper presents congestion management in deregulated power systems. In a deregulated environment, every buyer wants to buy power from the cheapest generator available, irrespective of relative geographical location of buyer and seller. As a consequence of this, the transmission corridors evacuating the power of cheaper generators would get overloaded if all such transactions are approved. Congestion management is a mechanism to prioritize the transactions and commit to such a schedule which would not overload the network. The congestions in the transmission lines are determined by Optimal Power Flow (OPF) solution, which is carried by primal liner programming method. Congestion in the transmission lines are alleviated by connected Distributed Generation (DG) of micro grid at load bus. A method to determine the optimal location of DG unit has been suggested based on transmission line relief sensitivity based approach. The effectiveness of proposed method has been demonstrated on modified IEEE-14 and 30 bus test systems.

Keywords: Congestion management, Distribution Generation (DG), Transmission Line Relief (TLR) sensitivity index, OPF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3894
1014 Culture of Oleaginous Yeasts in Dairy Industry Wastewaters to Obtain Lipids Suitable for the Production of II-Generation Biodiesel

Authors: Domenico Pirozzi, Angelo Ausiello, Gaetano Zuccaro, Filomena Sannino, Abu Yousuf

Abstract:

The oleaginous yeasts Lipomyces starkey were grown in the presence of dairy industry wastewaters (DIW). The yeasts were able to degrade the organic components of DIW and to produce a significant fraction of their biomass as triglycerides. When using DIW from the Ricotta cheese production or residual whey as growth medium, the L. starkey could be cultured without dilution nor external organic supplement. On the contrary, the yeasts could only partially degrade the DIW from the Mozzarella cheese production, due to the accumulation of a metabolic product beyond the threshold of toxicity. In this case, a dilution of the DIW was required to obtain a more efficient degradation of the carbon compounds and an higher yield in oleaginous biomass. The fatty acid distribution of the microbial oils obtained showed a prevalence of oleic acid, and is compatible with the production of a II generation biodiesel offering a good resistance to oxidation as well as an excellent cold-performance.

Keywords: Yeasts, Lipids, Biodiesel, Dairy industry wastewaters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079
1013 Application of Artificial Intelligence for Tuning the Parameters of an AGC

Authors: R. N. Patel

Abstract:

This paper deals with the tuning of parameters for Automatic Generation Control (AGC). A two area interconnected hydrothermal system with PI controller is considered. Genetic Algorithm (GA) and Particle Swarm optimization (PSO) algorithms have been applied to optimize the controller parameters. Two objective functions namely Integral Square Error (ISE) and Integral of Time-multiplied Absolute value of the Error (ITAE) are considered for optimization. The effectiveness of an objective function is considered based on the variation in tie line power and change in frequency in both the areas. MATLAB/SIMULINK was used as a simulation tool. Simulation results reveal that ITAE is a better objective function than ISE. Performances of optimization algorithms are also compared and it was found that genetic algorithm gives better results than particle swarm optimization algorithm for the problems of AGC.

Keywords: Area control error, Artificial intelligence, Automatic generation control, Genetic Algorithms and modeling, ISE, ITAE, Particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
1012 Modeling and Optimization of Aggregate Production Planning - A Genetic Algorithm Approach

Authors: B. Fahimnia, L.H.S. Luong, R. M. Marian

Abstract:

The Aggregate Production Plan (APP) is a schedule of the organization-s overall operations over a planning horizon to satisfy demand while minimizing costs. It is the baseline for any further planning and formulating the master production scheduling, resources, capacity and raw material planning. This paper presents a methodology to model the Aggregate Production Planning problem, which is combinatorial in nature, when optimized with Genetic Algorithms. This is done considering a multitude of constraints of contradictory nature and the optimization criterion – overall cost, made up of costs with production, work force, inventory, and subcontracting. A case study of substantial size, used to develop the model, is presented, along with the genetic operators.

Keywords: Aggregate Production Planning, Costs, and Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
1011 A Quality Optimization Approach: An Application on Next Generation Networks

Authors: Gülfem I. Alptekin, S. Emre Alptekin

Abstract:

The next generation wireless systems, especially the cognitive radio networks aim at utilizing network resources more efficiently. They share a wide range of available spectrum in an opportunistic manner. In this paper, we propose a quality management model for short-term sub-lease of unutilized spectrum bands to different service providers. We built our model on competitive secondary market architecture. To establish the necessary conditions for convergent behavior, we utilize techniques from game theory. Our proposed model is based on potential game approach that is suitable for systems with dynamic decision making. The Nash equilibrium point tells the spectrum holders the ideal price values where profit is maximized at the highest level of customer satisfaction. Our numerical results show that the price decisions of the network providers depend on the price and QoS of their own bands as well as the prices and QoS levels of their opponents- bands.

Keywords: cognitive radio networks, game theory, nextgeneration wireless networks, spectrum management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
1010 Seismic Vulnerability Assessment of Buildings in Algiers Area

Authors: F. Lazzali, M. Farsi

Abstract:

Several models of vulnerability assessment have been proposed. The selection of one of these models depends on the objectives of the study. The classical methodologies for seismic vulnerability analysis, as a part of seismic risk analysis, have been formulated with statistical criteria based on a rapid observation. The information relating to the buildings performance is statistically elaborated. In this paper, we use the European Macroseismic Scale EMS-98 to define the relationship between damage and macroseismic intensity to assess the seismic vulnerability. Applying to Algiers area, the first step is to identify building typologies and to assign vulnerability classes. In the second step, damages are investigated according to EMS-98.

Keywords: Damage, EMS-98, inventory building, vulnerability classes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
1009 Study of Mixed Convection in a Vertical Channel Filled with a Reactive Porous Medium in the Absence of Local Thermal Equilibrium

Authors: Hamid Maidat, Khedidja Bouhadef, Djamel Eddine Ameziani, Azzedine Abdedou

Abstract:

This work consists of a numerical simulation of convective heat transfer in a vertical plane channel filled with a heat generating porous medium, in the absence of local thermal equilibrium. The walls are maintained to a constant temperature and the inlet velocity is uniform. The dynamic range is described by the Darcy-Brinkman model and the thermal field by two energy equations model. A dimensionless formulation is developed for performing a parametric study based on certain dimensionless groups such as, the Biot interstitial number, the thermal conductivity ratio and the volumetric heat generation, q '''. The governing equations are solved using the finite volume method, gave rise to a multitude of results concerning in particular the thermal field in the porous channel and the existence or not of the local thermal equilibrium.

Keywords: Mixed convection, porous medium, power generation, local thermal non equilibrium model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
1008 SIMGraph: Simplifying Contig Graph to Improve de Novo Genome Assembly Using Next-generation Sequencing Data

Authors: Chien-Ju Li, Chun-Hui Yu, Chi-Chuan Hwang, Tsunglin Liu , Darby Tien-Hao Chang

Abstract:

De novo genome assembly is always fragmented. Assembly fragmentation is more serious using the popular next generation sequencing (NGS) data because NGS sequences are shorter than the traditional Sanger sequences. As the data throughput of NGS is high, the fragmentations in assemblies are usually not the result of missing data. On the contrary, the assembled sequences, called contigs, are often connected to more than one other contigs in a complicated manner, leading to the fragmentations. False connections in such complicated connections between contigs, named a contig graph, are inevitable because of repeats and sequencing/assembly errors. Simplifying a contig graph by removing false connections directly improves genome assembly. In this work, we have developed a tool, SIMGraph, to resolve ambiguous connections between contigs using NGS data. Applying SIMGraph to the assembly of a fungus and a fish genome, we resolved 27.6% and 60.3% ambiguous contig connections, respectively. These results can reduce the experimental efforts in resolving contig connections.

Keywords: Contig graph, NGS, de novo assembly, scaffold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
1007 The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations

Authors: S. Meziane, H. I. Faraoun, C. Esling

Abstract:

Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level.

Keywords: Ab initio, high efficiency, power generation devices, transition metal dichalcogenides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
1006 Retrieval Augmented Generation against the Machine: Merging Human Cyber Security Expertise with Generative AI

Authors: Brennan Lodge

Abstract:

Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLMs is exciting, such models do have their downsides. LLMs cannot easily expand or revise their memory, and they cannot straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.

Keywords: Retrieval Augmented Generation, Governance Risk and Compliance, Cybersecurity, AI-driven Compliance, Risk Management, Generative AI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130
1005 A Framework for Supply Chain Efficiency Evaluation of Mass Customized Automobiles

Authors: Arshia Khan, Hans-Dietrich Haasis

Abstract:

Different tools of the supply chain should be managed very efficiently in mass customization. In the automobile industry, there are different strategies to manage these tools. We need to investigate which strategies among the different ones are successful and which are not. There is lack in literature regarding such analysis. Keeping this in view, the purpose of this paper is to construct a framework and model which can help to analyze the supply chain of mass customized automobiles quantitatively for future studies. Furthermore, we will also consider that which type of data can be used for the suggested model and where it can be taken from. Such framework can help to bring insight for future analysis.

Keywords: Mass customization, supply chain, inventory, distribution, automobile industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
1004 Reducing Test Vectors Count Using Fault Based Optimization Schemes in VLSI Testing

Authors: Vinod Kumar Khera, R. K. Sharma, A. K. Gupta

Abstract:

Power dissipation increases exponentially during test mode as compared to normal operation of the circuit. In extreme cases, test power is more than twice the power consumed during normal operation mode. Test vector generation scheme is key component in deciding the power hungriness of a circuit during testing. Test vector count and consequent leakage current are functions of test vector generation scheme. Fault based test vector count optimization has been presented in this work. It helps in reducing test vector count and the leakage current. In the presented scheme, test vectors have been reduced by extracting essential child vectors. The scheme has been tested experimentally using stuck at fault models and results ensure the reduction in test vector count.

Keywords: Low power VLSI testing, independent fault, essential faults, test vector reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
1003 Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals

Authors: Prasan Pitiranggon, Nunthika Benjathepanun, Somsri Banditvilai, Veera Boonjing

Abstract:

Our study proposes an alternative method in building Fuzzy Rule-Based System (FRB) from Support Vector Machine (SVM). The first set of fuzzy IF-THEN rules is obtained through an equivalence of the SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS). The second set of rules is generated by combining the first set based on strength of firing signals of support vectors using Gaussian kernel. The final set of rules is then obtained from the second set through input scatter partitioning. A distinctive advantage of our method is the guarantee that the number of final fuzzy IFTHEN rules is not more than the number of support vectors in the trained SVM. The final FRB system obtained is capable of performing classification with results comparable to its SVM counterpart, but it has an advantage over the black-boxed SVM in that it may reveal human comprehensible patterns.

Keywords: Fuzzy Rule Base, Rule Extraction, Rule Generation, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
1002 Dynamic Performance Evaluation of Distributed Generation Units in the Micro Grid

Authors: Abdolreza Roozbeh, Reza Sedaghati, Ali Asghar Baziar, Mohammad Reza Tabatabaei

Abstract:

This paper presents dynamic models of distributed generators (DG) and investigates dynamic behavior of the DG units in the micro grid system. The DG units include photovoltaic and fuel cell sources. The voltage source inverter is adopted since the electronic interface which can be equipped with its controller to keep stability of the micro grid during small signal dynamics. This paper also introduces power management strategies and implements the DG load sharing concept to keep the micro grid operation in gridconnected and islanding modes of operation. The results demonstrate the operation and performance of the photovoltaic and fuel cell as distributed generators in a micro grid. The entire control system in the micro grid is developed by combining the benefits of the power control and the voltage control strategies. Simulation results are all reported, confirming the validity of the proposed control technique.

Keywords: Stability, Distributed Generation, Dynamic, Micro Grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
1001 Optimization of Supersonic Ejector via Sequence-Adapted Micro-Genetic Algorithm

Authors: Kolar Jan, Dvorak Vaclav

Abstract:

In this study, an optimization of supersonic air-to-air ejector is carried out by a recently developed single-objective genetic algorithm based on adaption of sequence of individuals. Adaptation of sequence is based on Shape-based distance of individuals and embedded micro-genetic algorithm. The optimal sequence found defines the succession of CFD-aimed objective calculation within each generation of regular micro-genetic algorithm. A spring-based deformation mutates the computational grid starting the initial individualvia adapted population in the optimized sequence. Selection of a generation initial individual is knowledge-based. A direct comparison of the newly defined and standard micro-genetic algorithm is carried out for supersonic air-to-air ejector. The only objective is to minimize the loose of total stagnation pressure in the ejector. The result is that sequence-adopted micro-genetic algorithm can provide comparative results to standard algorithm but in significantly lower number of overall CFD iteration steps.

Keywords: Grid deformation, Micro-genetic algorithm, shapebased sequence, supersonic ejector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
1000 Baby Boom Generation in Singapore and Its Impact on Ageing

Authors: Sharmistha Roy

Abstract:

In Singapore, there are about 1 million baby boomers, defined as those born between 1947 and 1964. They constitute a sizeable proportion (about 30 per cent) of the resident population comprising Singapore citizens and permanent residents. The first batches of these baby boomers have already 65 years old by 2012. Thereafter, baby boomers will swell the ranks of the elderly population in Singapore until 2030. The baby boomers in this study are divided into broad groups, namely, the early baby boomers (born 1947-54) and late baby boomers (1955-64). Continuing decline in fertility and mortality rates in the past three decades as well as improvements in health care facilities and services have changed the demography of Singapore from a “pyramid-shape” young, post war baby boomers population to a rapidly ageing population. With the ageing of the baby boom generation, the population of Singapore is about to grey rapidly over the next three decades. As such, there is a need for Singapore to understand the profile, perceptions and aspirations of this group, and devise strategies to address the needs and concerns as well as opportunities that arise with the ageing of baby boomers are discussed and presented in this work.

Keywords: Ageing index, Baby boomers, Demographic dependency ratio (DDR), Fertility and mortality rate, Life expectancy, Singapore.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12989
999 A Generic Approach to Reuse Unified Modeling Language Components Following an Agile Process

Authors: Rim Bouhaouel, Naoufel Kraïem, Zuhoor Al Khanjari

Abstract:

Unified Modeling Language (UML) is considered as one of the widespread modeling language standardized by the Object Management Group (OMG). Therefore, the model driving engineering (MDE) community attempts to provide reuse of UML diagrams, and do not construct it from scratch. The UML model appears according to a specific software development process. The existing method generation models focused on the different techniques of transformation without considering the development process. Our work aims to construct an UML component from fragments of UML diagram basing on an agile method. We define UML fragment as a portion of a UML diagram, which express a business target. To guide the generation of fragments of UML models using an agile process, we need a flexible approach, which adapts to the agile changes and covers all its activities. We use the software product line (SPL) to derive a fragment of process agile method. This paper explains our approach, named RECUP, to generate UML fragments following an agile process, and overviews the different aspects. In this paper, we present the approach and we define the different phases and artifacts.

Keywords: UML, component, fragment, agile, SPL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
998 Performences of Type-2 Fuzzy Logic Control and Neuro-Fuzzy Control Based on DPC for Grid Connected DFIG with Fixed Switching Frequency

Authors: Fayssal Amrane, Azeddine Chaiba

Abstract:

In this paper, type-2 fuzzy logic control (T2FLC) and neuro-fuzzy control (NFC) for a doubly fed induction generator (DFIG) based on direct power control (DPC) with a fixed switching frequency is proposed for wind generation application. First, a mathematical model of the doubly-fed induction generator implemented in d-q reference frame is achieved. Then, a DPC algorithm approach for controlling active and reactive power of DFIG via fixed switching frequency is incorporated using PID. The performance of T2FLC and NFC, which is based on the DPC algorithm, are investigated and compared to those obtained from the PID controller. Finally, simulation results demonstrate that the NFC is more robust, superior dynamic performance for wind power generation system applications.

Keywords: Doubly fed induction generetor, direct power control, space vector modulation, type-2 fuzzy logic control, neuro-fuzzy control, maximum power point tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
997 Sport Facilities and Social Change: European Funds as an Opportunity for Urban Regeneration

Authors: Lorenzo Maiorino, Fabio Fortuna, Giovanni Panebianco, Marco Sanzari, Gabriella Arcese, Valerio Maria Paolozzi

Abstract:

It is well known that sport is a factor of social cohesion and the breaking down of barriers between people. From this point of view, the aim is to demonstrate how, through the (re)generation of sustainable structures, it is possible to give life to a new social, cultural and economic pathway, where possible, in peripheral areas with problems of abandonment and degradation. The aim of this paper is therefore to study realities such as European programs and funds and to highlight the ways in which planning can be used to respond to critical issues such as urban decay, abandonment, and the mitigation of social differences. For this reason, the analysis will be carried out through the Multiannual Financial Framework (MFF) package, the next generation EU, the Recovery and Resilience Facility (RRF), the Cohesion Fund, the European Social Fund, and other managed funds. The procedure will rely on sources and data of unquestionable origin, and the relation to the object of study in question will be highlighted. The project lends itself to be ambitious and explore a further aspect of the sports theme, which as we know, is one of the foundations for a healthy society

.

Keywords: Sport, social inclusion, urban regeneration, sport facilities, European funds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 439
996 Current Controlled Current Conveyor (CCCII)and Application using 65nm CMOS Technology

Authors: Zia Abbas, Giuseppe Scotti, Mauro Olivieri

Abstract:

Current mode circuits like current conveyors are getting significant attention in current analog ICs design due to their higher band-width, greater linearity, larger dynamic range, simpler circuitry, lower power consumption and less chip area. The second generation current controlled conveyor (CCCII) has the advantage of electronic adjustability over the CCII i.e. in CCCII; adjustment of the X-terminal intrinsic resistance via a bias current is possible. The presented approach is based on the CMOS implementation of second generation positive (CCCII+), negative (CCCII-) and dual Output Current Controlled Conveyor (DOCCCII) and its application as Universal filter. All the circuits have been designed and simulated using 65nm CMOS technology model parameters on Cadence Virtuoso / Spectre using 1V supply voltage. Various simulations have been carried out to verify the linearity between output and input ports, range of operation frequency, etc. The outcomes show good agreement between expected and experimental results.

Keywords: CCCII+, CCCII-, DOCCCII, Electronic tunability, Universal filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4705
995 Laser-Ultrasonic Method for Measuring the Local Elastic Moduli of Porous Isotropic Composite Materials

Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya, Vladimir A. Makarov, Yulia G. Sokolovskaya

Abstract:

The laser-ultrasonic method is realized for quantifying the influence of porosity on the local Young’s modulus of isotropic composite materials. The method is based on a laser thermooptical method of ultrasound generation combined with measurement of the phase velocity of longitudinal and shear acoustic waves in samples. The main advantage of this method compared with traditional ultrasonic research methods is the efficient generation of short and powerful probing acoustic pulses required for reliable testing of ultrasound absorbing and scattering heterogeneous materials. Using as an example samples of a metal matrix composite with reinforcing microparticles of silicon carbide in various concentrations, it is shown that to provide an effective increase in Young’s modulus with increasing concentration of microparticles, the porosity of the final sample should not exceed 2%.

Keywords: Laser ultrasonic, longitudinal and shear ultrasonic waves, porosity, composite, local elastic moduli.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
994 Q-Learning with Eligibility Traces to Solve Non-Convex Economic Dispatch Problems

Authors: Mohammed I. Abouheaf, Sofie Haesaert, Wei-Jen Lee, Frank L. Lewis

Abstract:

Economic Dispatch is one of the most important power system management tools. It is used to allocate an amount of power generation to the generating units to meet the load demand. The Economic Dispatch problem is a large scale nonlinear constrained optimization problem. In general, heuristic optimization techniques are used to solve non-convex Economic Dispatch problem. In this paper, ideas from Reinforcement Learning are proposed to solve the non-convex Economic Dispatch problem. Q-Learning is a reinforcement learning techniques where each generating unit learn the optimal schedule of the generated power that minimizes the generation cost function. The eligibility traces are used to speed up the Q-Learning process. Q-Learning with eligibility traces is used to solve Economic Dispatch problems with valve point loading effect, multiple fuel options, and power transmission losses.

Keywords: Economic Dispatch, Non-Convex Cost Functions, Valve Point Loading Effect, Q-Learning, Eligibility Traces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
993 A Multi-Population Differential Evolution with Adaptive Mutation and Local Search for Global Optimization

Authors: Zhoucheng Bao, Haiyan Zhu, Tingting Pang, Zuling Wang

Abstract:

This paper presents a multi population Differential Evolution (DE) with adaptive mutation and local search for global optimization, named AMMADE in order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better result than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.

Keywords: Differential evolution, multi-mutation strategies, memetic algorithm, adaptive local search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443
992 Optimal Placement and Sizing of Energy Storage System in Distribution Network with Photovoltaic Based Distributed Generation Using Improved Firefly Algorithms

Authors: Ling Ai Wong, Hussain Shareef, Azah Mohamed, Ahmad Asrul Ibrahim

Abstract:

The installation of photovoltaic based distributed generation (PVDG) in active distribution system can lead to voltage fluctuation due to the intermittent and unpredictable PVDG output power. This paper presented a method in mitigating the voltage rise by optimally locating and sizing the battery energy storage system (BESS) in PVDG integrated distribution network. The improved firefly algorithm is used to perform optimal placement and sizing. Three objective functions are presented considering the voltage deviation and BESS off-time with state of charge as the constraint. The performance of the proposed method is compared with another optimization method such as the original firefly algorithm and gravitational search algorithm. Simulation results show that the proposed optimum BESS location and size improve the voltage stability.

Keywords: BESS, PVDG, firefly algorithm, voltage fluctuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
991 Evaluation of an Offshore Wind Power Project: Economic, Strategic and Environmental Value

Authors: Paula Ferreira, Filipa Vieira

Abstract:

The use of wind energy for electricity generation is growing rapidly across the world and in Portugal. However, the geographical characteristics of the country along with the average wind regime and with the environmental restrictions imposed to these projects create limitations to the exploit of the onshore wind resource. The best onshore wind spots are already committed and the possibility of offshore wind farms in the Portuguese cost is now being considered. This paper aims to make a contribution to the evaluation of offshore wind power projects in Portugal. The technical restrictions are addressed and the strategic, environmental and financial interest of the project is analysed from the private company and public points of view. The results suggest that additional support schemes are required to ensure private investors interest for these projects. Assuming an approach of direct substitution of energy sources for electricity generation, the avoided CO2 equivalent emissions for an offshore wind power project were quantified. Based on the conclusions, future research is proposed to address the environmental and social impacts of these projects.

Keywords: Feed-in tariff, offshore wind power, project evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
990 Deterministic Random Number Generator Algorithm for Cryptosystem Keys

Authors: Adi A. Maaita, Hamza A. A. Al_Sewadi

Abstract:

One of the crucial parameters of digital cryptographic systems is the selection of the keys used and their distribution. The randomness of the keys has a strong impact on the system’s security strength being difficult to be predicted, guessed, reproduced, or discovered by a cryptanalyst. Therefore, adequate key randomness generation is still sought for the benefit of stronger cryptosystems. This paper suggests an algorithm designed to generate and test pseudo random number sequences intended for cryptographic applications. This algorithm is based on mathematically manipulating a publically agreed upon information between sender and receiver over a public channel. This information is used as a seed for performing some mathematical functions in order to generate a sequence of pseudorandom numbers that will be used for encryption/decryption purposes. This manipulation involves permutations and substitutions that fulfill Shannon’s principle of “confusion and diffusion”. ASCII code characters were utilized in the generation process instead of using bit strings initially, which adds more flexibility in testing different seed values. Finally, the obtained results would indicate sound difficulty of guessing keys by attackers.

Keywords: Cryptosystems, Information Security agreement, Key distribution, Random numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3435
989 Proposed a Method for Increasing the Delivery Performance in Dynamic Supply Network

Authors: M. Safaei, M. Seifert, K. D. Thoben

Abstract:

Supply network management adopts a systematic and integrative approach to managing the operations and relationships of various parties in a supply network. The objective of the manufactures in their supply network is to reduce inventory costs and increase customer satisfaction levels. One way of doing that is to synchronize delivery performance. A supply network can be described by nodes representing the companies and the links (relationships) between these nodes. Uncertainty in delivery time depends on type of network relationship between suppliers. The problem is to understand how the individual uncertainties influence the total uncertainty of the network and identify those parts of the network, which has the highest potential for improving the total delivery time uncertainty.

Keywords: Delivery time uncertainty, Distribution function, Statistical method, Supply Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
988 Human Factors Considerations in New Generation Fighter Planes to Enhance Combat Effectiveness

Authors: Chitra Rajagopal, Indra Deo Kumar, Ruchi Joshi, Binoy Bhargavan

Abstract:

Role of fighter planes in modern network centric military warfare scenarios has changed significantly in the recent past. New generation fighter planes have multirole capability of engaging both air and ground targets with high precision. Multirole aircraft undertakes missions such as Air to Air combat, Air defense, Air to Surface role (including Air interdiction, Close air support, Maritime attack, Suppression and Destruction of enemy air defense), Reconnaissance, Electronic warfare missions, etc. Designers have primarily focused on development of technologies to enhance the combat performance of the fighter planes and very little attention is given to human factor aspects of technologies. Unique physical and psychological challenges are imposed on the pilots to meet operational requirements during these missions. Newly evolved technologies have enhanced aircraft performance in terms of its speed, firepower, stealth, electronic warfare, situational awareness, and vulnerability reduction capabilities. This paper highlights the impact of emerging technologies on human factors for various military operations and missions. Technologies such as ‘cooperative knowledge-based systems’ to aid pilot’s decision making in military conflict scenarios as well as simulation technologies to enhance human performance is also studied as a part of research work. Current and emerging pilot protection technologies and systems which form part of the integrated life support systems in new generation fighter planes is discussed. System safety analysis application to quantify the human reliability in military operations is also studied.

Keywords: Combat effectiveness, emerging technologies, human factors, systems safety analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219
987 Performance Evaluation of Intelligent Controllers for AGC in Thermal Systems

Authors: Muhammad Muhsin, Abhishek Mishra, Shreyansh Vishwakarma, K. Dasaratha Babu, Anudevi Samuel

Abstract:

In an interconnected power system, any sudden small load perturbation in any of the interconnected areas causes the deviation of the area frequencies, the tie line power and voltage deviation at the generator terminals. This paper deals with the study of performance of intelligent Fuzzy Logic controllers coupled with Conventional Controllers (PI and PID) for Load Frequency Control. For analysis, an isolated single area and interconnected two area thermal power systems with and without generation rate constraints (GRC) have been considered. The studies have been performed with conventional PI and PID controllers and their performance has been compared with intelligent fuzzy controllers. It can be demonstrated that these controllers can successfully bring back the excursions in area frequencies and tie line powers within acceptable limits in smaller time periods and with lesser transients as compared to the performance of conventional controllers under same load disturbance conditions. The simulations in MATLAB have been used for comparative studies.

Keywords: Area Control Error, Fuzzy Logic, Generation rate constraint, Load Frequency, Tie line Power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2460
986 Variational Explanation Generator: Generating Explanation for Natural Language Inference Using Variational Auto-Encoder

Authors: Zhen Cheng, Xinyu Dai, Shujian Huang, Jiajun Chen

Abstract:

Recently, explanatory natural language inference has attracted much attention for the interpretability of logic relationship prediction, which is also known as explanation generation for Natural Language Inference (NLI). Existing explanation generators based on discriminative Encoder-Decoder architecture have achieved noticeable results. However, we find that these discriminative generators usually generate explanations with correct evidence but incorrect logic semantic. It is due to that logic information is implicitly encoded in the premise-hypothesis pairs and difficult to model. Actually, logic information identically exists between premise-hypothesis pair and explanation. And it is easy to extract logic information that is explicitly contained in the target explanation. Hence we assume that there exists a latent space of logic information while generating explanations. Specifically, we propose a generative model called Variational Explanation Generator (VariationalEG) with a latent variable to model this space. Training with the guide of explicit logic information in target explanations, latent variable in VariationalEG could capture the implicit logic information in premise-hypothesis pairs effectively. Additionally, to tackle the problem of posterior collapse while training VariaztionalEG, we propose a simple yet effective approach called Logic Supervision on the latent variable to force it to encode logic information. Experiments on explanation generation benchmark—explanation-Stanford Natural Language Inference (e-SNLI) demonstrate that the proposed VariationalEG achieves significant improvement compared to previous studies and yields a state-of-the-art result. Furthermore, we perform the analysis of generated explanations to demonstrate the effect of the latent variable.

Keywords: Natural Language Inference, explanation generation, variational auto-encoder, generative model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694